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When the dimension of a solid structure is reduced, there will be two emerging effects, quantum
confinement and surface effect, which dominate at nanoscale. Based on first-principles calcula-
tions, we demonstrate that due to an intriguing interplay between these two dominating effects,
the topological and electronic (topo-electronic) properties of Sb (111) nanofilms undergo a series of
transitions as a function of the reducing film thickness: transforming from a topological semimetal
to a topological insulator at 7.8 nm (22 bilayer), then to a quantum spin hall (QSH) phase at 2.7 nm
(8 bilayer), and finally to a normal (topological trivial) semiconductor at 1.0 nm (3 bilayer). Our
theoretical findings for the first time identify the existence of the QSH in the Sb (111) nanofilms
within a narrow range of thickness and suggest that the Sb (111) nanofilms provide an ideal test
bed for experimental study of topo-electronic phase transitions.
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Thanks to the development of modern epitaxial-growth
technique, the state-of-the-art electronic devices are often
made of thin films with good control of film crystallinity
and thickness with single atomic layer precision. When
the film thickness approaches nanoscale, two emerging
effects become important. On one hand, the confine-
ment in the z-direction normal to the film surface sig-
nificantly alters the behavior of the itinerant electrons in
the film by quantizing the electron wave, which manifests
not only in film structural1 and mechanical stability2,
but also in electronic phases, such as magnetism3 and
superconductivity4. On the other hand, the termination
of a material with a surface leads to a change of the
electronic band structure differing from the bulk, with
surface states formed only at the atomic layers closest to
the surface5. Due to the large surface-volume ratio of a
thin film, the surface effects may dominate the overall
thin film electronic properties.

Recently, a unique type of surface states is identified in
materials with strong spin-orbit coupling (SOC), which is
expected to serve as the dissipationless conducting chan-
nels in spintronic devices6,7. Taking the form of a spin-
resolved Dirac cone lying within the bulk band gap, the
so-called helical surface states are theoretically attributed
to the nontrivial Z2 topology of the bulk valence bands,
which has in turn triggered a vast number of studies on
these topologically nontrivial materials, i.e. the topolog-
ical insulator (TI) in three dimensions (3D) and the QSH
systems in 2D8–11.

An interesting surface coupling effect is observed in TI
nanofilms12,13. In such films, the helical surface states
located on the top and bottom surfaces are sufficiently
close to each other in space, so that the coupling be-
tween the two surfaces becomes noticeable. The surface
coupling effect opens a gap at the Dirac point on both
surfaces and may even lead to topological transitions of

the film14,15.
One significant difference between the quantum con-

finement and surface coupling is that they exhibit differ-
ent scaling laws as a function of the film thickness. Fol-
lowing the textbook description for quantum particles in
a box, we have:

∆EB∼
1

m∗L2
, (1)

where ∆EB is the energy shift of a bulk state due to the
quantum confinement, m∗ and L stand for the effective
mass of charge carrier and the film thickness, respectively.
The wavefunction of surface states takes the form of

ΨSS = u(r)eikxxeikyye−λz, which modifies the general
Bloch wavefunction in a periodic solid by replacing kz
with a complex number λ. The real and imaginary part of
λ are the decay constant and oscillating wave vector, re-
spectively. The surface-coupling-induced splitting ∆ES

is determined by 〈Ψt
SS | Ψb

SS〉, where t and b stand for
the top and bottom surfaces, respectively. Assuming the
two surfaces are equivalent and by smoothing out u(r) as
a constant, we have

∆ES∼e−Re(λ)L (2)

When the thickness of a thin film is decreased, the
quantum confinement with the “flatter” power-law scal-
ing is expected to show up first, modifying the bulk
bands. The surface coupling will dominate in the 2D
limit, because of the “steeper” exponential scaling. A
joint action of the quantum confinement and surface cou-
pling effect is likely to spawn rich physics in a nanofilm,
especially when nontrivial topology is also involved.
In this Letter, using first-principles calculations, we re-

port our finding of a series of topo-electronic transitions
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in Sb (111) nanofilms triggered by the interplay of these
two effects. As the film thickness reduces, the quantum
confinement first opens a gap in the bulk band to induce
a transition from a topological semimetal to a topologi-
cal insulator. Then, the surface coupling effect kicks in,
opening a gap in the surface bands giving rise to a QSH
phase within a narrow range of thickness. The film finally
degrades into an ordinary semiconductor in the 2D limit,
because of the surface-coupling induced level crossings.
Antimony is one of the main group elements with

strong SOC. It crystallizes in a rhombohedral struc-
ture as shown in Fig. 1a, which is typical among the
group-V solids. Each atom has three equidistant nearest-
neighbour (NN) atoms and three equidistant next-NNs
slightly farther away. The atoms form a bilayered (BL)
structure along the (111) direction (Fig. 1b). Each bi-
layer has a puckered honeycomb lattice with two atoms
per unit cell, corresponding to the two NN atoms. A Sb
(111) film consists of several BLs stacking up in an ABC
sequence along the (111) direction.

FIG. 1: (Color online) (1) The hexagonal unit cell of single
crystal Sb. (b) The top view of the Sb lattice. The colors and
sizes of Sb atoms indicate different atomic layers.

Bulk Sb has been predicted to be an intrinsic topo-
logical semimetal16, which means that despite a nega-
tive indirect band gap, the valence bands of bulk Sb
are topologically nontrivial as those of a TI. The heli-
cal surface bands in a 20-BL Sb film have been exper-
imentally observed using the angle-resolved photoemis-
sion spectroscopy (ARPES)17. First-principles calcula-
tions have also predicted a surface-coupling-induced gap
in the 4-BL and 5-BL films18. However, a systematic
study on all possible topo-electronic transitions in a Sb
(111) nanofilm is still missing. Here, we map out its com-
plete topo-electronic phases as a function of thickness,
including the discovery of the QSH phase in a narrow
thickness regime (1.3-2.7 nm), that is unknown before.
Our calculations are performed with the density func-

tional theory (DFT) using the plane wave basis, as im-
plemented in the ABINIT package19. We employ the lo-
cal density approximation (LDA)20 and the Hartwigsen-

Goedecker-Hutter pseudopotential21, which is generated
on the basis of a fully relativistic all-electron calculation
and have been tested to be accurate for heavy elements
like Sb. The spin-orbit coupling is incorporated in the
self-consistent calculations as described in22. The relia-
bility of the standard DFT+LDA calculations on group-
V semimetals including bulk Sb has been carefully exam-
ined by comparing with experimental data for the density
of states, number of free carriers and Fermi surface23.
The numerical accuracy has been shown in strict con-
trol, with unexpected accuracy even for the Fermi sur-
face, which is sensitive to the energy gap.

Our calculated structural parameters of bulk Sb are
shown in Fig. 1a and 1b, in good agreement with pre-
vious calculations23. To model the thin film, a supercell
of slab is used with periodic boundary conditions in all
three dimensions and a 10 Å vacuum layer between the
slabs to eliminate the inter-slab interaction. The thin
film has slightly relaxed structural parameters relative
to the bulk values. All the atomic positions are fully re-
laxed as the film thickness changes. A plane wave cut off
of 28 Ry and a Γ-centered k-point mash of 8×8×1 are
used.
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FIG. 2: (Color online) The band structure of Sb (111) films
with different thickness. (a) 26-BL, topological semimetal
with a negative bulk gap; (b) 11-BL, TI phase; (c) 4-BL, QSH
phase ; (d) 2-BL, ordinary semiconductor. The Fermi level is
set to zero. For the 4-BL and 2-BL films, parity information
at the Γ and M points is shown to distinguish their topological
difference.

In Fig. 2a, we plot the band structure of a 26-BL (9.4
nm) film, which can be well understood as the bulk band
projections (shaded regions) plus the surface bands (red
curves) in the middle of the band gap. The conduction
band edge and the valence band edge overlap at the Fermi
level, showing the typical feature of a semimetal. A pair
of surface bands cross at the Γ-point, forming a Dirac
cone. The calculated band structure is in good agreement
with recent ARPES data and earlier calculations17,18,
which is consistent with that fact that bulk Sb is a topo-
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logical semimetal.
We now reveal how the quantum confinement and sur-

face coupling effect modify the band structure when the
film thickness decreases. For a semimetal, the dominat-
ing effect of quantum confinement is to enlarge the en-
ergy gap between the bulk conduction bands and valence
bands due to the opposite signs of m∗ for electrons and
holes. Two kinds of bulk gaps are traced in Fig. 3 as
a function of the film thickness. One is the direct gap
at the Γ-point; the other is the indirect gap between the
conduction band minimum and the valence band maxi-
mum. Both gaps are measured with respect to the bulk
states excluding the two surface bands.
The increase of both the direct (squares) and indirect

gaps (diamonds) roughly follows the 1/L2 scaling as ex-
pected, where L is the thickness. An important transi-
tion occurs at 22-BL, where the indirect gap reverses its
sign from negative to positive, signifying a semimetal-
to-semiconductor transition, while the direct gap keeps
open. Since the transition does not involve any level
switching between the conduction and valence bands, the
topology of the film does not change. Therefore, at 22-
BL, the film transforms from a topological semimetal to
a TI driven by the quantum confinement of bulk elec-
tronic states. A typical band structure of the Sb TI film
is plotted in Fig. 2b.
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FIG. 3: (Color online) The direct (Γ point) and indirect bulk
gap and surface splitting as a function of the film thickness.
Inset:the enlarged plot of the surface band splitting from 3-BL
to 8-BL.

In Fig. 3, we have also plotted the splitting (dots) of
the Dirac point formed by the two surface bands, which
reflects the surface coupling effect. The Dirac point split-
ting becomes noticeable only at a thickness much smaller
than the semimetal-to-semiconductor transition point.
This is because the exponential scaling of the surface
coupling decays much faster than the power-law decay of
quantum confinement. It is interesting to note that the
splitting curve is not monotonic: first increases slowly,
reaching the maximum at 4-BL; then drops to a mini-

mum at 3-BL; finally increases rapidly from 3-BL to 1-BL
(Fig. 3). A magnified view of the turn-around from 8-BL
to 3-BL is shown as the inset of Fig. 3. Such an anomaly
has also been observed in earlier first-principles study18 ,
which attributed this behavior to the inversion-symmetry
breaking. In our calculation, however, the inversion sym-
metry is preserved for all the films. Therefore, some other
mechanisms should be considered.
Note that when deriving Eq. (2), we arbitrarily set

the periodic Bloch function u(r) to be a constant. If the
details in u(r) are retained, Eq. (2) should be rewritten
as:

∆ES∼e−λL

∫ L

0

dzu∗(Lẑ − r)u(r) (3)

Here, we still assume that the two surfaces are equiva-
lent and thus the in-plane components can be integrated
out. Simply because of the rapid oscillating nature of the
Bloch function, the additional integral in Eq. (3) has to
be essentially non-monotonic as a function of L, varying
not only in the magnitude but also in the phase.
Besides a minor turnover as shown in Fig. 4, the mag-

nitude modification does not override the overall expo-
nential trend. The phase modification, however, may
result in more significant changes in terms of the band
topology6,7. Specifically, for the Dirac point, u(r) can be
chosen to be real, because it locates at the Γ-point. The
phase, which is the sign in this specific case, of ∆ES in
principle determines the relative positions of the bonding
and anti-bonding levels formed by the coupled top and
bottom surface states. It is known that a switching be-
tween an occupied level and an unoccupied level with the
opposite parity is going to change the overall topology of
the occupied bands16.
If we view surface-coupling-induced splitting at the

Dirac point as the energy gap of a 2D system, the
turnover of the surface splitting shown in Fig. 4 is anal-
ogous to a gap closing-reopening process, which is the
precursor of topological transitions6,7. To demonstrate
this idea, we have calculated the Z2 topological invariant
of Sb (111) film from 1-BL to 7-BL, which serves as the
“order parameter” to differentiate the topologically triv-
ial and nontrivial 2D phases. The calculation of the Z2

invariant can be dramatically simplified by the so-called
“parity method”16, if the system is space inversion invari-
ant, as the case of the Sb (111) film. Accordingly, the Z2

number of the Sb film can be obtained from the wave-
function parities at four time-reversal-invariant k-points,
(Ki), one Γ and three M’s, as:

δ(Ki) =

N∏

m=1

ξi2m, (−1)ν =

4∏

i=1

δ(Ki) = δ(Γ)δ3(M) (4)

where ξ = ±1 is the parity eigenvalues and N is the num-
ber of the occupied bands. The Z2 topological invariant
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TABLE I: The total parity at the Γ and M points and the Z2

number of Sb(111) films with different thickness.

No.of BLs 1 2 3 4 5 6 7
δ(Γ) − − + − − + +
3δ(M) − − + + + − −

ν 0 0 0 1 1 1 1

ν takes two values: ν = 1 indicating a nontrivial phase
and ν = 0 indicating a trivial phase.
Table I presents the calculated Z2 topological invari-

ants. Clearly, a phase transition occurs between 3-BL
and 4-BL, which is in agreement with the speculation
above. Between 1-BL and 3-BL, the films are topologi-
cally trivial. Between 4-BL and 7-Bl, the films are topo-
logically nontrivial, leading to a QSH phase. The calcu-
lated surface band splitting of 4-BL and 5-BL is above
30meV, providing a robust QSH gap at room temper-
ature. Typical band structures of the trivial semicon-
ductor phase and the QSH phase are plotted in Fig. 2c
and 2d, respectively. With increased film thickness, a
crossover from the QSH state to the 3D TI occurs. We
note that there does not exist a sharp boundary between
these two phases. As shown by the inset of Fig. 3, the
surface band gap becomes smaller than 1meV above 8-
BL, showing the typical feature of a 3D TI.

FIG. 4: (Color online) The phase transition diagrams as a
function of the film thickness from trivial semiconductor to
topological semimetal.

We should point out that the topology of the multi-BL
Sb films cannot be interpreted as that of a stack of 1-BLs.
Otherwise, all the Sb films would be topologically trivial
because the 1-BL film is topologically trivial as found in
Tab. I. The outcome of the QSH phase is understandable
after considering the level crossings induced by the inter-
BL coupling as discussed for the Bi(111) films24.
In conclusion, by a systematic study of the band struc-

ture and wavefunction parity as a function of thickness,
we now have a complete understanding of the topo-
electronic properties of Sb (111) films acrossing from the
limit of 2D film to 3D bulk. As summarized in Fig. 4, in
the “parameter space” of thickness, the topo-electronic
phases can be divided into four distinct regimes. The ex-
istence of such a rich topo-electronic phase diagram, un-
derlied by a delicate interplay between the quantum con-
finement and the surface effect, makes Sb (111) nanofilms

an ideal test bed for experimental investigation of topo-
electronic phase transitions.
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