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Gapless edge modes hosted by chirally-stacked trilayer graphene display unique features when a
bulk gap is opened by applying an interlayer potential difference. We show that trilayer graphene
with half-integer valley Hall conductivity leads to unbalanced edge modes at opposite zigzag bound-
aries, resulting in a natural valley current polarizer. This unusual characteristic is preserved in the
presence of Rashba spin-orbit coupling that turns a gated trilayer graphene into a Z2 topological
insulator with an odd number of helical edge mode pairs.

PACS numbers: 73.43.-f, 72.20.-i, 73.22.Pr, 75.50.Pp

Introduction— Gapless edge modes in two-dimensional
condensed matter physics often appear at surfaces or
boundaries of materials with a well-defined topological
order in the bulk. Well-known examples include the chi-
ral quantum Hall edge states characterized by the first
Chern number C1, spin-helical edge modes in the Z2 topo-
logical insulators protected by time reversal invariance2,
valley-helical edge modes in graphene3, and kink states
arising between regions of inverted bulk orbital moments
or valley-Hall conductivities4–10. Recently, multilayer
graphene with chiral stacking has generated lots of in-
terest in the community11. Such a system can develop a
valley-Hall conductivity in the presence of a gap opening
mass term7, including gapped bilayer5 and single layer6.
For all these known examples so far it is expected that
the edge modes (chiral or helical) are distributed in equal
numbers at opposite boundaries.

In this Rapid Communication, we study the special be-
havior of edge modes in chirally-stacked trilayer graphene
in the presence of an interlayer potential difference. We
show that gated trilayer graphene has an unusual spa-
tially unbalanced distribution of valley-Hall edge modes
at sample boundaries with unequal pairs of edge modes,
resulting in a natural valley current polarizer. We also
show that the gated trilayer can be brought into a topo-
logical insulator phase by introducing the Rashba spin-
orbit coupling (SOC). In this case the edge states are also
distributed unevenly and the system is characterized by
different odd numbers of edge modes pairs located at op-
posite sample boundaries.

System Hamiltonian— In the following, we present the
general form of the tight-binding Hamiltonian of a gated
trilayer graphene in the presence of Rashba SOC

H = HT
SLG +HM

SLG +HB
SLG + t⊥

∑

i∈T,j∈M

c†icj

+ t⊥
∑

i∈M,j∈B

c†i cj + U
∑

i∈T

c†ici − U
∑

i∈B,

c†i ci, (1)

where HT,M,B
SLG represent respectively the monolayer

graphene Hamiltonian of the top (T), middle (M) and

bottom (B) layers, and can be written as

HSLG = −t
∑

〈ij〉

c†icj + itR
∑

〈ij〉αβ

(sαβ × dij)zc
†
iαcjβ , (2)

where c†i creates an electron on site i, and t is the
intralayer hopping energy between nearest neighbours.
The Rashba SOC12 strength is measured by tR, where s

are spin Pauli matrices, and dij describes a lattice vec-
tor pointing from site j to site i. The interlayer hopping
t⊥ couples two neighbouring layers in a Bernal stacking
pattern. Finally, the gate bias 2U is applied by setting
the lattice site potentials to be +U , 0, and −U on the
top, middle, and bottom layers, respectively.
Quantum valley-Hall edge modes— When a perpendic-

ular electric field is applied on a multilayer graphene, a
nontrivial bulk gap opens to host a quantum valley-Hall
state. This is characterized by a valley Hall conductivity
given by σv

xy = (σK
xy−σK’

xy)e
2/2h for the spinless case,7,13,

where σK,K’
xy is obtained by using a continuum model at

K or K’. When these two valleys are separated and in-
tervalley scattering is avoided, such valley Hall conduc-
tivity assumes an integer (semi-integer) value for even
(odd)-N layers of graphene stacks14. Such a bulk quan-
tization only has edge correspondence at specific system
boundaries. For example, zigzag ribbon geometries with
large momentum separation between valleys15 can sup-
port valley-Hall edge modes, manifesting the quantized
valley-Hall conductivity of the bulk7. For even N , we
can see an integer number of valley-Hall edge mode pairs
located at both edges in keeping with the integer quanti-
zation of valley-Hall conductivity. For odd N , however,
a qualitatively distinct feature is observed in the valley-
Hall edge modes that we discuss at length in the follow-
ing. Due to the requirement of absence of intervalley
scattering, quantum valley Hall state is considered as a
“weak” topological state, compared to the topologically
protected quantum-Hall effect. This scenario resembles
the requirement of time-reversal symmetry protection in
Z2 topological insulator.
Figure 1(a) plots the band structure of a zigzag-edged

trilayer graphene ribbon in the presence of an interlayer
potential difference U = 0.1t. One can clearly observe the
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FIG. 1: (Colour online) (a) Band structure of a zigzag-
terminated trilayer graphene ribbon in presence of an inter-
layer potential difference proportional to U = 0.1t. Letters
‘A-F’ label the six edge states inside the bulk gap with the
same Fermi energy. (b) Edge modes of the edge states la-
belled in (a). Spins are doubly degenerate and valleys are
associated with the edge states. Note that there are two pairs
of valley-helical edge states at the upper boundary, while only
one pair is localized at the lower boundary.

valley-Hall edge states in the vicinity of each valley in-
side the bulk gap. At charge neutrality, the edge modes
in the system are formed by the left- and right-going
states within the same valley (A, B and E, F) located at
opposite edges as illustrated schematically in Fig. 1(b).
As soon as the Fermi level is shifted from neutrality,
the system acquires two additional edge modes, labelled
for electron-doped case with letters C, D in Fig. 1(a).
This additional pair of edge modes forms two counter-
propagating channels with opposite valley flavours, and
is located at the same boundary of the ribbon, giving rise
to a net valley-polarized current. The real-space edge lo-
cation can be reversed by changing the direction of the
external electric field. At the same time edge asymme-
try of electron-hole wave functions allows for the control
of the spatial distribution of edge modes through carrier
doping.
Here, we give an intuitive picture on how the valley-

Hall edge modes emerge in trilayer graphene. In the ab-
sence of interlayer coupling, a gated trilayer graphene is
composed of three single layer graphene stacks with their
electronic bands relatively shifted by the external poten-
tial difference. When the interlayer coupling is further
included, gaps open at the bulk band crossing points.
Simultaneously, a pair of edge mode is formed at each
valley point, i.e., bands labeled by A,B at valley K and
E,F at valley K’. Based on the fact that A,F (B,E) are
located at the same boundary, we can attribute that the
band labeling with A,F(B,E) originates from one of the
top (bottom) flat band. And the central flat bands con-
nect with the bulk conduction (valence) bands to form
the special band labeled with C,D, which gives rise to
the unbalance edge mode.
Therefore, we find an interesting scenario where both

the valley polarized current directions as well as their
location at a given edge can be appropriately switched
through electric gating or controlling the carrier density.
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FIG. 2: (Colour online) Band structures of zigzag [(a) and
(c)] and armchair [(b) and (d)] trilayer graphene ribbons at
a fixed interlayer potential difference U = 0.1t with differ-
ent Rashba SOC. (a)-(b): tR = 0.05t, six edge states, shown
in blue (thick) lines, appear at each valley in zigzag ribbon;
no gapless edge state exists inside the bulk gap of armchair
ribbon, though there are some emerging gapped edge bands.
(c)-(d): tR = 0.12t, one more pair of edge states are induced
at each valley of zigzag ribbon, and gapless edge states are
now formed inside the bulk gap of armchair ribbon.

The above anomalous features of the unbalanced edge
modes in ABC trilayer graphene are preserved when the
system is brought into a topological insulator phase.

Z2 topological insulator edge modes— Spin-orbit cou-
pling strengths for carbon atoms in graphene were esti-
mated to have an extremely small value of the order of
10−7 eV, rendering an almost negligible effect for both
intrinsic and Rashba SOC in graphene under realistic
conditions16,17. However, interactions with substrates18

or adatoms19 that introduce an additional inter-atomic
effective electric field can increase the Rashba-type SOC
to energy scale orders of meVs. Interplay of Rashba
SOC with layer inversion symmetry breaking potential
in bilayer graphene was shown to trigger an interesting
phase transition from a quantum valley-Hall phase into a
valley-protected topological insulator phase20. We show
that a similar topological phase transition is also found
in gated trilayer graphene, but with additional novel fea-
tures. The effect of a Rashba SOC is to split the spin
degeneracy of the bands and lead to an eventual forma-
tion of time-reversal invariance protected gapless edge
modes for sufficiently strong Rashba SOC tR. In Fig. 2,
we show the band structure evolution as a function of tR
for both zigzag [panels (a) and (c)] and armchair [panels
(b) and (d)] trilayer ribbons at a fixed potential differ-
ence U = 0.1t. Edge states are plotted in blue (thick)
lines to distinguish from the bulk bands in black (thin)
lines.
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FIG. 3: (Colour online) Schematic plot of the edge modes
corresponding to the conventional QVHI phase and strong
TI phases. (a) Four (two) pairs of valley-helical edge
states are localized at the upper (lower) boundary. When
they encounter the armchair edge the inter-valley scattering
backscatters the edge state associated with valley K to the
counter-propagating edge state encoded with valley K

′. (b)
The major difference from panel (a) is that one more pair
of time-reversal invariance protected spin-helical edge states
emerges at each boundary of the zigzag or armchair trilayer
graphene ribbon. Note that in the zigzag ribbon geometry,
all the edge modes are associated with both spin and valley
degrees of freedom.

When a small Rashba SOC is introduced, i.e., tR =
0.05t, the bulk band gap of the system starts to decrease
and the spin degeneracy of the bulk bands is lifted. In
Fig. 2(a) for the zigzag ribbon, one can observe that three
spin-degenerate pairs of edge states are split into six pairs
of non-degenerate edge modes, still preserving the uneven
spatial distribution at opposite edges: four pairs of edge
states propagating along one edge, while only two pairs
travelling along the other edge, as shown in Fig. 3(a).
Simultaneously, edge modes start to emerge within the
bulk gap for the armchair ribbon as shown in Fig. 2(b).
With further increase of Rashba SOC, the bulk band

gap continues to decrease while the system remains in the
QVHI phase. The system finally reaches a critical point
at tR = 0.094t, where the bulk gap completely closes.
Beyond this point, the bulk band gap reopens, which
suggests a topological phase transition. In the following,
we demonstrate the novel characteristics of the resulting
edge modes in zigzag-terminated trilayer graphene rib-
bon after the phase transition.

Figures 2(c) and 2(d) show the band structures for a
larger Rashba SOC tR = 0.12t. In zigzag-terminated tri-
layer graphene, we find a different behaviour with respect
to the bilayer case, where one pair of edge states merge
and disappear into the bulk bands20. Here, a new pair
of edge states emerges from the bulk at both valleys K
and K ′, giving rise to a total of eight pairs of edge modes
inside the bulk gap [see Fig. 2(c)]. The resulting edge
modes have a rather surprising spatial arrangement as we
show in the schematic plot in Fig. 3(b): five pairs of edge
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FIG. 4: (Colour online) (a) Phase-diagram of ABC trilayer
graphene in the parameter space of tR and U . Colors repre-
sent the bulk gap size. Two phases are clearly separated: con-
ventional QVHI phase with Z2 = 0, and the two-dimensional
(2D) TI phase with Z2 = 1. The dashed line trace corre-
sponds to the potential difference U = 0.1t, which is exhib-
ited in panel (b). The bulk gap shown in panel (b) closes
and reopens once in the chosen scale, signaling a topologi-
cal phase transition from QVHI phase to 2D TI phase. Inset
shows that the gap closing point is not at the exact K point.
The solid (blue) curves are the bulk band structure of gated
trilayer graphene around valley K at the critical Rashba SOC
t
c

R = 0.094t; while the dashed lines plot the band structure
of single layer pristine graphene, where the crossing point is
exactly at the K point.

states are located at the upper boundary, while three
pairs are located at the lower boundary. The odd pairs
of spin-helical edge states propagating in a time-reversal
invariant system indicate a topological insulator state. In
this way, we provide an intuitional picture showing that
unequal numbers of edge state pairs at opposite sample
boundaries can exist in a graphene-based TI system due
to the protection of large valley separation.

A further confirmation of the topological insulator is
the appearance of two pairs of gapless edge states in the
armchair-terminated trilayer graphene ribbon: there is
one (odd) pair of edge states flowing along each bound-
ary of the armchair ribbon [see the vertical direction of
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Fig. 2(d)]. Based on the above analysis, we can obtain
a schematic diagram of the topological insulator edge
states in trilayer graphene as illustrated in Fig. 3(b):
there is one pair of time-reversal invariance protected
edge states circulating along any boundaries, while the
remaining edge modes can only propagate along zigzag
boundaries due to the inter-valley scattering present in
an armchair edge. Note that the five (three) pairs of
edge modes at the upper (lower) boundary are equally-
weighted and nontrivial.

Another important signature of TI is the Z2 topolog-
ical number that characterizes the band topology12,21.
Using the method described in Ref. [22], we numerically
compute the Z2 topological number for our system, and
the results show that Z2 = 0 before the phase transition,
while Z2 = 1 after the phase transition, consistent with
our band structure analysis.

Phase-diagram— To give a complete understanding on
how the QVHI phase evolves as functions of tR and U ,
we present a “phase-diagram” of the bulk band gap ∆ in
Fig. 4(a). Colour maps are used to indicate the bulk gap
magnitude. The two separate regimes correspond to a
conventional QVHI phase with Z2 = 0 and σv

xy = 3e2/h
(considering both spins) and a topological insulator phase
with Z2 = 1, respectively. As a guide to the eye, we plot
the bulk gap dependence as a function of tR at a fixed
potential difference U = 0.1t in Fig. 4(b) that shows one
gap closure and reopening as we discussed before.

Different from the topological phase transition in bi-
layer graphene occurring exactly at K and K ′ points,
in trilayer graphene the bulk band gaps close at some
points away from the exact valley K/K ′ points [see the
Inset of Fig. 4(b)]. As a consequence, the low-energy
continuum model can not correctly capture this nontriv-
ial topological insulator phase. Therefore, although the
obtained topological insulator phase in trilayer graphene
is still associated with valley degrees of freedom, one can
not calculate a well-defined valley-Hall conductivity from
the corresponding continuum model.

Summary and discussions— We have studied the spa-
tial imbalance and valley current polarization of the edge
modes in gated trilayer graphene. The spatially uneven
distribution of edge modes arises from the half-integer
quantum valley-Hall conductivity of trilayer graphene
that challenges the conventional understanding of how
edge modes are related with the bulk topology. These
features can in principle be explored in a doubly gated
trilayer device that would allow for a direct control of
the edge modes, either by modifying the carrier dop-
ing or reversing the sign of the interlayer potential dif-
ference. Although perfect zigzag trilayer graphene may
not be experimentally accessible in current conditions,
it is argued that a substantial contribution of quantum
transport in realistic samples of bulk gapped multilay-
ers might still be mediated by valley-Hall edge modes23.
In such cases, the experimental signatures of edge mode
imbalance in trilayer graphene discussed in this Rapid
Communication should have measurable consequences in

electron transport experiments, e.g. in the form of orbital
moments13 generated by the imbalanced current carrying
edge modes.
Another noteworthy finding reported in the present

work is that the trilayer graphene can be turned into a
topological insulator phase in the presence of sufficiently
large Rashba SOC, where the distribution of the edge
modes at opposite boundaries remains uneven. Due to
the special structure of zigzag ribbon without intervalley
scattering, we show that the numbers of edge mode pairs
at both boundaries are odd, and most importantly, they
are unequal, i.e. five pairs at one boundary while three
pairs at the other. When these edge states encounter the
armchair edge, only one pair of topologically protected
edge modes can survive due to the presence of strong
inter-valley scattering.
Finally, we discuss the stability of the unbalanced edge

states in the presence of external disorders. As demon-
strated in Ref.24, the valley-Hall edge modes can be eas-
ily destroyed by short range disorders due to the back
scattering between valleys. On the contrary, it is found
that long range (smooth) disorders can strongly suppress
the back scattering. Moreover, in graphene the impurity
scattering in graphene mainly arises from the long-range
Coulomb scatterers. Therefore, the proposed unbalanced
edge modes are robust against the smooth disorders and
should be detectable in a realistic zigzag trilayer graphene
ribbon. Recently, it is reported25,26 that surface states in
weak topological insulators having even number of Dirac
cones are very robust as long as the perturbation does
not break the time reversal symmetry.
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