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2Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Cantoblanco, E-28049 Madrid, Spain
3Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

We investigate the rectification of thermal fluctuations in a mesoscopic on-chip heat engine. The
engine consists of a hot chaotic cavity capacitively coupled to a cold cavity which rectifies the
excess noise and generates a directed current. The fluctuation-induced directed current depends
on the energy asymmetry of the transmissions of the contacts of the cold cavity to the leads and
is proportional to the temperature difference. We discuss the channel dependence of the maximal
power output of the heat engine and its efficiency.
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I. INTRODUCTION

Rectification is central to the operation of electrical
circuits. More than 60 years ago, Leon Brillouin, then
at IBM, raised the question of whether an electric cir-
cuit consisting of a resistor and a diode can become a
Maxwell demon rectifying its own thermal fluctuations.1

Using inappropriate generalizations of Langevin dynam-
ics for systems with nonlinear diffusion coefficients could
indeed lead to such rectification, in obvious violation of
the second law of thermodynamics.2 Brillouin’s paradox
was solved by taking into account the diode’s contact po-
tentials.3 Later, it was shown that a system with diode
and resistor at two different temperatures cannot exceed
Carnot efficiency4 in agreement with the second law.

Nowadays, thermoelectrics is of increasing importance.
In the continuing quest for smaller scale electric circuits
the evacuation of heat proves to be a major obstacle.
Therefore it is interesting to explore whether some of the
energy that is dissipated can be harvested and put to use.

There are many ways to generate directed currents.
In recent years Brownian particles in ratchets subject to
periodic driving have found much interest in very differ-
ent fields of science.5 Here we are concerned with a more
subtle form of driving: the only external agent acting on
the system is noise that can be generated by an external
thermal equilibrium bath. External noise can generate
directed currents even in periodic potentials with inver-
sion symmetry if the noise power depends on the location
of the Brownian particle.6–10 Such state dependent dif-
fusion is also at the origin of the difficulties encountered
by Brillouin.1

In this Letter, we investigate the rectification of ther-
mal fluctuations into a directed electric current in a meso-
scopic heat engine. The latter consists of two capacitively
coupled chaotic cavities arranged in a three-terminal ge-
ometry as shown Fig. 1. The upper cavity is the rectifier
and is connected via two contacts with energy-dependent
transmissions to electron reservoirs. The lower cavity
provides the external source of thermal noise. It is con-
nected via only a single contact to another electron reser-
voir. The energy dependence of the contact transmissions
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FIG. 1. (Color online) Schematic of the double cavity and
operation scheme: electrons enter the cavity, gain an energy
eδU and then leave the cavity again, experiencing different
transmissions of the contacts.

is a generic feature of mesoscopic conductors and leads
to an intrinsic nonlinearity in the upper cavity.11 The
three-terminal setup allows for separated heat and charge
currents in contrast to two-terminal setups where these
currents are necessarily aligned.

The mechanism giving rise to the current is shown
schematically in Fig. 1. Electrons enter the cold up-
per cavity at an energy E. They absorb the energy eδU
from the fluctuating potential generated by the hot lower
cavity in the upper cavity and afterwards leave the cold
cavity again. As the transmissions through the upper
cavity’s contacts are energy-dependent, the ratio between
transport processes involving the left and right lead is dif-
ferent at energies E and E+eδU , thus giving rise to a net
electrical current through the cavity. The rectification is
controlled by Coulomb coupling which is dominant at low
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temperatures, whereas at higher temperatures phonon ef-
fects become important.12

Thermoelectric properties of both open mesoscopic
cavities 13,14 and in the Coulomb blockade limit15–17 have
been of interest. The quantization of energy levels in
small dots leads to exceptional thermo-electrical prop-
erties.18 Both in two- and three-terminal structures the
limit in which the ratio of electric to heat current is given
by the ratio of the charge to an energy quantum can
be reached.19,20 Still, while the efficiency of such nano-
engines can in principle be optimal leading to an infinite
figure of merit ZT , the current they deliver is small. It is
therefore of interest to explore how power output and ef-
ficiency scale as dots are opened and turned into cavities
with contacts that permit currents that are much larger
than the tunneling current of a Coulomb-blockaded quan-
tum dot.

The physics of Coulomb coupled conductors is of inter-
est in nanophysics for on-chip charge detectors,21 quan-
tum Hall edge states,22 and the Coulomb drag in which
one system that carries a current, induces a current in a
nearby unbiased conductor.23–26 In the setup of Fig. 1 the
current carrying conductor in the Coulomb drag problem
is replaced by an unbiased but hot conductor.

Our paper is organized as follows: In Sec. II, we present
our model of the double cavity and describe our theoret-
ical approach. Our results are presented in Sec. III and
conclusions are drawn in Sec. IV. Calculational details
are presented in the Appendices.

II. MODEL AND METHOD

We investigate transport through two capacitively cou-
pled open quantum dots with mutual capacitance C, cf.
Fig 1. Each cavity i = 1, 2 is coupled via quantum point
contacts (QPCs) to electronic reservoirs r = L,R. The
latter ones are assumed to be in local equilibrium and
described by a Fermi distribution fir(x) = {exp[(x −
µir)/kBΘi]+1}−1 with temperature Θi and chemical po-
tential µir. Interaction effects are captured by capacitive
couplings Cir between the cavities and their respective
reservoirs that leads to screening of the potential fluctu-
ations.

We consider the system in the semiclassical limit where
the number Nir of open transport channels27–29 in the
QPCs is large under conditions at which dephasing de-
stroys phase information but preserves energy. We can,
thus, characterize the chaotic cavities by a distribution
function fi(E) that depends on energy only, and focus on
a semi-classical description of the physics without coher-
ence.30 For later convenience, we write the distribution
function as

fi =

∑
r Tirfir∑
r Tir

+ δfi. (1)

Here, the first term describes the average value of fi and
is given by the average of the distributions of the reser-

voirs weighted with the transmission Tir of the respective
QPC. The second term δfi describes fluctuations of fi
around its average. Additionally, each cavity is charac-
terized by its potential Ui which also fluctuates by δUi.

We assume the transmissions to be energy dependent
which we model to first order as Tir = T 0

ir − eT ′irδUi.
The energy dependent transmission leads to a non-linear
current voltage characteristic. Even without external
noise such a non-linearity requires a self-consistent treat-
ment.31,32 In our system, Fig. 1, we need a self-consistent
treatment not only of the average Hartree potential but
in addition the fluctuating potentials. We remark that
while the energy-independent part T 0

ir scales linearly with
the number of open transport channels Nir, the energy-
dependent part T ′ir is independent of Nir.

The starting point of our theoretical investigation is
a kinetic equation for the distribution functions fi (see,
e.g., Ref. 33),

eνiF
dfi
dt

= eνiF
∂fi
∂Ui

U̇i +
e

h

∑
r

Tir(fir − fi) + δiΣ, (2)

where νiF denotes the density of states of cavity i. It
describes the change of charge in a given energy inter-
val due to changes in the potential Ui, in- and outgoing
electron currents through the QPCs as well as their fluc-
tuations δiΣ where the index Σ indicates summation over
all contacts r of cavity i.

Expressing the charge inside the cavities via the distri-
bution functions fi as well as via the capacitances and po-
tentials, we obtain a relation between δfi and δUi which
allows us to transform the kinetic equation (2) into a
Langevin equation for δUi. Neglecting terms that are
cubic and higher in the potential fluctuations, the latter
can be converted into a nonlinear Fokker-Planck equation
with a diffusion function that depends on the cavity po-
tential. The non-linearity of the Langevin equation leads
to subtleties in the interpretation of the stochastic inte-
gral (known as the Itô and Stratonovich problem) that
gives rise to different Fokker-Planck equations. The “ki-
netic prescription” of Klimontovich34 provides a steady-
state solution of Eq. (2) that is in global thermal equilib-
rium, thus avoiding the Brillouin paradox mentioned in
the introduction.

We stress that the nonlinearity is the technical origin of
rectification in the cavity. A linear system would not ex-
hibit this feature. From the Klimontovich-Fokker-Planck
equation we obtain 〈δUi〉 and 〈δUiδUj〉, cf. App. A-D for
details. The charge currents between upper cavity and
contact r are given by

I1r =
e

h

∫
dET1r(f1r − f1) + δIr. (3)

III. RESULTS

The critical nonlinearity of the cavity is quantified
by the amount of symmetry-breaking in the energy-
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derivatives of the transmissions of the upper cavity, given
by the rectification parameter Λ:

Λ =
G′1LG1R −G′1RG1L

G2
1Σ

, (4)

where Gir = (e2/h)T 0
ir and G′ir = (e3/h)T ′ir. We will

see below that it is the rectification conversion factor be-
tween energy and charge for an unbiased cavity. This
parameter appears in many places in terms of interac-
tion corrections. For example, if we consider the un-
coupled upper cavity (C = 0, i = 1), the single cav-
ity conductance G1 = G1LG1R/G1Σ (which is the series
combination of the left and right leads) has an interac-
tion correction of ∆G1 = −2C1µGΣΛ2kBΘ1/C

2
1Σ, where

C1Σ =
∑
r C1r is the total capacitance of the upper cav-

ity and C−1
1µ = (e2ν1F)−1 +C−1

1Σ is its electrochemical ca-
pacitance. We note that while G1 scales with the chan-
nel number N , the correction ∆G1 is of order ∝ N−1

(quantum corrections in a coherent cavity are of order
∝ N035). The rectification parameter Λ also appears in
the second-order conductance.

We now turn to the coupled cavities, cf. Fig. 1. Ap-
plying different temperatures Θ1 and Θ2 to the reservoirs
that couple to cavity 1 and 2, respectively, while keep-
ing the electrical contacts grounded (Vir = 0), we find to
leading order in the nonlinearity a charge current through
the cavity given by

〈I1L〉 =
Λ

τRC
kB(Θ1 −Θ2), (5)

where we assumed identical capacitances and densities
of states for the two cavities. Now, we give a physical
interpretation of each term in Eq. (5), the rectified cur-
rent. τRC = Ceff/Geff denotes an effective RC time of the
double cavity. It is determined by the effective conduc-
tance of the double cavity, Geff = G1ΣG2Σ/(G1Σ +G2Σ)
which is largest if both cavities have equal conductances.

Furthermore, it depends on the effective capacitance

Ceff =
CΣ(2C + CΣ)(C2

Σ + 2CCΣ − CCµ)

2C2Cµ
(6)

describing how strong the interaction is between the two
cavities. It should be minimized (without entering the
Coulomb blockade regime) to maximize the rectified cur-
rent. It grows as C−2 and for large couplings approaches
the constant value (2CΣ − Cµ)CΣ/Cµ, cf. Fig. 2. Next,
as stated, the rectified current (5) is proportional to Λ,
which characterizes the asymmetry of the system: the
system is asymmetric if either the left-right conductances
and/or their energy derivatives differ. Finally, the cur-
rent (5) is linear in the applied temperature difference, so
the rectified current is zero in global thermal equilibrium,
as must be the case in order to satisfy the second law of
thermodynamics. We note that the sign of the current
flips under either exchange of the system lead nonlinear-
ity or under exchange of the cavity temperatures.

As the energy-dependent part of the transmission does
not scale with the number of transport channels, the cur-
rent Eq. (5) also turns out to be independent of the
channel number. For realistic values of Ceff = 10 fF,
G′ = (e2/h)(mV)

−127–29 and Θ2 − Θ1 = 1 K, we find
I ∼ 0.1 nA which can be readily detected in current ex-
periments and is two orders of magnitude larger than
currents through typical Coulomb-blockaded dots.

In order to convert the heat extracted from the hot
reservoir into useful work, we have to make the noise-
induced current flow against a finite bias voltage V1L −
V1R. The bias induces a counterflow of current given
to leading order in the nonlinearity by G1(V1L − V1R),
thus reducing the total current. At the stopping voltage,
Vstop = Λ kB(Θ1−Θ2)/(G1τRC), there is no current flow-
ing through the system. The output power is given by
P = 〈I1L〉(V1L−V1R). It is parabolic as a function of the
applied voltage, vanishing at zero bias and the stopping
voltage; it has a maximum at half the stopping voltage
given by

Pmax =
Λ2

4G1τ2
RC

(kB(Θ1 −Θ2))2. (7)

Energy is transferred between the cavities in the form
of dissipated power in the upper cavity, P =

∑
r〈I1rV1r〉,

the heat current given up by the lower hot cavity to the
upper cold cavity, JH = 〈U2I2〉, and the heat current
given up by the upper cold cavity to its heat reservoirs,
JC =

∑
r〈(U1 − V1r)I1r〉. It is straightforward to check

that JH = JC + P in our model, so energy is conserved
in the system. The efficiency, η, of the heat-to-charge-
current converter is given by the ratio between the output
power, P to the inter-cavity heat current, JH . To leading
order in the energy-dependent transmissions, this heat
current is given by

JH =
1

τRC
kB(Θ2 −Θ1), (8)
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FIG. 3. Conductance of a QPC for both fully quantized
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Its logarithmic derivative (black and red dashed) controls the
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ciency of the energy harvester.

because heat will flow from hot to cold even without the
nonlinearity. The correction to this result that is linear in
the voltage applied across the upper cavity is suppressed
by G′1r (as it must to satisfy an Onsager relation, see
App. E). As indicated earlier, the asymmetry parame-
ter Λ controls the process of energy-to-charge conversion,
〈I1L〉/JH .

The efficiency η = P/JH exhibits the same parabolic
bias dependence as the output power since the heat cur-
rent is independent of the applied bias. Hence, for a given
temperature difference, the maximal efficiency occurs at
maximum power and is given by

ηmax =
Λ2

4G1τRC
kB(Θ2 −Θ1). (9)

For G1 = 5e2/h and parameters as above, we estimate
Pmax ∼ 2 fW and a maximal efficiency of ∼ 1% of the
Carnot efficiency for a device working at liquid-helium
temperatures. We note that while the maximal power
of the system scales inversely with the number of avail-
able transport channels, the maximal efficiency even de-
creases with the number of channels squared. This is
because for a large number of open channels the effect
of the energy-dependence of the uppermost channel be-
comes less important. This effect can be seen in Fig. 3
where the logarithmic derivative of the QPC conductance
is plotted, which controls the stopping voltage and other
rectification figures of merit in the case where one con-
tact is energy-independent. For a stronger non-linearity,
such as a truly step-like transmission, a non-perturbative
analysis is required which could give rise to much higher
efficiencies.4

In order to demonstrate that it is the nonlinearity of
the rectifying cavity that is the key ingredient to our

heat engine, we now briefly consider an alternative setup
where a rectifier is coupled to a resistor R at temperature
Θ2 with a capacitor CR in parallel instead of a second
cavity (see Fig. 4 for a circuit diagram). Repeating the
same analysis as above, we find that the heat-induced
current, the maximal power as well as the efficiency at
maximum power are given by the same expressions as
above. The only difference is that the effective conduc-
tance and capacitance take on different values, Geff →
G1Σ, Ceff → [CRCΣ + C(CR + CΣ)][CµCΣ(C + CΣ) +
RGΣ(CCRCΣ + (C + CR)C2

Σ − CCRCµ)]/(C2CµCΣ).

We finally apply our results to the semiclassical regime
in the limit G2Σ � G1Σ for simplicity. For large energies
the conductance of the QPCs is given by

Gr(E) =
e2

h

(E − Er)γ
∆γ
r

Θ(E − Er) (10)

with Er being the energy that marks the transition from
tunneling to ballistic transport and ∆r describing how
open the contact is. For equal conductances of the two
QPCs at the Fermi energy, GL(EF ) = GR(EF ), we ob-
tain for the maximal power

Pmax =
e4

8h

γ2[kB(Θ1 −Θ2)]2(1−R)2(EF − EL)γ−2

∆γ
LC

2
eff

,

(11)
with R = ∆L/∆R. We thus see that in order to maxi-
mize the power, we need a strong asymmetry in the con-
tacts, ∆L � ∆R while keeping the conductance of each
contact the same. For the semiclassical result γ = 1/2,
we find that the power drops with increasing the energy
transport window EF − EL. We note, however, that for
γ > 2 the contribution from the conductance will out-
weigh the contribution from the nonlinearity and, thus,
lead to a maximal power that increases with the trans-
port window. While the efficiency will drop with the
inverse square of the transport window, we note that a
conductance that is exponential in energy will have an
efficiency that is independent of the window size.

IV. CONCLUSIONS

We have examined a mesoscopic energy harvester con-
sisting of a pair of quantum dots and find that as the
contacts are opened, the power output can increase but
typically with a drop in efficiency for the weak nonlin-
earity considered here. Our work demonstrates the im-
portance of the asymmetric energy dependence of the
contact transmissions. Energy harvesting from environ-
mental fluctuations is an important goal. It might lead to
nano-scale devices which can function independently of
an external power supply. In densely packed electronic
circuits energy harvesting might alleviate the heat re-
moval problem. Our results are useful for future experi-
ments that realize solid state energy harvesters.
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Appendix A: Kinetic equation

Our starting point is the set of kinetic equation for the
distribution functions fi of the cavities,

dfi
dt

=
∂fi
∂Ui

U̇i +
1

hνiF

∑
r

Tir(fir − fi) +
1

eνiF
δiΣ. (A1)

In the following, we write the distribution function as
a constant part that is given by the average of the Fermi
functions of the reservoirs weighted with the transmission
of the respective QPC and a fluctuating part δfi:

fi =
∑
r

Tirfir
TiΣ

+ δfi

=
∑
r

Gir
GiΣ

fir − ΛiLR(fiL − fiR)

(
δUi +

G′iΣ
GiΣ

(δUi)
2

)
+ δfi (A2)

Here, in the last step, we used Tir = T 0
ir − eT ′irδUi and

expanded the whole expression up to second order in δUi.
We, furthermore, introduced the asymmetry parameter

ΛiLR =
G′iLGiR −G′iRGiL

G2
iΣ

(A3)

and abbreviated Gir = e2

h T
0
ir, G

′
ir = e3

h T
′
ir, where r =

L,R,Σ refers to the left QPC, the right QPC or the sum
over all QPCs adjacent to cavity i = 1, 2.

In order to relate the fluctuating part of the distribu-
tion function δfi to the fluctuating part of the potential
δUi, we express the charge Qic inside cavity i once in
terms of its distribution function and once in terms of
the potentials and capacitances,

Qic = eνiF

∫
dE

(∑
r

T 0
ir

T 0
iΣ

fir + δfi

)
− e2νiFUi, (A4)

Qic =
∑
i

Cir(Ui − Vir) + Cig(Ui − Vig) + C(Ui − Uī),

(A5)

where ī denotes the index opposite to i. Equating the
fluctuating parts of both equations, we find

∫
dEδfi = e

(
CiΣ
Ciµ

+
χi
e3νiF

)
δUi +

χi
eνiF

T ′iΣ
T 0
iΣ

(δUi)
2

+ e
C

e2νiF
(δUi − δUī). (A6)

Here, we introduced χi = ΛiLR(ViL − ViR), the total ca-
pacitance of cavity i, CiΣ =

∑
r Cir + Cig, as well as its

electrochemical capacitance Ciµ = e2νiFCiΣ

e2νiF+CiΣ
.

Using Eq. (A6) to eliminate δfi from the energy-
integrated kinetic equation (A1), we obtain a set of cou-
pled, nonlinear Langevin equations that determine δUi,

(CiΣ + C) ˙δUi − C ˙δU ī =−GiΣ
(
CiΣ
Ciµ

+
χi
e3νiF

)
δUi +G′iΣ

CiΣ
Ciµ

(δUi)
2 + δIiΣ

−GiΣ
C

e2νiF
(δUi − δUī) +G′iΣ

C

e2νiF

[
(δUi)

2 − δUiδUī
] (A7)
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Appendix B: Diffusion coefficients

The diffusion in Eq. (A7) is characterized by the diffusion coefficients defined as36

〈δIir(t)δIir(0)〉 =
2e2

h

∫
dETir

[
fir(1− fir) + fi(1− fi) + (1− Tir)(fir − fi)2

]
δ(t) = Dirδ(t). (B1)

Importantly, the diffusion coefficients Dir depend them-
selves on δUi through the energy-dependence of the
transmissions Tir. This leads to a certain ambiguity when
converting the Langevin equation into a Fokker-Planck
equation, see below. Evaluating the above integral and
expanding the diffusion coefficient to linear order in the
applied voltage, we obtain

Dir = 4kBΘi(Gir −G′irδUi). (B2)

Appendix C: Fokker-Planck equation

Given a nonlinear Langevin equation of the form

ẋi = fi(x) + gij(x)ηj(t) (C1)

where x = (x1, x2, · · · ) and ηj(t) is a noise source satis-
fying 〈ηj(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = δijδ(t− t′), one can
show37 that it is equivalent to a Fokker-Planck equation
of the form

∂P

∂t
=

∂

∂xi

[
−
(
fi + α

∂gil
∂xk

gkl

)
P +

1

2

∂

∂xj
(gilgjlP )

]
(C2)

where Einstein’s sum convention is implied. The param-
eter α takes the values 0 in the Itô prescription, 1/2 in
the Stratonovich prescription and α = 1 in the Klimon-
tovich prescription.34 In our analysis, it turns out that
only the Klimontovich prescription gives vanishing cur-
rents in global thermal equilibrium. In our problem, we
have gij = δijgi such that the Fokker-Planck equation
simplifies to

∂P

∂t
=

∂

∂xi

[
−
(
fi + α

∂gi
∂xi

gi

)
P +

1

2

∂

∂xi

(
g2
i P
)]

(C3)

Multiplying the Fokker-Planck equation with xk and
xkxl, respectively, and integrating over all variables xi,
we obtain the following equations for the expectation val-

ues

d

dt
〈xk〉 = 〈fk〉+ α

〈
∂gk
∂xk

gk

〉
, (C4)

d

dt
〈xkxl〉 = 〈xlfk + xkfl〉+ α

〈
xl
∂gk
∂xk

gk + xk
∂gl
∂xl

gl

〉
+ δkl

〈
g2
k

〉
. (C5)

To make a closer connection to the discussion above, we

introduce gi =
√

2D̃i with the diffusion constants D̃i and
obtain

d

dt
〈xk〉 = 〈fk〉+ α

〈
∂D̃k

∂xk

〉
, (C6)

d

dt
〈xkxl〉 = 〈xlfk + xkfl〉+ α

〈
xl
∂D̃k

∂xk
+ xk

∂D̃l

∂xl

〉
+ 2δkl

〈
D̃k

〉
. (C7)

By comparing the equation for 〈xk〉 with the original
Langevin equation, we furthermore obtain for the expec-
tation value of the random currents

〈δIir〉 =

〈√
2D̃irηir(t)

〉
= α

〈
∂D̃ir

∂xi

〉
. (C8)

For the calculation of heat current, we also need cor-
relators of the form 〈xigij(x)ηj(t)〉. In order to obtain
them, we multiply the Langevin equation (C1) by xi,

1

2

d

dt
x2
i = xifi(x) + xigij(x)ηj(t). (C9)

Taking expectation values and equating with Eq. (C7),
we find

〈xiδIir〉 = 〈xi
√

2D̃irηir(t)〉 =
1

2
〈D̃ir〉+ α

〈
xi
∂D̃ir

∂xi

〉
.

(C10)

Appendix D: Charge and heat currents

The charge current between lead r and dot i is given
by

Iir =
e

h

∫
dE(T 0

ir − eT ′irδUi)(fir − f) + δIir (D1)

which can be rewritten as
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Iir =
GirGir̄
GiΣ

(Vir −Vir̄)−
G′irGir̄
GiΣ

(Vir −Vir̄)δUi−
{

(Gir −G′irδUi)
[(

CiΣ
Ciµ

+
C

e2νiF

)
δUi −

C

e2νiF
δUī

]}
+ δIir. (D2)

The expectation value of the fluctuating current part is obtained from Eq. (C8).
The heat current between lead r and cavity i is given by Jir = (Ui − Vir)Iir. Without an applied bias voltage, we

have Jir = δUiIir and, hence,

〈Jir〉 = −Gir
[(

CiΣ
Ciµ

+
C

e2νiF

)
〈(δUi)2〉(0) − C

e2νiF
〈δUiδUī〉(0)

]
+ 〈δUiδIir〉(0), (D3)

where the potential-current correlator can be obtained using Eq. (C10). The superscript (0) on the expectation values
indicates that they have to be evaluated to zeroth order in the applied bias voltage.

The heat current up to linear order is again given by Jir = δUiIir as both the nonfluctuating part of Ui as well as
the expectation value of Iir are of first order in the bias voltage. We find

〈Jir〉 =
GirGir̄
GiΣ

〈δUi〉(0)(Vir − Vir̄)−
G′irGir̄
GiΣ

(Vir − Vir̄)〈(δUi)2〉(0)

−Gir
[(

CiΣ
Ciµ

+
C

e2νiF

)
〈(δUi)2〉(1) − C

e2νiF
〈δUiδUī〉(1)

]
+ 〈δUiδIir〉(1).

(D4)

Appendix E: Onsager relations

According to Onsager38,39 the linear response coeffi-
cients of charge and heat currents as a response to bias
voltage and thermal gradients are related to each other.
To verify the Onsager relation for our system, we expand
the charge current through cavity 1 and the heat current
between the two cavities to linear order in the bias ∆V
applied to cavity 1 and the temperature difference ∆Θ

between the reservoirs of the two cavities,

〈I1L〉 = G∆V + L∆Θ, (E1)

〈J2Σ〉 = M∆V +N∆Θ. (E2)

In the main text we already found that L = kBΛ1LR/τRC .
Evaluating similarly the heat current in response to an
applied bias voltage, we find M = −kBΘΛ1LR/τRC in
agreement with the Onsager relation L = −M/Θ.
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Lett. 92, 176804 (2004).
34 Y. L. Klimontovich, Phys. A 163, 515 (1990).
35 J. N. Kupferschmidt and P. W. Brouwer, Phys. Rev. B 78,

125313 (2008).
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