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In the context of a gas of ultracold atoms with effective spin S = 3/2 confined to an elongated trap
we study the one-dimensional Fermi gas interacting via an attractive d-function potential within the
grand-canonical ensemble. The particles can be either unbound or clustered in bound states of two,
three and four fermions. The rich p vs. H ground state phase diagram (u is the chemical potential
and H the external magnetic field) consists of the four basic states and the various possible mixed
phases in which some these states coexist. Extending the analysis of K. Yang [Phys. Rev. B 63,
140511(R) (2001)] for S = 1/2, we study the correlation functions of the generalized Cooper clusters
of bound states of two, three and four particles using conformal field theory and the exact Bethe
ansatz solution. The correlation functions consist of a power law with distance times a sinusoidal
term oscillating with distance. In an array of tubes with weak Josephson tunneling the type of
superfluid order is determined by these correlation functions. The wavelength of the oscillations is
related to the periodicity of a generalized Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state for higher
spin particles. All the relevant states are analyzed for S = 3/2.

PACS numbers: 71.10.Pm, 36.40.Ei, 51.30.4+i
I. INTRODUCTION

Spin-imbalanced ultracold gases of atoms confined to
one-dimensional traps have been the subject of several re-
cent studies.® Confinement to nearly one-dimensional
tubes can be achieved if the ultracold cloud of atoms
is subjected to a two-dimensional optical lattice, which
defines a two-dimensional array of tubes.! The tubes
can be regarded as isolated if the confinement by the
laser beams is strong enough to suppress tunneling be-
tween tubes. The scattering between atoms under trans-
verse harmonic confinement is subject to a confinement-
induced resonance.* Fine-tuning this Feshbach-type reso-
nance, the interaction between the fermions can be made
attractive and its strength can be varied.® The interac-
tion is local and can be approximated by a J-function
potential in space. The confinement along the tube is
roughly harmonic and weak; it can be locally incorpo-
rated into the chemical potential. Consequently, these
systems of fermions are only locally homogeneous and
within the local density approximation display phase sep-
aration with the variation of the chemical potential along
the tube.?? Although most experimental findings so far
are for SLi atoms (spin 1/2),16°8 recent results for °K
(spin 9/2) are very encouraging that soon higher spins
will be investigated.®

One-dimensional spin-1/2 gases with J-function inter-
action were first studied by M. Gaudin!? and C.N. Yang!!
extending Bethe’s ansatz. For an attractive interaction in
the ground state there are two classes of solutions of the
discrete Bethe ansatz equations, namely, real charge ra-
pidities and paired complex conjugated rapidities,'?12:13
representing spin polarized particles and bound states

of the Cooper type, respectively. There are then three
possible homogeneous phases, namely, the (1) fully spin-
polarized state, (2) a phase without polarization, where
all particles are bound in Cooper-pairs, and (3) a mixed
phase in which unpaired spin-polarized particles coexist
with Cooper pairs. In phase (2) the Cooper pairs are
gapped (i.e. it requires a critical field to break-up the
bound states) and display no long-range order. Similar
results were obtained for the Hubbard model with at-
tractive U.'%15 There are several other theoretical stud-
ies, Refs. 16-28, of ultracold spin-1/2 atoms in one-
dimension, which are related to the present work.

Sutherland?® generalized the Bethe ansatz solution
for spin 1/2 to an arbitrary number of colors N =
25 + 1 [SU(N)-symmetry]. For an attractive interac-
tion, Takahashi®® derived the integral equations for the
ground state density functions for bound states of up
to N = 25 + 1 particles. The space extension of these
bound states was further studied by C.H. Gu and C.N.
Yang.3! The classification of states, the thermodynamics,
the ground state equations and elementary excitations of
the gas arbitrary number of colors have been derived by
Schlottmann?32:33 for both attractive and repulsive poten-
tial (see also Ref. 34). Several of these results have been
recently rederived in the context of ultracold fermion
gases.?® 3% With an attractive interaction, atoms with
spin S can form bound states of up to (25 + 1) particles,
extending this way the concept of Cooper pairs to larger
clusters, and the phase diagram will have more possible
pure and mixed phases.?%39 For instance, for S = 3/2
there are four basic states, namely, bound states of four,
three and two particles, and unbound particles, and the
corresponding mixed phases, which can have up to four



coexisting basic states.

A two-body interaction for spin larger than 1/2 does
not necessarily have to have SU(N) symmetry as it is as-
sumed here. Spin-3/2 fermion models with contact inter-
actions in any dimension display a generic SO(5) symme-
try without tuning parameters.’® The Hubbard variant
for S = 3/2 has been studied via Monte Carlo algorithms
in Ref. 41 and was applied to investigate the competing
orders in one-dimensional optical traps in Ref. 42. Sev-
eral integrable one-dimensional continuum models dis-
playing pairing involving exchange interactions,** SO(5)
symmetry for spin-3/2 fermions,** and hidden Sp(2s+1)
and SO(2s + 1) symmetries for high spin-s fermions and
bosons*® have been constructed and solved for the low
particle density limit. Experimental results on high spin
atomic gases will have to decide which model is the ap-
propriate one.

The mixed phase for S = 1/2 has been interpreted?! as
the one-dimensional analog of the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state.*6 For an isolated tube there
is no long-range order of the pairs and hence no order pa-
rameter; however, the Cooper-pair correlation function
acquires a phase in the mixed state, that is believed to
be reminiscent of the space modulation of the order pa-
rameter in higher dimensions. A coupling between tubes,
e.g. Josephson tunneling, increases the effective dimen-
sion of the system so that long-range order can arise and
it is believed that this could lead to the realization of
the FFLO phase in an ultracold gas of atoms.!?! The
crossover from three-dimensional (FFLO phase) to one-
dimensional (mixed phase) behavior is addressed in [47],
where the phase diagram for a weakly interacting ar-
ray of tubes is calculated. FFLO related phases have
been observed in the strongly anisotropic heavy elec-
tron compound*®4? CeColns (the interpretation is still
controversial®’) and in the quasi-two-dimensional organic
compounds A\-(BETS);FeCly and (TMTSF)2Cl0,4.%1:52

Motivated by the work of K. Yang?! in this paper we
explore the possible formation of FFLO states in the
mixed phases of quasi-one-dimensional systems with par-
ticles of spin S larger than 1/2. As a concrete example
we will work with S = 3/2, but the results can be ex-
tended to other spin values. For S = 3/2 bound states
of two, three and four particles occur which, as Joseph-
son tunneling between tubes is allowed, may give rise to
long-range superfluid order. The instability from the nor-
mal phase to the first superfluid phase is determined by
the dominant one-dimensional correlation function. In
a mixed phase, since the Fermi momenta for the differ-
ent spin-components are different due to the magnetic
field, the order parameters will have sinusoidal oscilla-
tions in space, characteristic of an FFLO state. In the
one-dimensional case the periods of oscillation can be ex-
tracted from the corresponding correlation functions. We
evaluate the response functions using conformal field the-
ory and the Bethe ansatz solution. The correlation func-
tions are the product of a power-law dependence of the
distance and a cosine term with the desired periodicity.

There are numerous correlation functions and the critical
exponent can be used to determine which one yields the
dominant behavior.

The rest of the paper is organized as follows. We start
with the simplest situation: S = 1/2 particles. In Sect. II
we present the model and the discrete Bethe ansatz equa-
tions for S = 1/2 and evaluate the Cooper-pair correla-
tion function in the paired particle phase and the mixed
phase using conformal field theory, thus reproducing K.
Yang’s?! bosonozation results. In Sect. III we present
the Bethe ansatz equations and their numerical solution
for the dressed energies and the densities for the case
S = 3/2. The phase diagram for a Zeeman splitting and
the phase separation due to the varying chemical poten-
tial along the trap are reviewed.? In Sects. IV we turn
to the correlation functions for S = 3/2. The matrix
of dressed generalized charges is calculated and standard
conformal field theory is applied to calculate the corre-
lation functions. Results for the correlation functions
as a function of the chemical potential for H = ¢? and
H = 2¢? are presented in Sect. V. The conclusions are
summarized in Sect. VI.

II. BETHE ANSATZ EQUATIONS AND PAIRING
CORRELATION FUNCTION FOR SPIN-1/2
PARTICLES

A. Model and Bethe ansatz

The Hamiltonian for a gas of nonrelativistic particles
with spin S = 1/2 interacting via an attractive d-function
potential is
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where x; are the coordinates of the particles, IV, is the
total number of particles and c is the interaction strength.
Here h? /2m, where m is the mass of the particles, has
been equated to 1, or alternatively it has been scaled into
‘H and c. The model is integrable and a solution can be
constructed by nesting two Bethe ansdtze in terms of two
sets of rapidities, one for the particles (charges), {k;},
j=1,---,N,, and one for the spin degrees of freedom,
{Aa}, a=1,---, M, where M is the number of minority
spins.'®!! With periodic boundary conditions on a ring
of length L this gives rise to the discrete Bethe ansatz
equations.

For an attractive interaction and large L, the solu-
tions of the Bethe equations for the ground state can
be classified according to (i) N, — 2M real charge ra-
pidities, belonging to the set {k;}, representing unpaired
propagating particles, and (ii) M pairs of complex con-
jugated charge rapidities associated with a spin rapidity
Aa, in the form k4 = A=£]c|/2. These pairs correspond to
bound states of particles with different spin components,



so-called strings of length one.'%:12:32:34 The real rapidi-
ties k; and A, have all to be different and satisfy the
Fermi-Dirac statistics, i.e. the states are either occupied
or empty. In the ground state the rapidities are densely
distributed in the interval [— By, B;], where | = 0 and 1
is the length of the string. We denote with £(®)(k) and
eM()\) the energy potentials (entering the Fermi-Dirac
distribution), which satisfy the following coupled linear
integral equations:!2:32:34
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1 is the chemical potential for the total number of par-
ticles and H is the Zeeman energy. u and H corre-
spond to the Langrange multipliers for the conservation
of particles and the magnetization, respectively. They
determine the integration limits B; through the condi-
tion that () (+B;) = 0, since occupied states correspond
to e < 0 and for empty states e() is positive. This way
the B; play the role of Fermi points for the spin-polarized
states and the Cooper pairs, respectively.

Note that if all the e are rescaled to ¢ /c?, u to
w/c?, H to H/c?, both By to B/|c|, k to k/|c| and X to
A/|el, the equations are universal, i.e., independent of the
magnitude of |¢|. The problem has then only two param-
eters, namely, H and p.2 In other words, by fixing u and
H the total number of particles and the spin-polarization
are determined. The phase diagram, obtained by numer-
ically solving Eqs. (2) and (3), is shown in Fig. 1(a) and
agrees with published results.? There are three possible
phases, namely, a phase where all particles are paired
denoted with IT (the rapidity band [ = 1 is partially pop-
ulated and the band ! = 0 is empty), a phase where all
particles are unpaired and spin-polarized denoted with I
(the rapidity band I = 0 is partially populated and the
band [ = 1 is empty), and the mixed phase I+II where
pairs coexist with unpaired spin-polarized particles. The
pure phase II is only stable for small Zeeman splitting.
The harmonic confinement of the trap can be treated
within the local density approximation and incorporated
into the chemical potential . 339 y is largest at the cen-
ter of the trap and decreases as one moves away from the
center towards the boundaries (see Sect. III, Eq. (27)).
In a constant magnetic field this corresponds to a vertical
line in Fig. 1(a). The two dashed vertical lines represent
two qualitatively different situations of varying particle
density, in which one moves from the mixed phase at the
center of the trap into a pure phase, namely phase II

at low fields and phase I at higher fields, respectively.
Hence, phase separation is expected as a function of the
position along the trap.? We will refer to these transitions
later in this section.

B. Distribution densities of rapidities

The distribution densities of the rapidities, p(®) (k) and
pM(N), can be obtained via differentiation of the poten-
tials € with respect to the chemical potential s,
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where pg) is the corresponding distribution density of the

holes (unoccupied states). The density functions satisfy

the following integral equations!?
(0) (0) L7 o
OE) +pOk) = 5= = [ DD aye = 2)(6)
Y - B
(1) (1) 1 )
pr' N+ o) = —— dkp'™ (k)ai (A — k)
o —Bo
B,
— / dNpM (Nag(A = X).  (7)
—-B;

The density of unpaired polarized particles and the den-
sity of paired states are given by!?
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and the total number of particles and the magnetization
per unit length are N,/L = ng + 2ny and Magn/L =
ng/2. ng and n; as a function of the chemical potential
at constant magnetic field are shown in Figs. 1(c) and
1(d) for the two situations corresponding to the vertical
dashed lines in Fig. 1(a), respectively. In Fig. 1(c) it is
seen that with decreasing p there is a transition from the
mixed phase (ng and ny are both nonzero) to the phase
IT (only mp is nonzero). At the boundary ng vanishes
with a square-root dependence, while variation of ny is
smooth. In Fig. 1(d) we observe that with decreasing
1 the transition is from the mixed phase to the spin-
polarized phase I. In the mixed phase both ny and n; are
nonzero and nj vanishes with a square-root dependence
at the phase boundary, while ny has a cusp at that point.
The total energy of the system is given by!?

Bo
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FIG. 1: (color online) (a) Ground state phase diagram p vs. H for a homogeneous fermion gas of spin S = 1/2 with |c| = 1.2
The lower left corner corresponds to the empty system (no particles). The Roman number I denotes unpaired particles and II
denotes paired bound states. The region I+II corresponds to the mixed phase with coexisting phases I and II. The two vertical
lines at H = 0.2 and H = 1.0 are p-intervals considered in the remaining panels. (b) Dressed generalized charges for the gas
as a function of y along the vertical lines H = 0.2 (solid curves) and H = 1.0 (dashed curves). (¢) Occupation numbers ng of
unpaired particles (solid), n1 of bound pairs (dashed), and the exponent 6 of the Cooper pair correlation function (dash-dotted,
right axis) as a function of y for H = 0.2. (d) Same as (c) but for H = 1.0.

where €5, is the energy density. If a band is partially corrections to the ground state energy®® 5%

filled, the group velocity for the band is defined as?? 9
U o~
E =Les+ > op [Z (2 1)quNq]
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where ¢ is either £ or A. Here v is the group velocity + Z L [Z ZqDq| +n +ny — 12 (1)
for the low-lying spin excitations and v; the one for the =01 =01
low-lying excitations of the paired bound states. In the and the corresponding momentum is
mixed phase both excitation states form a simple Dirac 9
sea with two Fermi points at £ = £B;. The respective AP = % Z [DzANl +n — nl_} : (12)

Fermi momenta are p; = mn;. =01

Here z4; is the 2 x 2 matrix of generalized dressed charges

and ANy, D, and nqi are a set of eight quantum numbers

C. Conformal towers characterizing the excitations. The generalized dressed

charges determine how the different Fermi points (there

The low-lying excitations of the system with periodic are four) interact with each other. The dressed general-
boundary conditions can be described by the finite size ized charges are obtained as z;, = §4(By), where the &,



are the solution of a set of integral equations analogous
to that satisfied by the distribution densities, Eqgs. (6)
and (7), but with different driving terms,

B1
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Fig. 1(b) shows the dressed generalized charges as a
function of the chemical potential at constant magnetic
field for the two situations corresponding to the verti-
cal dashed lines in Fig. 1(a). The solid lines refer to
the H = 0.2 case, while the dashed curves represent the
H = 1.0 case. In the mixed phase both bands are occu-
pied and hence all four dressed generalized charges are
different from zero. This changes in the pure phases,
where only one rapidity band is populated and hence the
dressed generalized charge is a scalar, corresponding to
zy for that band. The off-diagonal dressed charges are
negative in the mixed phase, while the diagonal com-
ponents are positive. Their variation at the transitions
can also be discontinuous, which reflects in jumps of the
critical exponent (see below). The dressed generalized
charges for the Tonks-Girardeau limit were obtained in
Ref. 28.

The eight quantum numbers consist of two sets of four
quantum numbers, one for each band of rapidities. AN,
corresponds to the added or removed number of particles
in the rapidity band ¢, D, is the parity variable, i.e. 2D,
is the difference between forward and backward movers
in the band ¢, and the nff count the number of particle
and hole excitations about each Fermi point (+ for for-
ward movers and — for backward movers). These eight
quantum numbers determine the conformal asymptote of
the correlation function for a given conformal field oper-
ator 0. At T = 0 the corresponding space and time
dependent correlation function is given by®3 55

exp[—2i(Dopo + D1p1)7]
[Ty (@ — dvpt)227 (2 + ivt) 220
(14)
where p; are the Fermi momenta and Ali are the confor-
mal dimensions defined as
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2(z00211 — 210%01)
ANy — z00AN; |°
2Ai‘: = 271?: + |:Z()1D0 + leDl F Z10 0 200 1}15)
2(z00211 — 210%01)

The smallest exponents are obtained for nf = ni = 0.
The backward scattering quantum numbers, D,, are
actually related to the AN, via the discrete Bethe ansatz
equations, i.e. the equations before the thermodynamic
limit is taken. Removing or adding a pair of particles (or

and unpaired particle) rearranges the quantum numbers
of the rapidities yielding the following relations?®

DO = %(AN@+AN1) (mod 1),

Dy = JANy (mod 1) (16)
Hence, depending on ANy and ANy, Dy and Dy can be
integers or half-integers, but they are only determined
modulo an integer.

In recent papers it was shown that neglecting ir-
relevant operators perturbing the Luttinger liquid Hamil-
tonian can lead to incorrect results for on-shell singular-
ities in correlation functions. Introducing a coupling to
a mobile impurity and taking the leading irrelevant op-
erators into account nonperturbatively it is possible to
recover the exact singularity threshold and critical ex-
ponent. We do, however, believe that these irrelevant
operators do not affect the exponent of the equal-time
correlation functions studied here.

56-59

D. Cooper pair correlation function and FFLO
phase

For simplicity we restrict ourselves to the equal time
correlation function for the Cooper pairs. Denoting the
creation of a Cooper pair by Cg, the corresponding cor-
relation function has the following general form

<C;(9Ua 0)C,,(0,0)) = Az~ exp[—2i(Dopo + D1p1)a] ,
(17)
where
0 =2(A5 + Ay + A7 + A7) (18)
and A is an amplitude.

We first consider the pure phase II, for which we only
have to consider two quantum numbers, namely AN
and D;. The addition of a bound pair of particles corre-
sponds to AN; =1 and from Eq. (16) we have that D,
is an integer. In terms of particle creation operators, the
operator associated with D; = 0 is CI/2+CT_1/2_, where

the subscripts refer to the spin component and +/— to
forward /backward movers. This represents a standard
Cooper pair, which is a bound state of a forward moving
spin-up particle with a backward moving spin-down par-
ticle, and has zero total spin and momentum. Another
possible choice is D1 = 1, which corresponds to the op-
erator CI/QJFCL/H and carries momentum 27n; D7, but
is different from a Cooper pair. The above arguments
correspond to a system with periodic boundary condi-
tions, although the trap is actually open-ended (see Ref.
39). However, transport quantities should be calculated
with periodic boundary conditions, since the possibility
of a current circulating should exist. For AN; = 1,
Dy = 0 and nf = 0 (the leading contribution involves
no particle-hole excitations about the Fermi points), we



obtain § = 1/(221,) and (C}(z,0)C,(0,0)) = Az~?5* in
agreement with results obtained using the bosonization
method.?!

We now consider the mixed phase, where both rapid-
ity bands are populated. The quantum numbers for the
band of pairs are not changed, AN; = 1, D; = 0 and
nf = 0. The band for spin-polarized unpaired particles
has ANy = 0 (the number of unpaired particles is not
changed) and from Eq. (16) it is seen that the parity of
the states is changed by the addition of a Cooper pair,
Dy = £1/2 and nT = 0 for the smallest conformal di-
mensions. When inserted into Eq. (15) we obtain for the
critical exponent

1 1
0=—(22,+23) |1+ , 19
2( o+ %0) (211200 — 210201)* (19)
and the correlation function is given by
(C’;(I,O)OP(O,O» = Az™% cos(mnox) , (20)

where we neglected an arbitrary constant phase in the
cosine function. The period of oscillation has been ob-
tained in subsection I1.B (see Fig. 1(c) and (d)) and @ is
shown as the dash-dotted curve in the same panels (right
side axis). Note that 6 is discontinuous at the transi-
tion between phases. 6 is in qualitative agreement with
the result obtained through the bosonization method.?!
The critical scaling dimension in one-dimension is 2, and
0 < 2 is satisfied for both, the II and the I4II, phases in
the region of interest. The correlation function for the
Tonks-Girardeau limit was also obtained in Ref. 28.
Next we consider an array of parallel elongated tubes.
The tubes are assumed to be all equal. The particles
in different tubes interact with each other and a weak
tunneling of unpaired and preformed pairs of particles be-
tween tubes is allowed. The Josephson tunneling leads to
coherence between the pairs in different tubes and even-
tually to long-range order of Cooper pairs that propagate
along the direction of the tubes. If the system is in phase
IT the long-range order is the condensation of pairs of
up-spin right movers with down-spin left-movers, as ex-
pected from the BCS theory, only that the Fermi surface
is one-dimensional with Fermi momentum kp = mn;.2!
The three-dimensional order gives rise to a low but finite
T., and for T above T, the Luttinger liquid power-law
behavior of the Cooper-pair correlation function (17) re-
mains valid. This power law determines the onset of su-
perfluidity from the normal phase. The situation is more
complicated in the mixed I4II phase, since the Fermi mo-
menta for up-spin and down-spin are different, namely
kps = m(no + n1) and kp, = mnq, respectively. It is
then straightforward to see that with transversal coher-
ence the BCS theory yields momentum carrying Cooper
pairs and the order parameter is an oscillating function of
space, in complete analogy with the FFLO phase.?! The
space modulation of the order parameter is just given by
the oscillating factor in Eq. (20). The phase is then not
homogeneous, but due to the nodes of the order param-

eter, there are periodically alternating regions of BCS
condensate and normal phases.

E. Density wave correlation functions

Particle density waves and spin density waves are two
other possible forms of long-range order that can be con-
sidered. The correlation function for longitudinal (along
the z-axis) spin density waves is very similar to that of
particle density waves, so that we can refer to them as
density waves. In terms of creation and annihilation op-
erators the local density operator for up-spin particles
is

% Z(CLTJFeikTI + CLTieiisz)
bk

X (Ck/T+eiikTI + Ck/Tfeika) , (21)

Yl (@) (z) =

and a similar expression holds for down-spin particles.
None of the operators changes the number of particles,
so that ANy = AN; = 0 for all of them. Consequently
the parity operators are integers. Operators with both
fermion operators referring to the same Fermi point have
Dy = Dy = 0, while a momentum transfer of +2& cor-
respond to Dy = D; = £1 and of £2k; to Dy = 0 and
D; = +1. The critical exponents are computed from
the conformal dimensions, Eq. (15). The terms with
Dy = Dy = 0 yield a constant term given by the square
of the particle density (square of the magnetization) for
the particle density (spin density) correlation function.
The terms with nonzero D quantum numbers give rise to
nontrivial results. The density correlation function for
the Tonks-Girardeau limit was also obtained in Ref. 28.

For the pure phase II (all particles are paired) only 211
matters and the density wave exponent is Opw = 22,
which is the inverse of the exponent for superfluidity.
z11 is close to one for small particle density and hence
superfluidity is favored. With increasing u, z11 decreases
and at some critical value of p for which z1; = 1/ \/5,
the two exponents are equal to one. For larger particle
populations the density waves are favored.

In a finite magnetic field H and with increasing u,
the system eventually crosses over into the mixed phase.
When entering the mixed phase the exponent for super-
fluidity increases dramatically, as seen in Fig. 1(c) and
(d). Opw, on the other hand, decreases considerably be-
cause z11 > 0 and zgg > 0 but 219 and zp; are both nega-
tive. Under these circumstances the density waves dom-
inate and one could expect a coexistence of three types
of order in the ground state, namely, ferromagnetism,
particle density waves and spin density waves. There
are two different wave numbers of oscillation, which are
(2mn¢) and (27ny) and the exponents for both spin di-
rections are different in the mixed phase. Let us assume
that the order is governed by the spin direction with the
smaller exponent; then there is a modulation either for
the up-spins or the down-spins, but not for both. If the



up-spins are modulated, both paired and unpaired par-
ticles are modulated and hence the down-spins are also
modulated. On the other hand, if the modulation is for
down-spins, then, since the particles are bound, the up-
spins are also modulated. In other words, both, up- and
down-spin particle densities, have to be modulated simul-
taneously, but since the Fermi vectors are different the
periodicities are going to be different.

In order to generate long-range order at finite temper-
atures, the transversal coherence among a large number
of tubes is required. This can be obtained by tunneling
of Cooper pairs between tubes induced by constructing
the optical lattice so that the tubes are not perfectly
isolated. The tunneling of particles between tubes also
smears the build-up of density waves, which this way be-
come unfavorable. We therefore limit ourselves to study
superfluidity response functions for the remainder of this
paper. Symmetry breaking due to the tunneling of pairs
between two chains has been studied in Ref. 60 in the
context of the Coulomb drag between quantum wires.

Finally, there is a third operator that could be relevant
for density waves, c$ +c¢,ci_c 1+ , 1.e. an up-spin particle
jumps forward and a down-spin particle backward across
the Fermi surface. The only nonzero quantum number is
then Dy = £+1. This term yields oscillations with a wave
number of (27ng), but the corresponding exponent 6 is
larger than 2 (larger than the critical scaling dimension)
and hence this operator is not relevant.

III. GENERALIZATION TO SPIN-3/2
PARTICLES

For S > 1/2 the model under consideration is still
given by Eq. (1) only that the internal spin symmetry is
now SU(N) with N = 2S5 + 1. The corresponding Bethe
ansatz equations have been derived by Sutherland.?%:34
For an attractive interaction and large L, the solutions
of the discrete Bethe equations for the ground state are
strings of length of up to N —1. We denote the rapidities
with €0, wherel = 0,---,N—1=2S. For S = 3/2 there
are then four sets of states, namely, £, corresponding
to bound states of four particles, £?), referring to bound
states of three particles, £€(1), representing bound pairs,
and £ for the unbound spin-polarized particles.30-33:34
This classification of states is completely analogous to
that of the Anderson impurity of arbitrary spin in the
U — oo limit® (see also Refs. 62,64,66) and the one-
dimensional degenerate supersymmetric ¢t — J model,%
and is only determined by the SU(NV)-symmetry and the
attractive nature of the potential.

The real rapidities £€() have all to be different and sat-
isfy the Fermi-Dirac statistics, i.e. the states are either
occupied or empty. In the ground state the rapidities
are densely distributed in the interval [— By, B;]. We de-
note with e()(¢), 1 =0,1,---,25, the dressed energy po-
tentials (entering the Fermi-Dirac distribution) and with
p (&) the densities of the rapidities. These quantities
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FIG. 2: Ground state phase diagram p vs. H for a homoge-
neous fermion gas of spin S = 3/2 with |¢| = 1.** The Roman
numbers denote the number of particles involved in a bound
state. Regions with more than one Roman number are mixed
phases, i.e. phases with coexisting different states. The lower
left corner corresponds to the empty system, i.e. no particles.
The two vertical dashed lines at constant field, H = 1.0 and
H = 2.0 are u-intervals considered in Figs. 4 and 5 to discuss
phase separation along the trap.

satisfy integral equations which generically for a quan-
tity X for [ = 0,---,2S can be written as

25 By
X0 = D) -3 / iy = €)X (€. (2)
q=0"""7qa

where D;(€) is the driving term and Kj,(€) the integra-
tion kernel. The kernel can be written in a compact
form33

Ki,(&) = / ;l—:: explifw — (I 4 q — pi,q)|wcl/2]
x sinh[(prq + 1)we/2] /sinh(we/2),  (23)

where p; ; = min(l, ¢) — ;4. Note that K;4(§) = Kqu(&).
In terms of the a,(§) defined in Eq. (4) the kernel for
S =3/2 s

Kop=0, Kor=a1, Kig=az, Koz =as,

Kii=a2, Kio=a1+a3, Kiz=ax+ay,

Ko =ax+as, Koz =a1+az+as,

K33 =ag + a4+ ag . (24)

The four dressed energy potentials for a Zeeman split-
ting are obtained from Eq. (22) with the driving
terms33:34

(1+2) , 31
5 c—u—TH}. (25)

Dy(§) = (1+1)]¢* -

The Lagrange multipliers p and H determine the integra-
tion limits B; through the condition that ) (+B;) = 0,
in analogy to the S = 1/2 case. This determines the
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FIG. 3: (color online) Density profile within the local density approximation for |¢| =1, S = 3/2 and (a) H = 1.0 (x(0) = —0.5
and p(L/2) = —1.8) and (b) H = 2.0 ((0) = —0.5 and p(L/2) = —2.3). The position along the trap is given by Eq. (27).
The four (three) crossovers between phases are shown by the thin vertical lines. The densities nq of bound states of ¢ + 1
particles (or polarized unbound particles if ¢ = 0) are given by the solid (ns), dashed (n2), dotted (n1) and dash-dotted (nq)
curves. There is phase separation due to the varying confinement along the trap.?® The solid blue curve represents the density
of the total number of particles, N,/L, rescaled by a factor of 5 (in (a)) and 6 (in (b)), respectively. The red curve is the

magnetization density, M /L (rescaled by a factor of 3 (in (b)).

Fermi points of the system. Note that if all the ¢®
are rescaled to /%, u to p/c?, H to H/c?, all B
to Bi/|c|] and £ to £/|c|, the equations are universal,
i.e., independent of the magnitude of |¢|. Hence, within
the framework of the grand canonical ensemble, with-
out loss of generality, it is sufficient to present the re-
sults for |¢| = 1. The phase diagram has then only two
parameters, namely, H and u. The above set of equa-
tions is solved numerically by iteration and the phase
diagram for |¢| = 1 is shown in Fig. 2. The energy po-
tential £(©) corresponds to unpaired particles with spin-
component S, = 3/2; the energy £ to bound pairs with
spin-components S, = 3/2 and S, = 1/2; the potential
£ to bound states of three particles of spin compo-
nents S, = 3/2, S, = 1/2 and S, = —1/2, respectively;
and finally £(3) to bound states of four particles all with
different spin-components. We denote these states with
Roman numbers, I, II, TII, and IV, respectively. These
states can coexist in mixed phases, for example we de-
note with I+IV the coexistence of unpaired and bound
states of four particles and with I4+II+III a phase where
all states except four-particle bound states are present.3?

Note that all phase boundaries are given by the zero
of some energy potential. The phase boundaries are
then crossover lines, which are accompanied by a square-
root singularity of one of the densities of states (one-
dimensional van Hove singularity, see inset of Fig. 4 of
Ref. 39). For small magnetic fields all particles are bound
in four-particle bound states (generalized Cooper pairs).
The lower left corner refers to the region where all bands
are empty (system without particles). With increasing
field other phases become realized. At very large mag-
netic fields and/or for low values of y (small number of
particles) the phase IV is not favorable. For large p and

intermediate magnetic fields all four bands are populated
and hence spin-polarized unbound particles coexist with
all possible bound states.

An ultra-cold atom gas is inherently inhomogeneous
since the diameter of the tube gradually changes with
position from the center of the trap to its boundaries. As
a consequence of the changing diameter of the tube, the
quantization in the plane transversal to the tube grad-
ually changes the zero of energy. This change can be
represented by a harmonic potential, so that the actual
local chemical potential p is a function of = given by

() + tmwp,a® = const . (26)

Within the local density approximation, it is p(z) that
enters the Bethe equations for €. The solution is then
exact for the one-dimensional system, but approximative
for the trap. This approximation'? is expected to be
good since the variation of p with z is slow, i.e. it is the
largest length scale in the system. The approximation
neglects the quantization of the harmonic confinement,
which is treated classically and locally incorporated into
the chemical potential. Given p(0) and p(L/2), i.e. the
chemical potential at the center and boundary of the
trap, the position along the trap is given by (from Eq.

(26))
/(L/2) = V/[u(z) = p(0)]/[u(L/2) — u(0)] . (27)

The two dashed vertical lines in Fig. 2 represent two very
different situations for the variation with u in a constant
magnetic field.

In order to obtain the local density profile as a function
of x for the different phases, the density functions for the
rapidities have to be computed. The density functions




TABLE I: Superfluidity operators and their quantum numbers. If more than one possible operator exists for a given set of
quantum numbers, then only one of them is listed. AN; is the change in the number of bound clusters of string-length [
[(I + 1) particles] and D; is the corresponding backward scattering (parity) quantum number. For the leading exponent all
particle-hole excitation quantum numbers, nli, are zero. Here A is the distance between nodes in the corresponding term of

the correlation function. The index in the last column is the label in Figs. 5,6,8 and 9.

| phase | operator OF [ANo[AN [ANs[AN; [ Do [ Dy D2 | Ds ]| 1/ [[1abel]]
v 02/2,+01/2#011/2’7013/2?7 - - - +1-1-1]1-10 0
11 C;/2,+CI/2,+011/2,7 - - L] - B ERE=1E n2
Il el il I O N I (N (N I 0
I+IV 03/27+01/2%011/277013/2’7 0 - - +1 :t% -1 -10 no a,b,c
I+111 C3/9,4+C1/2,+Co1/2,— 0 - +1 - :t% - :t% - no + no
I+I11 c;/2y+ci/277071/2’7 0 - +1 - :t% - :F% - [no — na|
I+11 c;/27+ci/277L 0 +1 - - :t% +1| - - no + 2n1 «
I+11 C3/9.4C1 /2, 0 +1 - - :t% 0| - | - no B8
II+1V c;/2,+c1/2,+cil/2’7013/277 - - +1 | - [£1] - | O 2n1
[+1v C3/2,4C1/2,~C€~1/2,4C—3/2,— || ~ - - -0 0
I+1V e, el -4+l - o -|0]-]o0 0
II+1V €391 C1 /2.1 - +1 - 0 - £ - | £ 2(n1 + n3)
I4+1vV C;/2,+CI/Q,+611/2,7613/277 - - 0O | +1 | - |- i% 0 T2
III+1IV C3/2,4+C1/2,4Co1/2,— - - +1 0 - | - i% i% ns + ng
IHIT e,y (€l yn €y )n S I S O B N =3 § B3 2n1 + n2
TI411T C32,4C1/2,—Co1/2,4 - +1 - - 10 i% - T2
I+ e, el -4 0| - |l-|o]o]- 0
T4 el el e N U R RSN EST ES ) 2(n1 + n2)
IV (lef el p el clyy |0 N E= 1ES I no + 2m a
IV (ief, el p ety ely, |0 - |41 || £ifof -0 no b,c
IHIHIV ey €y, 0 | +1| - | 0 | £3|£L| - |£1| no+2n1+2ns a!
IHIHIV el e, 0 |+1| - | 0 |£3{0]-]0 no B
IV el el el ety [0 | - | 0 | +1(£5] - [£5] 0 no + 12
TV el el el el 0| - | 0 | +1 (5] - |F5] 0 Ino — na|
IHIITHIV el y €l p €y n 0 | - | +1] 0 |[£3] - [£3]*3 no +nz + n3
THIII4+1V c; 2,+c1 2, €1/, 0 - |41 | O i% - :F% :F% [no — n2 — ns|
4TI (el el el 0 | 0 | +1| - [&£3|£1|£]] - no + 2n1 + na a
4TI |lef el el 0 | 0 | +1| - [£30|£]] - no + na
LI+ e, el el 0| 0 |+1] - |[£3|0|F5 - Ino — na| c
LTI (e}, el 0 | +1] 0 | - |[&£3|£1|£1] - no + 2n1 + 2np o
L le), e 0 |+1] 0 | - |[£3]0]0] - no B
IV |lef, el el y el |- | 0 +1 || - |£1[£3] 0 2n1 + na
IV ey €y € yyp €y | - | 0 +1 ] - ]0|x5|0 n2
M+ITHTV |\ ef, el el S0 Lo | - (x££ 201+ notns
M+ITHTV (e, el p ety N N R E e na + ns
IIENIIENAY €3/2,4.C1 /2,4 - +1 0 0 ISl Ea] 2(n1 4+ n2 + n3)
A4V |l , el - - |+t o o f-|o]o]oO 0
IV | ef el el p el | 0] 0 | 0 | +1 | £5]+1|£5 0 no + 2n1 + na a
IV (el el el p el 0] 0 | 0 | +1|+5]0 |30 no + n2
IV | ef y ef el el |l 0 ] 0 | 0 | +1||+50|F5|0 Ino — na| c
IV || ef el el 0| 0 | +1] 0 |[£3|£1]|£1]|£1] no+2n1+n2+ns | a
IV | ef el ety 0| 0 |+1] 0 |£3]0[£1]£] no + n2 + n3 b
IV | oy el el 0|0 |+1] 0 ||[£3]|0 |F3|F2 [no — na — ns| c
IV || ef el 0 | +1 0 | £2|£1|£1]£1||n0 +2n1 + 202 + 2n3|| «
IV el ef 0 | +1 0 |£3/0]0|0 no
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FIG. 4: (color online) Dressed generalized charges for a homogeneous fermion gas of spin S = 3/2 with |¢| =1 and H = 1.0 as
a function of . H = 1.0 corresponds to one of the dashed vertical lines in Fig. 2. The z;, determine the interplay between the
different Fermi points in the system. The thin vertical lines refer to the crossing between different phases. Panel (a) corresponds
to 1 =0, i.e. zoq, panel (b) to ! =1 (z14), panel (c) to I = 2 (z24) and panel (d) to I = 3 (z34). All dressed generalized charges
are different from zero for the mixed phase I+II4III+IV. As the individual phases disappear with decreasing p the effective
dimension of 2 is reduced. The curves for ¢ = 0 are in red, the ones for ¢ = 1 are green, magenta the ones for ¢ = 2 and blue if
q = 3. Note that many of the charges vary discontinuously at the transitions.

of the rapidities are obtained from the dressed energies

(@ (¢) by differentiation with respect to p,3334
(9)
(a) @) — _ L 9278
RO+ =3 S (2)

where p(@) (€) is the particle density and pgq) (&) the cor-
responding hole density for bound states involving g + 1
particles. The integral equations satisfied by the density
functions are of the form of Eq. (22) with X((¢) =

p\D(€) +plD (€) and Dy(€) = (1+1)/(2r).30 After solving
these equations numerically, the density of bound states
in each class is given by

n= [ depe). (29)

_Bq

The local density profiles as a function of z (with x given
by Eq. (27)) for the different phases for H = 1.0 and H =
2.0 are displayed in Fig. 3. These cases correspond to the
vertical dashed lines in Fig. 2. The thin vertical lines in
Fig. 3 indicate the transitions between the phases. The
solid lines represent the density of four-particle bound
states, the dashed curves the density of three-particle
bound states, the dotted lines the concentration of pairs
and the dash-dotted curves the density of unpaired po-
larized particles. As a function of x the system then
displays phase separation. Note that the densities van-
ish with a square-root singularity that is characteristic of
one-dimensional van Hove singularities®® as seen in Fig.
3. The total density of particles, N,/L = Zzzo(q—i— 1)ng,
is shown as the blue curves in Fig. 3. The magnetization
density M/L = Zzzo(q + 1)(3 — ¢)ng/2 is represented
by the red curves in Fig. 3. Note the rescaling factors
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FIG. 5: (color online) Critical exponents for the correlation
functions for S = 3/2 with H = 1.0 and |¢| = 1 as a function
of u. H = 1.0 corresponds to one of the dashed vertical
lines in Fig. 2. The exponents are all discontinuous at the
transitions. The dashed curves correspond to the four-particle
bound state correlation functions, the solid curves to the three
particle bound state responses and the dash-dotted curves to
the pairs (cyan). According to Table I there are three three-
and four-particle correlators in the mixed phase I4+IT+IT1+1V;
they are denoted with (a) (red), (b) (green) and (c) (blue).
There are two four-particle correlation functions in the phase
I+I14+IV. There are also two correlation functions for pairs
denoted by («) and (f), respectively. Note that curve («) has
been rescaled by a factor of f =1/2.

for both, the total particle density and the magnetization
density.

IV. CONFORMAL TOWERS AND
SUPERFLUIDITY CORRELATION FUNCTIONS

In order to calculate correlation functions, the finite
size corrections to the ground state energy and low en-
ergy excitations are needed. There are now four energy
branches rather than two as for the S = 1/2 case. The
expression for the conformal towers is similar to the one
presented in Sect. II, Egs. (11) and (12), only that the
indices | and ¢ (representing the string length) now go
from 0 to 3. The group velocities for the four branches
of excitations are again given by Eq. (10).

The matrix of generalized dressed charges z;, has now
dimension 4 x 4. The situation is similar to that encoun-
tered for the degenerate supersymmetric ¢ — J model®
and the Coulomb drag between Luttinger liquids.5” The
dressed generalized charges are obtained as zj; = £14(By),
where the &, are the solution of four sets of integral equa-
tions of the form of Eq. (22). The sets are labeled by
the index [ = 0,---,3 and yield X @ (¢) = &,(€) for the
driving terms Dy(§) = d;,4. There are then altogether
16 dressed charges to be calculated, which determine the
interplay of the different Fermi points when a low-lying
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FIG. 6: (color online) Distance between nodes of the corre-
lation functions for S = 3/2 with H = 1.0 and |¢|] =1 as a
function of p. H = 1.0 corresponds to one of the dashed ver-
tical lines in Fig. 2. Some of the periods of spatial oscillation
are discontinuous at the transitions between the phases. The
dashed curves correspond to the four-particle bound state cor-
relation functions, the solid curves to the three particle bound
state responses and the dash-dotted curves to the pairs (cyan).
According to Table I there are three three- and four-particle
correlators in the mixed phase I4+-1I+I1141V; they are denoted
with (a) (red), (b) (green) and (c) (blue). There are two four-
particle correlation functions in the phase I4+1141V. There are
also two correlation functions for pairs denoted by a and g,
respectively.

excitation is introduced. The dimension of the matrix is
gradually reduced as the energy bands are depopulated,
e.g. if there are only three bands occupied then the ma-
trix is 3 x 3, etc.

There are four sets of four quantum numbers, one set
for each band, describing the low-energy excitations of
the Fermi liquid. As for the S = 1/2 case, each set [ con-
sists of a quantum number for the change in the number
of particles in the band [, AN;, a backward scattering
quantum number D;, and two quantum numbers for the
particle-hole excitations at the Fermi points, nli, for for-
ward and backward movers, respectively. While nli =0
for the present purposes, AN; and 2D; take integer val-
ues. Hence, D; can have integer or half-integer values.
For elementary excitations from the ground state, the
values of the D; quantum numbers are constrained by
the discrete Bethe ansatz equations. A change in the
population of band ¢, ANy, changes the backscattering
quantum numbers by

Dy = 3[min(l,q) + 1]JAN, (mod 1) . (30)

Note that the D; are only determined modulo 1, which
gives rise to some degrees of freedom.

We now consider the operators associated with super-
fluidity in the Fermi gas. There are three classes of bound
states that can lead to superfluidity, i.e. the creation of
a four-particle bound state is characterized by AN3 =1



and all other AN; = 0, the creation of a three particle
bound state is characterized by ANs = 1 and all other
AN; = 0, and a bound state of two particles (pair) by
AN; =1 and all other AN; = 0. These are the quantum
numbers classifying the operators. For each case there
may be more than just one set of quantum numbers D;.

Let us first consider the pure phases, i.e. only one
band is occupied. The case of pairs has been discussed
in Sect. IL.D where we concluded that the quantum
numbers are AN; = 1 and Dy = 0. In terms of atom
creation operators this operator now reads cg/2+ci/2_,

i.e. one forward mover coupled to a backward mover.
The situation is similar if the four-particle bound states
are considered. In this case the quantum numbers are
AN3 =1 and D3 = 0, and one of the possible operators is
C;/2+CI/2+CT_1/2_CT_3/2_7 i.e. there are two forward and
two backward movers involved. Less trivial is the case
of three-particle bound states, because now the bound
states carry momentum. With three particles two must
be forward (backward) movers and the third particle is
a backward (forward) mover. This leads to a momen-
tum of mng (—mng), and hence Dy = +1/2. These cases
have been studied previously in Ref. 68 and the quantum
numbers are listed in Table 1.

The quantum numbers of the mixed phases are harder
to figure out. The phase I+II has been studied in Sect.
IT and the relevant operators have quantum numbers
AN; =1 and Dy = £1/2, while D; is an integer, 0 or
1. Similarly for I+IV, AN3 = 1, ANy =0, Dy = +1/2
and D3 is an integer, which we choose 0 (two forward
and two backward movers). Finally, for I4+IIT we have
ANy = 1, Dy = +1/2 and Dy either £1/2 or F1/2.
Hence, in this case there are two sets of quantum num-
bers and consequently two operators for the same phase.
The occupations of the bands are nz/;; = ng + n2 and
nii/e = n2, while n_3z/5 = 0. In terms of atom cre-

: T T T
ation operators these operators are C3/9,4C1/2,4C 12,7

and ¢! where again the 4+/— signs re-

A
3/2,£71/2,F"—-1/2,%°
fer to forward/backward movers. Hence, there are two
competing correlation functions and the one with smaller
critical exponent is expected to be the dominant one.

For the mixed phase II+IV the population of the lev-
els are TL3/2 = n1/2 = ni —+ ns and TL_l/Q = TL_3/2 =
n3. There are four operators for superfluidity, two

corresponding to AN3 = 1, C;/Z:ﬁ:CI/Z:ﬁ:Ct1/2,ZFC-£3/2,ZF
and ¢/

3/2,iCi/z,ycil/z,icis/zq= and two to ANy = 1,

cg/2ic]{/27:F and c;/QicI/Q’i. The backscattering quan-
tum numbers D, can now be determined. For the first
AN3; = 1 operator only D; = =1 is different from
zero, for the second operator all D, vanish, while for
the first AN; = 1 operator all Dy = 0 and for the second
Dy = D3 =+1.

For  the mixed phase III+1V, ngz/ =
Ny = mnN_1;2 = mn2 + nz and n_gp = ng,
there are three operators with ANj3 = 1,

T T T T i1 T T i1
C3/2,4C1/2,7C 1/2,4C 3/2. 7 C3/2,+%/2,+C 1/25C 3/2

12

and C;/Q,ici/2,:|:CT—1/2,:FCT—3/2,i7 yielding Dy = +1/2
while all other Dy = 0. For ANy = 1 there are three

T T T T T T
operators, 32 +C1/2,+C 12,40 C3/2,4C1/2,4C 1/2 % and
03/2,:|:cl/2,$cT—1/2,$’ yielding Dy = D3 = +1/2.

In the phase II+11L, ng/o = ny /3 = ni+n2, n_y/2 = n2
and n_z/o = 0, there are again two pair correlation func-
tions, cf cf and ¢l cf The correspondin

» €372 +C1/2, % 3/2,£C1/2,+° P g
quantum numbers are AN7; = 1, and Dy = D1 = 0 and
Dy = Dy = +1, respectively. There are also three ANy =

1 operators, c;)/?)ic]i/zictl/z);, Cé/ZiCI/ZﬂFCT—l/Zi and
e o i€} el p s vielding Dy = £1 and Dy = +1/2
for the first operator and Dy = 0 and Dy = +1/2 for the
remaining two operators.

It is more tedious to obtain the quantum numbers for
mixed phases with three or four bands. The most rel-
evant sets of possible quantum numbers contributing to
correlation functions for superfluidity are displayed in Ta-
ble I.

The superfluidity correlation functions can now be cal-
culated. The procedure is analogous to that for Cooper
pairs in Sect. II.D. For each operator Of in Table I the
correlation function is similar to expression (14), only
that the product in the denominator is from [ =0,---,4
and Dgpo + D1p1 in the exponential is to be replaced by
Z?:o Dip, = Z?:o 2nDin;. The conformal dimensions
are defined as

3 3 2
1
2AF = mif + | quin§§ (271, ANy | (31)
q=0 g=0

The leading terms of the equal time correlation func-
tion for the O operators are then of the form (all nf = 0)

(O1(x,0)0(0,0)) = Az~? cos[rz/A] (32)

for the phase under consideration. The amplitude A can-
not be determined from conformal field theory. The ex-
ponent € is given by

3
0=2> (AF+4;), nf=0 (33)

q=0

and the distance between nodes A\ is given by
1/]2 23:0 Dyngy|. The expressions for 1/X are shown in
Table I in the column previous to the last one. Note that
for fixed p/c? and H/c?, the dressed generalized charges
and hence the exponents 6 are independent of the cou-
pling strength |c|.

V. RESULTS

In this section we discuss the matrix of dressed gen-
eralized charges, critical exponents and the periods of
oscillation of the correlation functions along the vertical
(dashed) lines in Fig. 2,i.e. H = 1.0 and H = 2.0. These
two examples correspond to two very different situations.
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FIG. 7: (color online) Dressed generalized charges for a homogeneous fermion gas of spin S = 3/2 with |¢| =1 and H = 2.0 as
a function of . H = 2.0 corresponds to one of the dashed vertical lines in Fig. 2. The z;, determine the interplay between the
different Fermi points in the system. The thin vertical lines refer to the crossing between different phases. Panel (a) corresponds
to I =0, i.e. zoq, panel (b) tol =1 (z14), panel (c) to ] =2 (z24) and panel (d) to I = 3 (z34). All dressed generalized charges
are different from zero for the mixed phase I+II4+III+IV. As the individual phases disappear with decreasing p the effective
dimension of 2 is reduced. The curves for ¢ = 0 are in red, the ones for ¢ = 1 are green, magenta the ones for ¢ = 2 and blue if
g = 3. Note that some of the charges vary discontinuously at the transitions.

A. The H =1.0 line

The components of the matrix of dressed generalized
charges for a homogeneous Fermi gas for |c| = 1, § =
3/2 and H = 1.0 as a function of p are displayed in
Fig. 4. The 7, determine the interplay between the
different Fermi points in the system. The thin vertical
lines refer to the transitions between the different phases.
The four panels show: (a) zoq, (b) 214, (¢) 224 and (d) 234,
with ¢ = 0,---,3. With decreasing u the dressed energy
bands gradually are emptied and the effective dimension
of % is reduced as the individual phases disappear. All
dressed generalized charges are different from zero for the
phase mixed I+II4+III+1V. In general, the z;, for [ # ¢
are always negative while diagonal elements are positive.
Note that many of the charges vary discontinuously at
the transitions.

Fig. 5 presents the critical exponents for the same
parameters as Fig. 4. The exponents of the pair corre-
lation functions (pairing of particles with S, = 3/2 and
S, = 1/2) are shown as the dashed dotted (cyan) curves
and denoted with a and ( respectively. Note that the
curve « has been reduced by a factor 1/2. The opera-
tor corresponding to curve « carries a large momentum,
m(no + 2n1 + 2n2 + 2n3), while the momentum of the op-
erator for (3 is just mng. The exponent of 5 is the smallest
of all exponents and, hence, this correlation function has
the longest range.

There are three three-particle and three four-particle
correlation functions in the I4+II+III+IV phase. Only
the four-particle responses survive into the I+II+IV and
I+IV phases. The green curves (denoted with (b)) have
the smallest exponent and, hence, these correlation func-
tions are the ones with longest range within the ANy
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FIG. 8: (color online) Critical exponents for the correlation
functions for S = 3/2 with H = 2.0 and |c| = 1 as a function
of u. H = 2.0 corresponds to one of the dashed vertical
lines in Fig. 2. The exponents are all discontinuous at the
transitions. The dashed curves correspond to the four-particle
bound state correlation functions, the solid curves to the three
particle bound state responses and the dash-dotted curves to
the pairs (cyan). According to Table I there are three three-
and four-particle correlators in the mixed phase I4+II14+I11+1V;
they are denoted with (a) (red), (b) (green) and (c) (blue).
There are three ANy = 1 correlation functions in the phase
I+II41I1. There are also two correlation functions for pairs
denoted by («) and (8), respectively.

and ANj categories, since they have the slowest decay
with distance. The wave numbers of the oscillation are
m(no + n2 + n3) and w(ng + nz), respectively.

Fig. 6 displays the corresponding distance between
nodes, A, that appears in the oscillating factor. The A
for the dominant response functions for three- and four-
particle bound states are the green curves denoted with
(b). The corresponding one for the pair correlation func-
tion (/) is shown as the (cyan) dash-dotted curve.

As discussed in Sect. II, in the presence of an array
of tubes, there is the possibility of Josephson tunnel-
ing of individual particles, pairs and three- and four-
particle bound states, which eventually will give rise
to superfluid long-range order.!2147 The order is quasi-
one-dimensional, since the particles predominantly move
along the tubes, i.e. the Fermi surfaces remain being one-
dimensional, but there is coherence between the different
tubes. The Luttinger liquid properties remain then valid
in the disordered phase and the one-dimensional corre-
lations functions determine the three-dimensional order.
There is a fundamental difference with the ordinary BCS
theory because the bound states are preformed and al-
ready exist in the normal phase. The binding energy of
Cooper pairs due to long-range order is the primary en-
ergy gain for superconductivity in the BCS theory, but
that is not the case for the present quasi-particles, since
the bound states are preformed.

It is a difficult task to figure out which operator is

20~ . - .

H=2.0
161

12
< I I+I1

®
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FIG. 9: (color online) Distance between nodes of the corre-
lation functions for S = 3/2 with H = 2.0 and |¢|] =1 as a
function of p. H = 2.0 corresponds to one of the dashed ver-
tical lines in Fig. 2. Some of the periods of spatial oscillation
are discontinuous at the transitions between the phases. The
dashed curves correspond to the four-particle bound state cor-
relation functions, the solid curve to the three particle bound
state responses and the dash-dotted curves to the pairs (cyan).
According to Table I there are three three- and four-particle
correlators in the mixed phase I+II41I1+1V; they are denoted
with (a) (red), (b) (green), and (c) (blue). There are three
three-particle correlation functions in the phase I+II4III.
There are also two correlation functions for pairs denoted by
«a and (3, respectively.

the one leading to finite T superfluidity from the normal
phase. There are three possible criteria: (i) the corre-
lation function with the smallest exponent 6 is the one
with the longest range, (ii) a large A favors order be-
cause nodes in the order parameter are generally ener-
getically unfavorable, and (iii) the bound states should
have a small momentum, since a large momentum of the
bound states is unfavorable to a condensate. The critical
scaling dimension in one-dimension is 2, so that only op-
erators with a 6 less than 2 are favorable to order. The
conditions (ii) and (iii) are related with each other. The
argument that it is unfavorable to create large momen-
tum carrying bound states can be ruled out because their
binding energy is already build into the Bethe ansatz so-
lution of the model. The long-range order is expected to
have similar properties as the ones predicted by Fulde-
Ferrell-Ovchinnikov-Larkin,® i.e. the order parameter is
modulated. The period of the sinusoidal modulation is
given by the momentum differences of the Fermi points
involved and, hence, the same as the one given by A in
the present calculation.

The dominant correlation function is the one expected
to give rise to the strongest long-range order parameter.
An additional variable entering the problem is, which
bound states can tunnel most efficiently between tubes.
We will assume that the tunneling amplitude is about
the same for all the bound states. From Fig. 5 we see



that the pairing operator ((53), dash-dotted, cyan) has
the smallest exponent # and a relatively large distance
between nodes, A. Pairing is also the only operator sat-
isfying 0 < 2 throughout all the phases. Hence, pairing
appears to be the most favorable for first superfluid or-
dered phase when coming from the normal phase. Other
superfluid phases are expected to emerge at lower tem-
peratures.

B. The H = 2.0 line

The sequence of phases along the H = 2.0 line is dif-
ferent from that along the H = 1.0 line. For H =
2.0 at large p all four bands are partially occupied
(I4+II4+II1+1IV mixed phase) and as u decreases first the
IV phase disappears, then the III phase and finally the
pairs, leaving only spin-polarized unpaired particles. The
components of the matrix of dressed generalized charges
for |c| =1 and S = 3/2 are presented in Fig. 7 as a func-
tion of p. The thin vertical lines refer to the transitions
between the different phases. Again all diagonal z;, are
positive and all off-diagonal elements are negative. Again
all dressed generalized charges are different from zero for
the phase mixed I4+IT+II1+1V. As the phases drop out as
a function of p the dimension of the matrix is reduced ac-
cordingly. Some of the dressed generalized charges vary
discontinuously at the phase transitions. The discussion
on the FFLO phase in subsection V.A remains valid here.
The spatial oscillation of the order parameter is given by
the respective A.

The critical exponents for the same parameters as in
Fig. 7 are displayed in Fig. 8. As for the H = 1.0 case
there are two two-particle, three three-particle and three
four-particle correlation functions in the I4II+ITI4+IV
phase. With decreasing p first the four-particle corre-
lators disappear, then the three-particle response func-
tions and finally the Cooper-pair functions. The domi-
nant four-particle operators correspond to curves (b) and
(c) (dashed, green and blue, respectively), which carry a
smaller momentum as compared to (a). On the other
hand, curves (a) and (b) (solid, red and green, respec-
tively) correspond to the dominant exponents for the
three-particle bound states. There are two exponents
for the pair correlation functions denoted with « and
(cyan dashed dotted curves). Among the pair correla-
tion functions, the 8 curve corresponds to the operator
carrying the smaller momentum, 7ng, and has the lowest
critical exponent. This response function has the most
extended correlations in all phases and again is the only
one with a 6 below the critical scaling dimension of 2.

Fig. 9 shows the corresponding distance between
nodes, A, arising from the sinusoidal factor. For the
four-particle bound states, this distance is very long for
curve (c) and shorter for curve (b). This makes (c) the
more likely candidate for an instability among the four-
particle bound states. For the same reason (b) is the most
likely candidate among the three-particle bound states.
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For pairs the candidate is curve 3, shown as the dashed-
dotted cyan curve in Fig. 9. Again, the pairs 8 are the
most likely candidate for order from the normal phase.
Other phases are expected to emerge at lower tempera-
tures.

VI. CONCLUSIONS

We studied an ultracold gas of fermionic atoms with
S = 3/2 interacting via an attractive contact potential
by solving the corresponding Bethe ansatz equations and
obtained the phase diagram in a magnetic field (u vs. H)
within the grand canonical ensemble. Four elementary
states can occur: (i) polarized unbound atoms with spin-
component S, = 3/2, (ii) bound pairs of atoms with spin-
components S, = 3/2 and S, = 1/2, (iii) bound states of
three particles with spin-components S, = 3/2, 5, =1/2
and S, = —1/2, and (iv) bound states of four particles,
one with each spin-component. Mixed phases of differ-
ent classes of bound states dominate the phase diagram.
For a given chemical potential the phases are homoge-
neous and display no long-range order. The transitions
between phases are crossovers of the Prokovskii-Talapov
type. The phase diagram for larger spin values has been
obtained the same way,3? but the calculations and the
results are considerably more involved and complicated.
Possible applications are to ultracold Fermi gases of 4°K
(spin 9/2), 43Ca (spin 7/2), 87Sr (spin 9/2), "3Yb (spin
5/2), “Be (spin 3/2), **Ba (spin 3/2), 1*"Ba (spin 3/2)
and 3Cr (spin 3/2) atoms.

We investigated the possibility of finding inhomoge-
neous phases in the gas of two types: (a) we considered
the scenario of phase separation along the tube, and (b)
modulations of the order parameters of the FFLO type.
In case (a) the confining harmonic potential varies with
the position along the tube. Within the local density ap-
proximation, which absorbs this variation into the chem-
ical potential, p is a function of x and hence different
phases are represented along the trap giving rise to phase
separation.' 3

In case (b), inhomogeneities like modulations of the or-
der parameter of the FFLO type, may arise in an array
of tubes from Josephson tunneling between tubes and in-
teractions between particles in different tubes.?!:47 This
gives rise to a dimensional crossover from one-dimension
to a higher dimension and opens the possibility for su-
perfluid long-range order. The response functions in the
disordered phase still have the Luttinger properties of the
one-dimensional gas. These correlation functions deter-
mine the instability towards superfluidity from the nor-
mal phase. There are three possible criteria for the domi-
nating order: (i) the correlation function with the small-
est exponent 6 is the one with the longest range and
hence favorable if § < 2, i.e. less than the critical scal-
ing dimension, (ii) a large A favors order because nodes in
the order parameter are further apart and hence energet-
ically less unfavorable, and (iii) the bound states should



carry a small momentum, since a large momentum of the
bound states is unfavorable to a condensate.

There are three possible order parameters for super-
fluidity, namely, pairs of the Cooper type, three-particle
bound states and four-particle bound states. The corre-
sponding correlation functions have been calculated us-
ing conformal field theory. The calculation reveals that
bound pairs are the bound states most likely to yield
long-range order. The equal time response functions con-
sist of the product of a power-law dependence of distance
and a sinusoidal dependence of x. The oscillating factor
is determined by the population imbalance of the differ-
ent bands and is the same to be expected in the space
modulation of the FFLO order parameters. This calcula-
tion is the extension of FFLO to spins larger than 1/2.%!
Note that the two main conditions for realization of the
FFLO phase are satisfied in cold atom tubes: (1) the
system is very pure (no impurities) and (2) it has a low
effective dimension (extreme anisotropy).
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