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Owing to its molecular membrane structure, tearing is the predominant fracture mode for a
monolayer graphene. Yet the tearing mechanics of monolayer graphene as a two-dimensional (2D)
crystal remains poorly understood. Here, we performed molecular dynamics (MD) simulations with
reactive force field (ReaxFF) to determine the fracture path of monolayer graphene under tearing.
Our simulations revealed that the tearing chemo-mechanical conditions play a regulatory role on
the edge structures of graphene nanoribbons (GNRs) produced by tearing. In vacuum, the resulting
GNR features the armchair edge, whereas in the presence of chemical additives (such as oxygens) to
the fracture surface the resulting GNR edge changes from armchair to zigzag. In addition, due to
the large in-plane stretching to out-of-plane bending stiffness ratio of monolayer graphene, tearing
causes local bending at the crack tip, giving rise to a fracture mode mixity that also modulates the
fracture path. In addition to provide an atomistic understanding of tearing mechanics of 2D crystal
membranes, our findings shed light on chemo-mechanical engineering of GNRs with controlled edge
structures.

PACS numbers: 61.72.-y, 61.50.Ah, 62.20.-x, 68.65.-k

I. I. INTRODUCTION

Graphene, an atomic layer of carbon atoms arranged in a honeycomb lattice, has attracted much attention because
of its unusual fundamental physical phenomena such as unconventional quantum Hall effects and surprisingly high
room-temperature electron mobility1–3. The discovery of these novel physical properties has inspired an endeavor that
may lead to the establishment of next-generation graphene-based electronics in replacing current silicon technologies.
In order for graphene to present a sizable energy gap for electronic applications, a key requirement in graphene
fabrication is that the width of graphene should be as small as ∼10nm4. For such graphene nano-ribbons (GNRs), the
edge orientation strongly influences their electronic properties5–7. Atomic edge engineering8–10 has therefore emerged
as an effective means to control the electronic performance of GNR-based devices.

Given the current unique capabilities in nanoscale manipulation of graphene by experimentalists11,12, GNRs could
be prepared by simply tearing from a large pristine graphene sheet. Yet the tearing response of monolayer graphene
as a two-dimensional (2D) crystal and the edge structures of the produced GNRs are poorly understood from a
fundamental mechanics perspective. Here we demonstrate from faithful molecular dynamics (MD) simulations that
the edge orientation of GNRs torn off from a pristine monolayer graphene can be modulated by the chemo-mechanical
tearing conditions. In particular, our atomistic simulations showed that chemical additives to the fracture surface
modify the fracture resistance to an extent depending on the crystallographic orientations. Our analysis further
evidenced that owing to the unique molecular membrane structure of monolayer graphene, tearing inevitably induces
out-of-plane bending at the crack tip, introducing fracture mode mixity that may cause crack kinking. Together, these
two factors set the energetically and kinetically preferred fracture path. We expect that the regulatory mechanism
provides valuable guidance to the production of GNRs with precisely controlled edge orientation. Besides providing
a general atomistic framework for predicting fracture path in crystals, our studies offer atomistic understanding of
fracture behavior of 2D crystal membranes. Given the intimate relationship between GNR edge orientation and its
electronic structures, our findings also have important implications for the next-generation graphene-based electronic
devices.
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FIG. 1: The simulation models. (a) The finite-sized crack model. Edge atoms in grey are fixed and subjected to out-of-plane
pulling with directions denoted by circled dot (outward, for the edge atoms on the left) and circled cross (inward, for the edge
atoms on the right), respectively. (b) The semi-infinite crack model. Atoms at the outer layer (in grey) are held fixed, while
the remainder of the atoms is free.

II. II. MODELS AND METHODOLOGIES

A. A. The models

Monolayer graphene containing either a finite-sized edge crack (notch) or a semi-infinite crack is adopted as our
simulation model, as shown in Fig. 1. The finite-sized crack model consists of a 6nm×6nm square monolayer graphene
with a pre-existing notch created by removing a row of atoms from one of the graphene edges, as shown in Fig. 1(a).
The notch separates the original edge into two short ones. Fixing the atoms along the two short edges (grey atoms in
Fig. 1 (a)) while incrementally separating them in the opposite, out-of-plane directions effectively tears the graphene.
At each separation, the system is dynamically relaxed to its minimal energy configuration. The Nose-Hoover’s
algorithm is employed to thermostat the system at 10K. We impose a fairly low separation speed (0.0625Å/ps),
which, along with the low temperature, mimics static free energy minimization. To simulate the invasion of external
chemical additives, the edges of the notch and newly created fracture surfaces are terminated by oxygens or hydrogens
prior to further crack extension, forming C-H single bonds and C/O bonds, respectively.

From the classical continuum fracture mechanics, there are three basic fracture modes: opening (Mode I), in-
plane shear (Mode II), and out-of-plane shear (Mode III). Under a mixed mode loading (several modes coexist), the
asymptotic stress at the crack tip can be generally written as:

σij(r; θ) =

III∑
M=I

KM√
2πr

ΛM
ij (θ) (1)

where σij is the stress tensor, i and j run over 1 to 2 representing the two coordinates (x, y) for the planar problem,
r and θ are the two polar coordinates with the origin sitting at the crack tip; K is the stress intensity factor, M runs
from I to III denoting the three fracture modes, respectively; Λ is the known angular dependent function for stress.
Note that the stress presented in Eq. 1 is the leading term for very small r, i.e., the location at which the stress
is evaluated is sufficiently close to the crack tip. The higher-order term is negligibly small compared to the leading
term. The region within which the asymptotic stress is dominant is known as the K-dominant zone.

For bulk materials, tearing typically leads to pure Mode III fracture. However, when tearing a monolayer graphene,
the tearing front is bent into the third dimension, same as tearing a thin film or a piece of paper. The bending
mode arises for these thin-shell structures because of the large in-plane to out-of-plane stiffness ratio. As a result,
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tearing of the graphene leads to a mixed mode at the crack tip. It has been well established that the crack-tip mode
mixity greatly influences the fracture paths13. In order for studying the effects of load mixity on the fracture path
in graphene, we introduce a size-reduced model that allows precise control of the load mixity, consisting of a small
circular-shaped domain cut from the crack tip (Fig. 1(b)). The model simulates a semi-infinite crack that extends
self-similarly. The domain size is chosen such that its outer boundary falls in the K-dominant zone. To impose an
arbitrary mode mixity, we position all the atoms according to the crack-tip asymptotic displacement field:

ui(r; θ) =
∑

M=I,III

2KM

µ

√
r

2π
ΘM
i (θ). (2)

with specified K values, where µ is the shear modulus, Θ is the known angular dependent function for displacement.
Then atoms about 3Å from the outer boundary are held fixed, while the remaining atoms are dynamically relaxed at
10K. From continuum fracture mechanics, the imposed asymptotic displacement field results in the mixed mode stress
field expressed in Eq. 1. It has also been previously shown that the atomic stress computed by the Virial formula
agrees very well with the continuum asymptotic solution at the crack tip14,15. Therefore, the semi-infininte model
provides an effective scheme for the study of the effect of fracture mode mixity.

B. B. Interatomic potentials

In our MD simulations, the interatomic interactions are modeled by the reactive force field (ReaxFF)16,17. The
ReaxFF method combines a bond-distance/bond-order relationship with a geometry-dependent charge calculation,
and provides a highly transferable method, applicable to covalent, metallic and ionic materials and their interfaces. The
ReaxFF force field provides accurate account of bond breaking and bond formation in hydrocarbon-oxygen systems.
Nonbonded interactions such as van der Waals and Coulomb interactions are calculated between each pair of atoms,
irrespective of connectivity. However, close-range non-bonded interactions are excluded by using a shielding term. As
tested on a number of hydrocarbon-oxygen systems, the ReaxFF has been adequately shown to give energies, reaction
pathways, transition states, and reactivity trends that are in great agreement with quantum mechanical calculations
and experiments18,19, while capable of treating thousands of atoms. The ReaxFF force field has been widely used to
study the graphene oxide20, graphene peeling from a substrate21, and graphene ripping22.

III. III. RESULTS AND DISCUSSIONS

A. A. Direct MD observations of tearing paths

We first perform MD simulations of tearing the monolayer graphene using the finite-sized crack model. Our
simulation results, as depicted in Fig. 2, clearly show the strong dependence of the fracture path on the chemical
additives. In vacuum, the crack always extends along (if the original notch is of armchair edges) or kinks into (if
the original notch is not of armchair edges) the armchair direction, independent of the initial notch orientation (Fig.
2(a)), consistent with previous tight-binding MD simulations23. In the case of hydrogen invasion to the fractured
surfaces, the fracture path remains the same as that in vacuum, and thus not shown here. In contrast, oxygenation
of the fractured surfaces modifies the fracture path to the zigzag direction (Fig. 2(b)). Following these results, we
simulated tearing of a GNR off a pristine graphene by creating two notches from one edge. As expected, a GNR with
armchair edges is produced in vacuum (Fig. 2(c)) or in the presence of hydrogens (not shown), but with zigzag edges
in the presence of oxygens (Fig. 2(d)), demonstrating the chemo-mechanical control of edge orientations in produced
GNRs.

B. B. Tearing energetics and kinetics

We next examine the tearing energetics and kinetics in order to understand the modulating role of the chemo-
mechanical conditions, focusing on the change in the fracture resistance in the presence of the chemical additives.
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FIG. 2: Fracture paths in graphene determined by direct MD simulations, where red dots represent oxygens and green dots
represent carbons. Tearing in vacuum or in the presence of hydrogens (not shown) causes notch extension along the armchair
direction (a), but along the zigzag direction in the presence of oxygens (b). GNRs with edge orientations ((c) and (d))
corresponding to different chemical additives are produced by tearing off a graphene sheet with two initial notches.

Crack extension in crystals involves sequential bond breaking at the crack tip24. From an energetics point of view, the
unit process of bond breaking at the crack tip can be characterized by an energy landscape25, as generically shown
in Fig. 3(a). The energy landscape consists of two local energy minima that represent the two metastable states
before and after bond breaking, separated by an energy barrier. The energy of an metastable state of an extending
crack can be fully characterized by the crack length l and the applied load σ, i.e., E(l;σ). The relative stability
of the two metastable states with the same crack length depends on the applied load σ. At a relatively high (low)
applied load the energy landscape tilts toward the bond-broken (bond-intact) state. The relative stability of the two
metastable states indicates two critical loads for bond breaking. At the athermal load, the energy barrier against bond
breaking vanishes, and crack extends free of kinetic resistance. At the Griffith load26, the two local energy minima are
isoenergetic, and the crack extends free of thermodynamic resistance. Computationally, the athermal load, denoted
by σA, can be determined by identifying the critical stress at which the bond-intact state is no longer numerically
stable. Whereas the Griffith load, denoted by σG, can be determined by finding the critical stress at which the net
change of the total energy of the system vanishes upon a unit crack extension by one lattice spacing:

∆E(σG) = E(l + a;σG)− E(l;σG) = 0 (3)

where l is the crack length, and a is the lattice spacing along the crack extending direction. Due to the crystal
anisotropy, both the Griffith and athermal loads may vary in different crystallographic directions. The energetically
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(kinetically) preferred fracture path is then identified as the crystal direction with smaller Griffith (athermal) load.

FIG. 3: Energetics and kinetics analyses of the unit bond breaking process illustrate crack kinking mechanisms in graphene.
(a) A schematic description of the energy landscape for bond breaking at the crack tip. The energy difference between the
filled black circle and the open circle gives rise to the thermodynamic driving force (∆E) for bond breaking, while the energy
difference between the filled yellow circle and the open circle to the kinetic barrier. (b) State A with two bonds (1 and 2)
highlighted at crack tip, showing two possible crack extending directions (blue: armchair direction; pink: zigzag direction) by
breaking each of the bonds; (c)-(d) State B (or C) is a replica of state A, but with bond 1 (or 2) broken. A→ B (or A→ C)
thus forms a unit bond-breaking process.

In order for determining and comparing the Griffith loads in two characteristic crystal directions (armchair and
zigzag), we identify three metastable states along the two competing directions at the same applied load: a reference
state EA(l;σ) (state A, Fig. 3(b)) with given crack surface orientation, the states with crack-tip bond broken along
the armchair EB(l + aac;σ)(state B, Fig. 3(c)) and zigzag EC(l + azz;σ)(state C, Fig. 3(d)) directions, where aac
and azz are respectively the lattice spacings along armchair and zigzag directions. The relative energetics of the three
states defines the preferred fracture path: along armchair (A→ B) or zigzag (A → C) directions.

We systematically computed the energies of these three metastable states via dynamic relaxation as a function of
the applied load for both an initial armchair and zigzag notches, where the initial notch length is taken to be 15Å.
We obtained the energy differences ∆E1 = EB − EA and ∆E2 = EC − EA along the armchair and zigzag directions
as a function of the applied tearing displacement ∆d, as plotted by the black and red curves in Fig. 4, respectively.
The intersection between each curve and the dashed horizontal line (∆E = 0) indicates the Griffith displacement.
The corresponding reaction force, i.e., the Griffith load, is listed in Table I. The subfigures in the first row are for an
initial armchair notch, while those in the second row for an initial zigzag notch. In each row, the subfigures from left
to right plot the energy differences in vacuum, in the presence of hydrogens, and in the presence of oxygens on the
fracture surfaces, respectively.

If continuing increasing the applied load, one finds that at a critical load state A would no longer be numerically
stable and automatically evolves to B or C. The corresponding applied load represents the athermal load along the
direction to which state A evolves, and the athermal load in this direction is lower than that along the other direction.
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FIG. 4: Numerical determination of the Griffith load along different crystographic directions. Figures (a) to (c) plot the energy
differences in vacuum, in the presence of hydrogens, and in the presence of oxygens on the fracture surfaces respectively for
an initial armchair notch. Figures (d) to (f) plot the energy differences in vacuum, in the presence of hydrogens, and in the
presence of oxygens on the fracture surfaces respectively for an initial zigzag notch. Black curves: ∆E1; Red curves: ∆E2.

In Fig. 4, the direction along which the lower athermal load is reached is indicated by an arrow. For instance, in Fig.
4 (a), the black arrow indicates the athermal load is reached first along the armchair direction for an initial armchair
notch. The lower athermal loads in the three different chemical conditions are listed in Table I. Here only the lower
athermal load is computed, since it suffices to identify the kinetically preferred fracture path. Direct determination of
the higher athermal load along the other direction is not possible. However, it could be determined by first calculating
the load-dependent energy barriers, followed by an extrapolation of the load-barrier curve to identify the maximum
load at which the energy barrier vanishes, which by definition is the athermal load14

TABLE I: Fracture resistance against crack extension in graphene along different paths (unit: eV/nm2). The higher athermal
load is not computed, and marked by “–”s.

Fracture paths In vacuum Oxygentated Hydrogentated

(Initial→ kinked) (σG/σA) (σG/σA) (σG/σA)

AM→ AM 8.55/18.60 3.06/– 4.74/17.85

AM→ ZZ 9.30/– 2.31/17.48 5.74/–

ZZ→ AM 1.02/19.04 5.12/– 8.93/17.73

ZZ→ ZZ 1.59/– 3.18/16.85 7.12/–

Table I lists the Griffith load and athermal load at different chemical conditions along different fracture paths. Each
path is constituted of an initial and a final direction, where “AM” denotes armchair direction, while “ZZ” denotes
zigzag direction. Our simulation results show that in vacuum both the Griffith and athermal loads along the armchair
direction is consistently lower than those along the zigzag direction, independent of the initial notch orientation,
clearly demonstrating that the armchair fracture path is energetically favorable. In the presence of oxygens to the
fracture surfaces, the preferred fracture path changes to the zigzag direction, also independent of the initial crack
orientation. In contrast, in the presence of hydrogens, the athermal load is always lower in the armchair direction,
same as that in vacuum. Interestingly, the lower Griffith load always occurs along the initial notch direction, showing
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the dependence of the energetically favorable fracture paths on the initial crack orientation.

C. C. Effects of load mixity

The Griffith and athermal loads represent the intrinsic fracture resistances along specified fracture paths. We
next discuss the effects of loading conditions on the fracture paths. As mentioned earlier, tearing a bulk material
results in pure Mode III stress at the crack tip, as shown in Fig. 5(a). In contrast, tearing a monolayer graphene
results in bending at the crack tip due to the large in-plane to out-of-plane stiffness ratio. Thus, the fracture mode
expressed at the crack tip may deviate from the pure Mode III, introducing crack-tip mode mixity13. To determine
the crack-tip fracture modes, we computed the Virial stress at each atomic position and interpolated the stress over
the entire simulation domain, as shown in Fig. 5(b). At low temperatures, the kinetic component of the Virial stress
is negligibly small, and the Virial stress tensor σ can be expressed as:

σ =
1

2Ω

∑
j 6=i

rij ⊗ fij , (4)

where i and j are the indices of interacting atom neighbors, and Ω is taken to be the area occupied by an atom in the
initial, undeformed state; rij = rj − ri is the distance vector between atoms i and j. The interatomic force fij can be
written as

fij =
∂Φ

∂rij

rij
rij
. (5)

where Φ is the interaction potential. The calculated Virial stress at each atomic site is then interpolated over the
entire simulation domain. Figure 5(b) plots the interpolated stress stress component σ13. By comparison, we find the
Virial stress component significantly deviates from the corresponding asymptotic stress of pure Mode III, indicating a
mixed mode at the crack tip. We then computed other stress components in addition to those in pure mode III (σ13
and σ23). Regression analysis of the Virial stress components based on the asymptotic crack tip stress distribution
function (Eq. 1) gives rise to the K values of the three modes. Our calculation shows that KI/KIII = 2.71 and
KII/KIII = 0.04 in the tearing specimen, manifesting mode I, rather than mode III, is the dominant fracture mode
at the crack tip.

FIG. 5: Crack-tip stress (σ13) distribution suggests mode mixity. Red (blue) color represents positive (negative) stresses. (a)
Continuum asymptotic solution of pure mode III; (b) the finite-size tearing model; (c) the size-reduced model with pure mode
III loading.

we next utilize the semi-infinite crack model (Fig. 1(b)) to identify the role of the load mixity in the fracture path,
This model enables continuous variation of the mode mixity over the entire spectrum. At specified KM (M = I, II, III),
the atoms in the model are displaced according to the asymptotic displacement field in Eq. (2). The Virial stress at
each atomic site is then calculated upon the system is dynamically relaxed at 10K. For consistency, here Mode II is
not included (KII = 0) since Mode II is negligibly small as compared to other modes in the finite-sized crack model.
The mode mixity φ is defined by KI + KIIIi = Keiφ, ranging from 0 (pure mode III) to π/2 (pure mode I). Figure
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FIG. 6: A map of the preferred fracture paths in the plane of chemical condition and crack-tip mode mixity φ. The preferred
fracture paths are shaded differently (slashed for zigzag direction, and cross-hatched for armchair).

5(c) plots the Virial stress σ13 for φ = 0. Its close agreement to the asymptotic stress (Eq. (1), Fig. 5(a)) validates
the size-reduced model.

We determine the kinetically preferred fracture path at different mode mixities by direct MD simulations, i.e., the
path with a lower athermal load. Our simulations showed that in the case of in vacuum or in the presence of oxygens,
the determined path is also thermodynamically preferred, i.e., with a lower Griffith load. A map of preferred fracture
paths (either zigzag or armchair, denoted by differently shaped regions) is depicted in Fig. 6, where the horizontal axis
denotes the mode mixity and the vertical axis the chemical conditions. In vacuum, zigzag direction is the preferred
fracture path when φ falls in the range of [0,∼ 0.34π) or (∼ 0.44π, π/2]. For other φ values, fracture along armchair
direction becomes favored. In contrast, in the presence of oxygens, armchair direction is always the preferred fracture
path regardless of the imposed mode mixity, showing the dominant role of the oxygenation induced fracture resistance.

We would like to point out that invasion kinetics of chemical additives falls beyond the scope of the present study.
Instead, in our simulations the chemical additives are continuously supplied to the crack tip to terminate the dangling
bonds, whenever new fracture surfaces are produced. The underlying assumption is that the crack extending speed
is sufficiently slow as compared to the invasion rate of the chemical additives. The invasion rate of the external
molecules to the crack tip depends on the association barriers and the applied pressure, while the crack propagation
speed depends on the kinetic barrier of bond breaking at the crack tip and thus the applied load14; both are tunable
experimental conditions. Therefore, in theory our assumption of continuous termination of dangling bonds by invading
chemical additives can be satisfied by manipulating the relevant experimental conditions.
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IV. IV. CONCLUSIONS

In summary, our MD simulations showed the regulatory role of chemo-mechanical conditions on the fracture path
when tearing a monolayer graphene. On the one hand, the presence of chemical additives modifies the fracture
resistance to an extent depending on the crystal directions. On the other, due to the extremely large ratio of the
out-of-plane bending modulus to the in-plane stretching modulus, tearing graphene results in mode mixity local to the
crack tip, which also affects the fracture path. Nevertheless, our systematic studies evidenced that the fracture paths
can be effectively regulated by chemo-mechanical conditions, thereby offering a new pathway for atomic engineering
of GNRs with controlled edge orientations. The chemo-mechanics origins of GNR edge structures produced by tearing
monolayer graphene thus shed light on the design of graphene-based next-generation electronic devices.

We thank J. Buehler at MIT for helpful discussions. X.H. and S.Z. acknowledge the support by the National Science
Foundation.
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