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ABSTRACT 

A p-T phase diagram of graphene nanoribbons (GNRs) terminated by hydrogen atoms are established 

based on first-principles calculations, where the stable phase at standard conditions (25 oC and 1 bar) is 

found to be a zigzag GNR (zzGNR). The stability of this new GNR is understood based on an electron 

counting model, which predicts semiconducting non-magnetic zzGNRs. Quantum confinement of Dirac 

fermions in the stable zzGNRs is found to be qualitatively different from that in ordinary semiconductors. 

Bifurcation of the band gap is predicted to take place, leading to the formation of polymorphs with 

distinct band gaps, but equal thermodynamic stability. A tight-binding model analysis reveals the role of 

edge symmetry on the band gap bifurcation. 
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I. INTRODUCTION 

Graphene, as a Dirac fermion system, possesses extremely high carrier mobilities [1] and 

has been envisaged as an electronic material candidate for the post-silicon era [2]. Perfect 

graphene, however, is a semimetal with a zero electronic band gap. In this regard, graphene 

nanoribbons (GNRs) have attracted considerable attention [3-8] because they could be made 

semiconducting with band gaps opened by the quantum confinement effect. In recent years, a 

number of techniques have been developed to produce GNRs [7-11]. Prototypical electric circuit 

elements such as field-effect transistors based on GNRs have also been demonstrated 

experimentally [6, 12]. 

The electronic properties of GNRs are governed by several factors such as chirality, ribbon 

width and atomic structure at the two edges. The effect of the chirality has been studied [3, 4, 13]. 

An inverse dependence of the band gap on the ribbon width has also been established [4]. The 

understanding of the edge effects has so far focused on the disorder at the edges [14-20]. Such 

edge disorder introduces localized gap states that dominate electron transport in the GNRs. In the 

past several years, significant progress has been made to produce higher quality GNRs by, e.g., 

solution-phase fabrication [8], bottom-up synthesis [9], carbon nanotube unzipping [10, 11, 21, 

22], Joule heating [23] and nanowire-masked lithography [24]. Atomically smooth edges enable 

precise control on the electronic properties of GNRs for nano-electronics. Meanwhile, new physics of 

Dirac Fermions under quantum confinement that are shadowed by the edge disorder effects is 

expected to emerge in the GNRs with atomically smooth edges. 

In this paper, we address, by first-principles calculations, two fundamental issues regarding 

GNRs: (1) the thermodynamic phase diagram upon edge hydrogenation and (2) the quantum 
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confinement of Dirac fermions and its explicit edge dependence. The first issue is important 

because for the physical properties of a batch of GNRs thermodynamics is expected to play an 

important role, whereas the second issue is important because there is no a priori knowledge that 

quantum confinement of Dirac fermions should obey the same physics as that in ordinary 

semiconductors. Concerning (1), we propose a new H-passivated pattern of the zigzag (zz) GNRs. 

It changes the relative thermodynamic stability between the armchair (ac) GNR and zzGNR 

known in the literature [25], making the latter more stable under the standard condition (1 bar 

and 300 K). Concerning (2), we show that quantum confinement of Dirac fermions, as 

demonstrated in the stable zzGNR, is fundamentally different from that in ordinary 

semiconductors. The symmetric band structure between electrons and holes near the degenerate 

K-point in the Brillouin zone of the same atomic character, namely carbon π-states, makes it 

possible to mix the electron and hole states upon size confinement with little energy penalty. As 

such, two sets of zzGNRs with equal stability but drastically different band gaps emerge, with a 

nearly constant gap ratio of about 2.8. It suggests that uncertainty of the band gaps of zzGNRs 

could be an intrinsic property of the Dirac fermions under quantum confinement. 

II. COMPUTATIONAL METHOD 

Our first-principles calculations were based on spin-polarized density functional theory 

with the Perdew-Burke-Ernzerhof approximation [26] to the exchange-correlation functional. 

The core-valence interactions were described by the projector augmented wave potentials [27] as 

implemented in the VASP code [28]. Plane waves with a kinetic energy cutoff of 544 eV were 

used as the basis set. The calculations were carried out in periodic supercells, where the GNRs 

from neighboring supercells were separated by at least 10 Å. All atoms were relaxed until the 
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forces are smaller than 0.01 eV/Å. The length of the lattice vector, L, along the periodic direction 

was optimized until the stress is smaller than 1 kbar. A 1×4×1 (or 1×8×1 for a reduced cell) k-

point set was used for the Brillouin zone integration.  

III. PHASE DIAGARAM OF GRAPHENE NANORIBBONS 

Figure 1 shows the calculated phase diagram of hydrogen-passivated GNRs with either zz 

or ac edges. We compare the thermodynamic stability of the various GNRs by their edge energy  

ΔG = [EGNR − NCΕC − NHμH]/2L ,       (1) 

where EGNR is the total energy of a GNR, NC and NH are the numbers of C and H atoms, 

respectively, ΕC is the total energy per C atom in graphene, and μH is the chemical potential of H 

in equilibrium with H2 gas. μH is related to temperature (T) and pressure (P) by [25, 29] 

)],([
2
1)]ln()()0()([

2
1),( *

HBH 222
PTE

P
PTkTTSHTHEPT HH μμ +≡+−−+= , (2) 

where 
2HE is the total energy of a free H2 molecule, and H  and S are the enthalpy and entropy, 

respectively, of H2 gas at P = 1 bar, which are obtained from standard database [30]. The most 

significant result in Fig. 1 is the zz1212 structure that maximizes the aromaticity in the interior of 

the graphene sheet. Inset in Fig. 1 shows the atomic structure for zz1212, where every third C 

atom at the edge is passivated by a single H atom, while others by two H atoms. In addition, 

there is a sub-edge C atom that is also bonded to a H atom in contrast to any known model. 

Previous calculation indicates that the ac edges are more stable than the zz edges. However, with 

the new zz1212 structure, the reverse is true. Fig. 1 shows that at or near standard conditions (25 

oC and 1 bar), zz1212 is the most stable edge structure. Our results are thus consistent with the 
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repeatedly observed zz edges of graphene in various experimental conditions [23, 31-34]. It is 

interesting to note that a recent theoretical simulation of X-ray absorption spectra [35] suggests 

that three extrinsic features observed in the graphene systems in a number of experiments are 

results of mixed C-H and C-H2 motifs at the edge and sub-edge C sites that are consistent with 

our model. 

IV. ELECTRON COUNTING MODEL FOR ZIGZAG GRAPHENE NANORIBBONS 

The stability of the zz1212 edge can be understood based on the following electron counting 

model. In bulk graphene, each carbon site contributes one pz electron to the resonant π-bonding. 

One can consider that each C atom shares 1/3 pz electrons with each of its three neighbors. At a 

z1 edge (see Figure 1), each H atom saturates a dangling σ-bond on an edge C atom (on the A 

sublattice of graphene, for example), while 1/3 pz electrons become “dangling”, as illustrated in 

Fig. 2(a). This results in unequal numbers of π-electrons on the A and B sublattices. Similarly, as 

illustrated in Figs. 2(b) and 2(c), attaching two H atoms to an edge C atom creates 1/3 dangling 

pz electrons on each of the two neighboring C atoms (on the B sublattice), while attaching one H 

atom to an sub-edge C atom (on the B sublattice) will create 1/3 dangling pz electrons on each of 

the three neighboring C atoms (on the A sublattice). With the above electron counting model, our 

extensive first-principles calculations establish the rule that if the dangling π-electrons on the A 

and B sublattices are equal, the edge structure will not exhibit metallic edge states nor localized 

magnetic moments. In general, semiconducting edges are more stable than metallic edges. 

Among all possible edge structures with the unit-cell length smaller than 3L(z1), only four edges, 

namely z211, zz1212, zz1122 and zz21212, satisfy the rule, although the latter two are less stable 
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and hence do not appear in the phase diagram in Fig. 1. It is interesting to note that, to satisfy the 

electron counting rule, the unit-cell length has to be a multiple of 3L(z1). 

V. BAND GAP BIFURCATION 

Because of the triple period of the stable zzGNRs, an interesting issue arises, that is, if both 

edges are zz1212, there would be four inequivalent registries of the two edges. Here, we only 

need to consider two inequivalent registries in a half cell, as the consideration of the full cell 

does not yield any new physics except that the edge energy of the full cell is about 6 meV/Å 

lower than that of the half cell. The two registries, named eclipsed and staggered polymorphs, 

are shown in the insets of Fig. 3. The two polymorphs differ by a registry shift of the passivation 

hydrogen at the two edges with respect to each other by Lh/3. Note that the lattice vector Lh for 

zz1212 in Fig. 3 is only one half of the L in Fig. 1. 

As expected, the band gaps of the polymorphs follow a linear relation Eg = α/W [4, 8], as 

shown in Fig. 4, where the ribbon width W is given by (3N/2 − 1)dC−C with N the number of zz 

rows and dC−C the calculated C−C bond length in graphene (1.425 Å). Figure 3, however, reveals 

that the two polymorphs have drastically different band structures. In particular, the Eg ratio γ is 

nearly a constant of about 2.8 with respect to W, as seen in Fig. 4. More importantly, the 

difference in the edge energy ΔG of the two polymorphs converges with respect to W quickly to 

zero. For example, for N = 16, the calculated difference in ΔG is only 0.24 meV/Å, as shown in 

Table I. This suggests a bifurcation of the Dirac fermion band gap upon quantum confinement 

with equal thermodynamic stability and is in sharp contrast to that of ordinary semiconductors 

where a single and hence definitive band gap is often obtained.  
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VI. TIGHT-BINDING ANALYSIS 

To understand the salient physics of quantum confinement on Dirac fermions, here we 

present a tight-binding analysis. We start with the z1 edges which have single periodicity (and 

hence no polymorphs) and exhibit an intrinsic band gap at the folded Dirac K-point [36] (and a 

closed gap away from K due to edge states [13], which is unimportant to the current discussion). 

The eigenfunctions of the Hamiltonian H0 can be expressed as the superposition of two Bloch 

waves with momenta (qx, ±qy) in bulk graphene, where qx is in the periodic direction of the 

zzGNR and qy is quantized to satisfy the hard-wall boundary conditions. For N >> 1 and qx = K, 

the corresponding eigenvalues for the low-lying states (i.e., n << N) are doubly degenerate and 

given by 

)
2
1( += n

N
t

n
πε           (3) 

with quantum number n = (0, ±1, ±2, …), where t is the hopping energy between the A and B 

sublattices of graphene. The equal level spacing exhibited in Eq. (3) is a general property of 

massless Dirac fermions arising from the linear E(q) dispersion. 

The Hamiltonian of a zzGNR with modified edges from the z1 can be written as H = H0 + 

λV, where λV is the on-site energy representing the effect of the extra H atoms that convert the 

attached C atoms from sp2 to sp3. V is a diagonal matrix with Vii = 0 (or 1) if the i-th C atom has 

the configuration of sp2 (or sp3), and λ is the strength of the potential that can vary from 0 to ∞. 

In case where an extra H completely removes a carbon pz orbital from the π-electron 

Hamiltonian, λ goes to ∞. The eigenstates of H, { nΨ }, can be expressed in terms of the 
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eigenstates of H0, { nϕ }. Due to the properties of the Dirac fermions, it can be shown that nΨ  

takes on the peculiar form, ∑ −=Ψ
m

mn nmF ϕ)( , where the expansion coefficients depend solely 

on the difference between m and n. The functional form of F is independent of t and N in the 

limit N >> 1. However, F depends sensitively on the symmetry of the eigenstates. There are two 

relevant types of symmetry: one is the mirror reflection (σ), as shown in Fig. 3; another is the 

exchange (P) of A and B sublattices, which can be realized by a rotation of π around a normal 

axis to the graphene sheet followed by an N-dependent fractional translation. If the system is 

invariant under the operation of σ, as in the case of an eclipsed polymorph, one can show that 

F(m) = σF(−m), where σ = ±1. If the σ-symmetry is broken, as in the case of a staggered 

polymorph, however, |F(m)| ≠ |F(−m)|. 

Now, consider the λ → ∞ limit. Because the wave functions { nΨ } vanishes at an sp3 site, 

the expectation value of V vanishes accordingly, i.e., 0=ΨΨ nn V . Thus, the eigenvalues of H 

can be expressed by  

βπεε
N

tnmFHHE nm
m

nnnnn
 )( 2

0 −=−=ΨΨ=ΨΨ= ∑  ,   (4) 

where nε  is given by Eq. (3) and mmF
m∑≡ 2)(β  is independent of the quantum number n but 

dependent on the symmetry. This indicates that the effect of V is to shift all eigenstates of the 

same symmetry by the same amount while maintaining their energy spacing. For the eclipsed 

polymorph with the σ-symmetry, β = 0 for states with both σ = +1 and −1 because |F(m)| = 

|F(−m)| . Hence its energy band gap, 
N

t π , is identical to the intrinsic band gap of z1 at qx = K if 
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the finite size effect of order 1/N2 is ignored. For the staggered polymorph, the broken σ-

symmetry leads to a nonvanishing β. Our tight-binding calculation in the limit N → ∞ yields β+ ≈ 

1/3 for the states that are invariant under the operation of P (e.g., the CBM state). For the states 

that change their sign under the operation of P (e.g., the VBM state), we have β− = − β+ because 

of the electron-hole symmetry of the Dirac fermions. The energy gap is thus given by Eg = 

)21( 
+− βπ

N
t  ≈ 

N
t

3
 π . Hence, a nonvanishing β leads to the band gap narrowing in the staggered 

polymorph. In the limit of λ → ∞ and N >> 1, the ratio γ between the energy gaps of the eclipsed 

and staggered polymorphs is three. As a comparison, our DFT results for 12 ≤ N ≤ 16 give a 

value of about 2.8 for the zz1212 GNRs (see Fig. 4). 

VII. OTHER PASSIVATIONS 

The edge effect is intrinsic to Dirac fermions and hence should not vanish due to different 

passivation. This is clearly true if we compare zz1212 with z211 as γ is only changed by 1.7 % (see 

Table I). The electronic structures are also very similar, as shown in Fig. 3. To demonstrate the 

universality further, we consider co-passivation of the edges by H and O atoms, which can be 

realized by replacing every two H atoms that are bonded to a single sp3 C by a single O atom. 

This yields from zz1212 the passivation pattern zzHOHO and from z211 the pattern zOHH, 

respectively. The results are listed in Table I. It can be seen that replacing two H by one O tends 

to reduce γ modestly, owing to possibly secondary effect that affects the exact value of λ. Finally, 

z(600)1111 [25], with the removal of sp3 carbon atoms, resembles λ → ∞ and as expected has the 

largest γ = 2.92. 

VIII. CONCLUSIONS 
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In summary, using first-principles calculations we establish the phase diagram of hydrogen-

terminated GNRs, which emphasizes the importance of zigzag GNRs under standard conditions. We 

reveal the distinct physics of Dirac fermions under quantum confinement in the stable zzGNRs, namely, 

the bifurcation of band gap with equal thermodynamic stability. Our tight-binding model analysis 

demonstrates that the symmetry of passivating atoms at the edges determines the band gaps of the 

zzGNRs. We expect that the band gap bifurcation be experimentally observed in the zzGNRs terminated 

by hydrogen as well as other species. 
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FIG. 1. Phase diagram of hydrogen-passivated GNRs with both zz and ac edges. The insets show 

the atomic structures of the corresponding passivation patterns. The star marks the standard 

atmospheric conditions (T=300 K and P=1 bar). The values of *
2Hμ  in Eq. (2) at the phase 

boundaries are also given. L is the length of the lattice vector. 
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FIG. 2. Schematic showing the dangling pz electrons at three types of C sites near the zz edge: (a) 

edge C bonded with a single H atom, (b) edge C bonded with double H atoms, and (c) sub-edge 

C bonded with a single H atom. Each teardrop-shaped lobe represents one third pz electrons. The 

darker lobes represent the pz electrons participating in the resonant bonding with the rest of the 

system, while the brighter lobes with dashed outlines represent dangling pz electrons. 
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FIG. 3. Band structures of eclipsed (left panels) and staggered (right panels) polymorphs of 

zzGNRs with zz1212 (upper panels) and z211 (lower panels) passivations. The ribbon width N is 

16. Energy zero is selected at the middle of the band gap. Insets show the respective atomic 

structures, where the dashed lines define the unit cells. The mirror symmetry present in the 

eclipsed polymorph is marked by an arrow. The registry shift of the two edges in the staggered 

polymorph by Lh/3 is illustrated in the insets. Lh is one half of the L in Fig. 1. For clarity, H 

atoms are not shown. Instead, the sp3 C atoms are highlighted by black spheres.  
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FIG. 4. Band gaps of the two zzGNR polymorphs with zz1212 passivation as a function of the 

inverse ribbon width, 1/W and the number of zz rows, N. Solid lines are linear fits with α = 1.65 

and 0.60 eV·nm, respectively, for the eclipsed and staggered polymorphs. 



 

15 

 

TABLE I. Calculated band gaps (in eV) and their ratio γ for the two polymorphs of zzGNRs with 

N = 16 and different edge passivations. The zzHOHO and zOHH patterns are modified zz1212 and 

z211, respectively, by replacing every two same-site H atoms with a single O atom. Also given are 

the edge energy differences between the two polymorphs, d(ΔG), in meV/Å.  

 zz1212 zzHOHO z211 zOHH z(600)1111 

Eclipsed 0.500 0.412 0.458 0.313 0.546 

Staggered 0.181 0.187 0.169 0.135 0.187 

γ 2.76 2.20 2.72 2.32 2.92 

d(ΔG) 0.24 0.23 0.19 0.13 0.33 
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