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Using ab initio calculations we have investigated the thermal conductivity (κ) of diamond
nanowires, unveiling unusual features unique to this system. In sharp contrast with Si, κ(T ) of
diamond nanowires as thick as 400 nm still increase monotonically with temperature up to 300K,
and room temperature size effects are stronger than for Si. A marked dependence of κ on the
crystallographic orientation is predicted, which is apparent even at room temperature. [001] growth
direction always possesses the largest κ in diamond nanowires. The predicted features point to a
potential use of diamond nanowires for the precise control of thermal flow in nanoscale devices.

PACS numbers: 66.70.Df,63.22.Gh

I. INTRODUCTION

Recent advances in nano fabrication and characteriza-
tion techniques have made it possible to study the ther-
mal conduction properties of very small systems, notably
nanowires (NWs). The synthesis of diamond NWs eluded
researchers for a long time, and they were only success-
fully produced recently.1 Given the exceptional thermal
conduction properties of bulk diamond, and the impor-
tance of heat dissipation in nanoscale devices, it is crucial
to investigate the thermal conductivity of this new sys-
tem, and to compare it with other NWs of the group IV
family, Si. Due to their novelty, no experimental mea-
surements of diamond NWs have yet been reported.

Theoretically, numerous studies of the thermal conduc-
tivity of group IV semiconductor NWs have been pub-
lished in recent years.2–11 However, the main problem
that stands in the way to interpret them is the large
number of approximations, assumptions, and adjustable
parameters employed in all investigations to date. For
any calculation, there were always the questions of "how
much does the choice of interatomic potential, or the use
of Mathiessen’s approximation, or the choice of anhar-
monic scattering parameters, affect the results?". In this
paper, we have developed an approach which takes an
important step forward in eliminating many of these is-
sues: we obtain κ from the numerical solution to the well
defined linearized ab initio Peierls-Boltzmann phonon
Transport equation (PBTE) as originally formulated by
Peierls12–14, without any adjustable parameters or empir-
ical potentials. We do not resort to the Mathiessen rule,
but develop a more accurate approximation, which be-
comes exact in the cases where the bulk can be described
by the relaxation time approximation only. All the quan-
tities for the system are obtained atomistically from first
principles density functional theory. The PBTE is solved
iteratively, beyond the relaxation time approximation.
We have investigated cylindrical NWs with diameters
above 10 nm, in the temperature range of 100-1000K, in
the [001], [011], and [111] crystallographic orientations.

In what follows we present the method of calculation
and results. Despite some similarities with Si, there are
striking differences between the two systems. The most
remarkable are: (1) size affects κ more significantly in
diamond than Si. For instance, at 200 nm, the room
temperature κ of diamond NWs is reduced to 25% of the
bulk value, compared with 43% for Si NWs. (2) a large
orientation dependence should be observable in diamond
NWs already at room temperature, whereas the degree
of anisotropy is generally smaller in Si NWs. (3) [001]
crystallographic direction always possesses the largest κ
in diamond NWs, while the direction that has the largest
κ in Si NWs depends on the diameter and the temper-
ature. These differences between diamond and Si NWs
imply that it should be easier to investigate the former
experimentally. They also suggest that, due to a greater
tunability at larger thicknesses and higher temperatures,
diamond NWs might be well suited for heat management
applications in nanoscale devices.

II. PEIERLS-BOLTZMANN PHONON

TRANSPORT EQUATION

Previously we have presented the ab initio formulation
of the PBTE for bulk materials.15–17 The case of NWs
is complicated by the fact that the distribution function
fr,λ = f0(ωλ) + gr,λ is space dependent, where λ stands
for the phonon branch index and wave vector, λ ≡ (α,q),
and f0(ωλ) is the Bose-Einstein distribution depending
on the phonon frequency ωλ. Expressing gr,λ in terms

of phonon lifetime τr,λ defined as gr,λ = − dT
dz

vzλ
df0
dT

τr,λ,
where the temperature gradient and the axes of NWs are
taken along z direction, and vzλ is z component of the
group velocity, the PBTE can be written as

1 = (τ0λ)
−1τr,λ −∆r,λ + vλ · ∇τr,λ, (1)
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where

∆r,λ ≡
+
∑

λ′λ′′

Γ+
λλ′λ′′(ξλλ′′τr,λ′′ − ξλλ′τr,λ′)

+

−
∑

λ′λ′′

1

2
Γ−
λλ′λ′′(ξλλ′′τr,λ′′ + ξλλ′τr,λ′), (2)

1/τ0λ ≡
+
∑

λ′λ′′

Γ+
λλ′λ′′ +

−
∑

λ′λ′′

1

2
Γ−
λλ′λ′′ . (3)

Γ±
λλ′λ′′ are proportional to the three-phonon scattering

rates, which must satisfy the energy and momentum con-
servation conditions: ωλ±ωλ′ = ωλ′′ and q±q′ = q′′+K,
where K is a reciprocal lattice vector, which is zero for
momentum-conserving Normal processes and nonzero
for resistive Umklapp processes.18 Their expressions
can be found in Refs. 18 and 16. ξλλ′ ≡ ωλ′vzλ′/ωλv

z
λ.

The summation is understood as
∑±

λ′λ′′ Fλλ′λ′′ ≡
∑

α′

∑

α′′

∫

BZ
F(α,q),(α′,q′),(α′′,q±q′+K)dq

′/VBZ , where
VBZ is the "volume" of the Brillouin zone. Here we
neglect the scattering due to isotopes, since it is not the
focus of the present study.

Eq.(1) should be solved in combination with spe-
cific boundary condition. All phonons approaching the
boundary rB are scattered into modes going away from
the boundary, and thus the normal component of the
velocity vn changes sign from negative to positive (the
direction into the system is taken as positive). Generally
the boundary condition reads19

grB ,λ(vn > 0) =
∑

α′

∫

R(λ, λ′)grB ,λ′(v′n < 0)dq′, (4)

which represents the steady-state balance condition. The
characteristics of the surface are determined by the func-
tion R(λ, λ′), which is the probability of phonon of mode
λ being scattered into mode λ′. Phenomenologically a
specularity parameter p(λ) is usually introduced to sim-
plify the boundary condition. That is to say, a fraction
p of the incident phonons are scattered specularly, and
the rest are scattered randomly into different directions.
The boundary condition then becomes

grB ,α,q(vn > 0) = pgrB,α,q′(v′n = −vn), (5)

where q
′ is simply the reflection of q. For simplicity,

we have constrained ourselves to the completely rough
boundary condition, that is, p = 0. In this case, the
boundary condition is very simple, grB,α,q(vn > 0) = 0.

PBTE for the bulk materials does not have the last
term Eq.(1), then it can be exactly solved iteratively.
In the case of NWs, in principle, we can discretise the
r space, and do the iteration for τr,λ at each r point.
However, in this case, the computational time and com-
puter memory required becomes a serious concern. To
overcome this issue, we approximate ∆r,λ by its average
value ∆̄λ over the cross section,which is evaluated using

τ̄ , the average of τr, we have the formal solution21

τr,λ = τ0λ(1 + ∆̄λ){1− e
−|

r−r
b

τ0v
λ

|
Gr,λ}, (6)

where rb is the point on the surface where the phonon of
mode λ can reach moving backwards from r, and Gr,λ is
determined by the boundary conditions. For completely
diffusive boundary conditions, as considered here, Gr,λ =
1. τ̄λ can thus be obtained as

τ̄λ = τ0λ(1 + ∆̄λ)

(

1

Sc

∫

Sc

{1− e
−|

r−r
b

τ0v
λ

|}ds
)

, (7)

with Sc being the NW cross section. Eq.(7) can be solved
iteratively starting with the zeroth order solution

τ̄
(0)
λ = τ0λ

(

1

Sc

∫

Sc

{1− e
−|

r−r
b

τ0v
λ

|}ds
)

. (8)

τ̄
(0)
λ is equivalent to the relaxation time approximation

(RTA). The iteration is repeated until the convergence
is achieved. In the RTA, ∆r,λ is zero, and Eq.(6) be-
comes the exact solution. In contrast, the often used
Mathiessen rule, which combines anharmonic scattering
and Casimir boundary scattering in a simple way, is never
exact. This is especially important for a thin film or a 2D
ribbon, where a Casimir boundary scattering rate cannot
be defined20, but the approach in Eq.(6) continues to be
valid.

After τ̄λ is solved, κ can be calculated as19

κ =
1

kBT 2

∑

α

∫

f0(f0 + 1) (h̄ωλ)
2 (vzλ)

2τ̄λ
dq

(2π)3
. (9)

The expression of transition probability Γ±
λ,λ′,λ′′ con-

tains a δ function which can be written as δ(ωλ − W ),
16,18 with W = ±ωλ′ + ωλ′′ . The straightforward way
to handle the δ function is to replace it with a Gaussian
function22

g(ωλ −W ) =
1√
πσ

e
−(ω

λ
−W )2

σ2 . (10)

As was done in Ref. 23, we use an adaptive broadening
parameter σ. σ is chosen to be of the order of ∆W , where
∆W is the spacing of W . ∆W can be estimated as

∆W = |∂W
∂q′

||∆q′| = |vλ′ − vλ′′ ||∆q′|, (11)

which varies from process to process. |∆q′| is simply the
spacing of the sampling q points in the Brillouin zone.

The harmonic and third order anharmonic interatomic
force constants used in this work are calculated from
first principles using density functional perturbation the-
ory24. The full details of the approach used can be found
in Refs. 16 and 24. However, for the benefit of the
reader, we note some key elements of the calculations
here. These first principle calculations are performed for
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FIG. 1: Comparison of room temperature thermal conduc-
tivities between iteratively calculated results (solid lines) and
RTA results (dashed lines) for NWs along [001] growth direc-
tion. Upper (lower) curves for diamond (Si) NWs.

the respective bulk systems using a plane wave pseudopo-
tential method. The electronic exchange and correlation
is described using the local density approximation. The
BHS carbon pseudopotential with a plane wave energy
cutoff of 100 Ryd is used for all diamond calculations.
Harmonic interatomic force constants are calculated on a
6x6x6 Monkhorst-Pack q-point mesh and provide phonon
dispersions in excellent agreement with experiment for
both silicon and diamond. The calculated anharmonic
interatomic force constants include interactions up to the
seventh nearest neighbors. While the presence of the sur-
faces will lead to a change in force constants for atoms
in this region, we assume this is essentially included in
the boundary condition in the diffusive limit. This as-
sumption should be reasonable for the nanowires con-
sidered in this work. For small nanowires (2-3 nm or
less), a more detailed atomistic examination of the force
constants would be required. A 32 × 32 × 32 grid of q

sampling is used to calculate the three-phonon processes
for the PBTE calculation in order to achieve good con-
vergence of κ.

III. RESULTS AND DISCUSSION

First we compare the iteratively calculated results with
the RTA results. The room temperature κ as a function
of diameter for diamond NWs are plotted in Fig. 1, to-
gether with Si NWs for comparison. The iteratively cal-
culated results give the correct bulk value in the large
diameter limit. The calculated thermal conductivity ap-
proaches the RTA results in the small diameter limit
where boundary scattering should dominate over anhar-
monic phonon-phonon scattering. While the difference
between the iteratively calculated κ and the RTA results
is almost negligible for Si NWs, it is important for dia-
mond NWs. For example, at 200 nm diameter, the iter-
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FIG. 2: (color online). Solid lines: normalized cumulative
thermal conductivity of bulk diamond and Si at room tem-
perature, as a function of the mean free path. Dashed lines:
room temperature thermal conductivities of diamond and Si
nanowires along [001] growth direction, as a function of di-
ameter, normalized by their corresponding bulk values.

atively calculated κ is 33% higher than the RTA value,
and it approaches 50% at the bulk limit. If there is some
specularity at the surface, the difference is closer to the
bulk limit. The iteration procedure removes the contri-
bution of normal three phonon processes to the thermal
resistance, which is included in the RTA. In diamond,
the normal processes are important, resulting in a much
higher κ than the RTA solution.16 The difference de-
creases with decreasing diameter, because anharmonic
scattering becomes less important than the boundary
scattering. Given that our results match the expected
physical trends in the large and small diameter limits,
we expect that our results should be in reasonable agree-
ment with the exact solution for the entire diameter range
considered here.

It is instructive to take a look at the distribution of
phonon mean free paths (MFPs) in the bulk material. We
define the MFP of a phonon mode λ as vλτλ. A clear view
of the MFP distribution is provided by the "cumulative
thermal conductivity", κl/κ which represents the fraction
of heat carried by phonons with MFPs shorter or equal
to l. It is shown in Fig. 2 for room temperature, where
a first striking difference with Si becomes apparent: in
bulk diamond, most of the heat is carried by phonons in
a narrow range of MFPs, whereas for Si MFPs span a
range larger by more than one order of magnitude. In
diamond, phonons with 500 nm < l < 3.5 µm account
for 80% of the heat, whereas in Si this range becomes 50
nm < l < 13 µm. This difference can be traced to the
fact that at room temperature, for Si, the full spectrum
of acoustic phonon modes has high occupation, while for
diamond only the lowest part of the spectrum has high
occupation. Thus, the potential contribution of those
shorter MFP phonons in diamond is not present at room
temperature.
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In a nanosystem one expects that phonons with long
MFPs will be blocked by boundaries, thus their contribu-
tion to the conductivity would be eliminated. In such a
simplified picture one would expect the relative decrease
of κ to take place within a narrower range of sizes in dia-
mond as compared to Si. This is indeed the case, as the
actual calculation for NWs along [001] growth direction
shows, also in Fig. 2. In diamond NWs, κ decreases to
about half its bulk value at diameters about 670 nm, as
compared to 310 nm for Si NWs. At the same diameter,
κ is reduced more significantly in diamond NWs than in
Si NWs compared with the bulk value. For instance, κ
is reduced to 25% of the bulk value in diamond NWs at
200 nm, compared to 43% in Si NWs. At the point of
largest slope in the curve, the change in κ normalised to
the bulk value as a function of diameter in diamond NWs
is ∼ 1.5 times greater than in Si NWs. All these compar-
isons indicate that the boundary scattering affects κ more
considerably in diamond NWs than in Si NWs at room
temperature. From the figure it also becomes clear that
the cumulative function is a useful tool for understanding
the size behavior, but it cannot be used to predict the
actual κ expected in a nanowire. The cumulative and
nanowire curves are clearly different. Also, the cumula-
tive curve would predict a markedly faster decrease of κ
with decreasing size for Si than diamond for the thicker
wires (above 2 µm diameter), but the difference is much
less pronounced in the actual nanowire calculation. This
is because the effect of the boundaries is not as clear cut
at a certain MFP, but it affects different phonons by a
different amount depending on their MFPs as well as the
phonon propagation direction with respect to the axis of
the wires. This results in an effective spread of the onset
of size effects across a large range of lengths, which makes
the Si and diamond cases to be rather close at large di-
ameters. On the small diameter end, on the contrary,
the differences are much more marked, and they become
manifest in the nanowire case, although not as sharply
as the cumulative function would suggest.

Measuring κ as a function of temperature for various
diameters is possibly the most direct way to assess the
validity of a calculation. Figure 3a shows the predicted
results for T in the 100-1000K range (lower temperatures
require a finer grid of q points which is out of the cal-
culational capability), for the [001] crystallographic di-
rection. No measurement of κ(T ) on diamond NWs has
been yet reported, so these theoretical results still await
experimental confirmation. For comparison, the ab-initio
results for Si NWs are also plotted in Fig. 3b. These are
generally larger than the measured values in Ref. 25. In-
cluding isotope scattering, a good theoretical fit to the
Ref. 25 data has been obtained.26 However, the isotope
scattering rates used (τ−1

i = Aω4) in Ref. 26 were 10
times too large because A was taken from Ref. 27 which
erroneously published a 10 times too large value for Si.
Using the correct value of A, the reduction of the room
temperature κ of Si NWs is generally less than 7% for all
diameters, and κ is still larger than the measured value.
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FIG. 3: (color online). κ versus temperature for (a) diamond
NWs and (b) Si NWs along the growth direction [001] (solid
lines), [011] (dotted lines) and [111] (dashed lines) for several
diameters. The inset shows zoom-in for 100 nm diameter.

For diamond NWs, the reduction of κ due to natural
abundance isotope scattering is 12% for 100 nm diame-
ter at room temperature, while the reduction is 30% for
bulk diamond.16 Fig. 3 again highlights the large differ-
ence between the Si and diamond cases. The size effect
at room temperature in diamond NWs is very clear for
diameters as large as 400 nm, where a monotonic increase
of κ(T ) is the signature of phonon transport being domi-
nated by boundary scattering. In contrast, a similar size
Si nanowire shows a mostly bulk like behavior at room
temperature, with the peak κ(T ) at about 90 K. This
has important experimental consequencies, meaning that
it could be considerably easier to investigate size effects
in diamond NWs than in Si, due to the larger sizes in-
volved. In particular, an accurate experimental investiga-
tion of diamond NWs might be able to clarify interesting
and highly debated phenomena reported on Si NWs, for
which experiments are quite involved due to their small
diameters.28

Up to this point we have only discussed the [001]
growth direction. Early experiments on Si rods at low
temperature had observed changes as large as 50% de-
pending on orientation.29,30 Our ab-initio calculation in
Fig. 3 shows that κ of diamond NWs also have a strong
orientation dependence. For example, at room tempera-
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ture, κ for the [001] direction is ∼ 17% larger than the
[011] direction at 100 nm diameter, which should be ob-
servable in experiments. When the boundary scattering
dominates the thermal resistance, as at low temperatures
and small diameters, the phonon dispersion itself deter-
mines the anisotropy of κ. Considering the linear disper-
sion at low frequencies, the degree of the κ anisotropy
defined as the ratio of κ’s along different directions be-
comes constant at very low temperatures. κ scales lin-
early with diameter for thin NWs, therefore the degree of
the κ anisotropy is also independent of diameter at small
diameters. When the temperature and diameter increase,
anharmonic scattering starts to play a role in the resis-
tance, and the degree of the κ anisotropy no longer shows
a simple relation with the phonon dispersion.

In diamond NWs, calculated results show that the
largest conductivity is obtained for the [001] direction,
whereas the [011] and [111] directions have smaller con-
ductivities, irrespective of the diameter and the temper-
ature. This indicates that the [001] direction is of the
greatest importance in the potential application of dia-
mond NWs in heat management. Our results differ from
the calculations in Refs. 31 and 32, which had predicted a
larger κ for the [011] direction. However, the calculations
in Refs. 31 and 32 are for ultra-thin NWs with important
quantum confinement effects, so they should not be com-
pared with the ones presented here. On the contrary,
the anisotropy of κ in Si NWs shows a more complicated
behavior. At 1000 nm diameter, [001] direction has the
largest κ, same as in diamond NWs. However at 100 nm
diameter, the highest conductivity can occur in any of the
three growth directions, depending on the temperature.
We note that the degree of the κ anisotropy in diamond
NWs is generally larger than Si NWs for the temperature
range involved.

The diamond nanowires whose synthesis is reported in
Ref. 1 are encased in carbon nanotubes, although they
can be stripped of such cover. If at the contacts the wire
is encapsulated in a carbon nanotube, this could in prin-
ciple add a contact thermal resistance, due to the extra
interfaces. However, the answer is not so simple. The
conductance of a contact, either phononic or electronic,
critically depends on the coupling strength. Weak and
strong coupling regimes can result in completely oppo-
site physical behaviors. As shown in Ref. 33, a weak
coupling requires the contact to be very long, in order to
achieve the maximum contact conductance permitted by
the quantum limits. On the contrary, a strong coupling
quickly reaches a saturated value upon increase of the
contact length, but the maximum conductance achiev-
able is typically much lesser than in the weak coupling
case.

In the case of a nanotube encapsulating the contact
part of the wire, the contact between the nanotube and
the wire is probably weak, due to the low reactivity of
the graphitic surface. This could be very advantageous,
if one can afford making a long contact, since it might
allow one to reduce the contact resistance to the lowest

possible value. An estimation of the contact strengths
and required contact lengths would need a completely
different type of calculation, involving Green’s function
methods, and it is beyond the scope of this paper.

IV. CONCLUSION

We have calculated the thermal conductivity of dia-
mond nanowires beyond the relaxation time approxima-
tion, by using an ab initio PBTE calculation. The ther-
mal conductivity of diamond NWs displays unusual prop-
erties that differ from those of Si NWs. We have shown
that size effects should be more easily observable in dia-
mond NWs than in Si NWs, because κ is more strongly
affected at considerably larger diameters and at higher
temperatures. We have found that growth direction has
an important effect on κ, the [001] direction being the
most conductive in diamond NWs, while it is not always
the case in Si NWs. Also in contrast with Si, we have
shown that normal processes play an important role in
diamond NWs, noticeably increasing κ above the RTA
values. From the fundamental point of view, these effects
imply that an experimental investigation of the thermal
conductivity of diamond NWs might be able to clarify
the complex nature of the size effects in NWs in a more
straightforward way than it has been previously possible
with Si. From the applications point of view, the ability
to use much larger sized diamond NWs that operate at
higher temperatures and have faster size variation in κ
means that they could play an interesting role as compo-
nents of thermal management in nanodevices.
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