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ABSTRACT 

We report the excitation of spin waves in ferromagnetic semiconductor (Ga,Mn)As films by 

picosecond strain pulses. The strain pulse with a broad acoustic spectrum excites a number of 

magnon modes, which contribute to the precession of magnetization. The spectrum of the excited 

spin waves show two well resolved peaks with intensities dependent on the applied magnetic 

field. For a certain range of magnetic fields only the low frequency spin wave is detected. We 

present the theoretical analysis and compare it with the experimental results, addressing the 

spatial overlap of the magnon and phonon eigenfunctions. Depending on the boundary 

conditions and the spectrum of the spin waves the spatial matching of the spin wave and 

resonance phonon eigenfunctions may provide high excitation efficiency for only one magnon 

mode, while other modes are not excited. 
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1. INTRODUCTION 

The enormous success of semiconductors is based on the possibility to tailor their electrical and 

optical properties almost arbitrarily. This has stimulated activities to seek such a level of control 

also for their magnetic properties which might allow all-in-one-chip solutions in information 

technology. Ferromagnetic semiconductors, on whose basis ultrafast magneto-electronic and 

magneto-optical devices [1] may become operational, are a key building block on this route. 

While great progress has already been achieved in this area, considerable obstacles still need to 

be overcome. This concerns not only the development of highest quality material, but also novel 

tools, distinctly different from established ones, for manipulating and controlling the 

magnetization may be required. 

An example of such a novel concept is the recent demonstration that the interaction 

between spin waves (SWs) may be used for spin current control [2]. During the last decade the 

underlying magnon excitations with frequencies in the GHz range have been intensively studied 

experimentally and theoretically for ferromagnetic (Ga,Mn)As [3-8]. These activities were 

focused on thin ferromagnetic films, in which SWs have a discrete frequency spectrum 

determined by parameters such as magneto-crystalline anisotropy, spin exchange interaction, 

layer thickness and boundary conditions. For SW applications it is essential to control the 

amplitude of various SW modes. In particular it is attractive to have a technique which allows 

selective excitation of a single SW mode with particular frequency/wavelength while all other 

modes have zero amplitude. The most common technique to achieve this is microwave excitation 

at a frequency resonant with the SW mode [2-4,6-8]. While nicely functioning, microwave 

manipulation is limited to nanosecond time scales and cannot be scaled down to submicrometer 

spatial dimensions. Optical excitation of SWs has also been demonstrated, but this excitation 

does not show a dependence of the SW amplitudes on magnetic field and thus it is not 

frequency-selective [5]. 
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In this paper we demonstrate a novel approach to excite SW modes in a ferromagnetic 

layer using picosecond strain pulses with a broad acoustic phonon spectrum that overlaps the SW 

frequencies. Using this picosecond acoustic technique, which is a well developed method by 

now, we excite various SW modes and find that their relative amplitudes depend on the applied 

magnetic field. We analyze the excitation of SWs theoretically and attribute the experimental 

observation to the spatial overlap of the SW mode and the resonant component in the phonon 

spectrum. A theoretical picture reveals the strong sensitivity of this type of excitation to 

magnetic boundary conditions and SW frequency. The goal of the present work is to show that 

despite of all complications reliable conditions for single SW mode excitation can be obtained in 

the experiment.  

 

2. EXPERIMENT 

The studied sample is a single Ga0.95Mn0.05As layer with thickness d=200 nm grown by low-

temperature molecular-beam epitaxy on top of a semi-insulating (001) GaAs substrate. The Curie 

temperature of the ferromagnetic layer is 60 K, and the saturation magnetization is 20 emu/cm3. 

The layer is compressively strained normal to the growth direction leading to an in-plane 

orientation of the easy axis of magnetization. 

Figure 1(a) shows the schematic of the experiment, which was carried out at temperature 

T=6 K in a cryostat with a superconducting magnet. The external magnetic field B is applied in 

the layer plane parallel to the easy axis, denoted as x-axis. For picosecond strain pulse generation 

[9], optical pulses from a femtosecond laser (wavelength 800 nm, pulse duration 150 fs, pulse 

energy density 2 mJ/cm2, repetition rate 100 kHz) excite a 100-nm thick Al film deposited on the 

back side of the GaAs substrate. The strain pulse injected into the GaAs substrate has a duration 

of ~20 ps with a maximum amplitude ~1×10-4. Figure 1(b) and (c) show the time dependence 

and the corresponding frequency spectrum of the injected strain pulse )(tinε  respectively. The 

pulse propagates normal to the layer through the GaAs substrate (along the z-axis) at longitudinal 
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sound velocity s=4.8 km/s, and after t0=l0/s ≈ 22 ns reaches the (Ga,Mn)As magnetic layer 

(l0=105 μm is the GaAs substrate thickness). There it passes through the layer, becomes reflected 

at the open sample surface with a π-phase shift, and travels back towards the GaAs substrate. At 

T=6 K for the initial strain amplitude of ~10-4 scattering as well as nonlinear effects are 

insignificant [10] and we may assume that the strain pulse propagates in the sample keeping its 

initial shape and spectral content.  

While propagating through the (Ga,Mn)As layer the strain pulse modifies the magneto-

crystalline anisotropy at each spatial (z) position as function of time (t), causing the 

magnetization M to be turned out of the equilibrium orientation, which is approximately parallel 

to the [100] axis. The magnitude of this turn and the corresponding tilt angle were discussed in 

earlier works [11,12]. After the strain pulse has left the magnetic film, the subsequent dynamics 

of M(z,t) shows harmonic oscillations of the Mz and My components.  

The effect on the magnetization dynamics induced by the strain pulse is measured by 

monitoring the Kerr rotation angle ( )tφ  as function of the delay of a probe laser pulse relative to 

the pump pulse, both taken from the same laser. The pump beam is modulated by a mechanical 

chopper, and ( ) ( ) 0φφφ −=Δ tt  is recorded ( 0φ  being the Kerr rotation angle without strain 

pulses). Examples of the signals ( )tφΔ  measured at B=100 and 250 mT for three different 

polarization settings of the probe beam are shown in Fig.2 (a) and 2 (b). Different temporal 

regimes are seen for the oscillatory behavior of ( )tφΔ . The high-frequency features in the interval 

t<0.1 ns result mainly from elasto-optical effects, as described in detail in the recent work by 

Thevenard et al. [13]. For times t>0.1 ns, i.e. after the strain pulse has left the (Ga,Mn)As layer, 

the oscillations correspond exclusively to magnetization precession. In the experimentally used 

geometry for which the direction of M0 is close to the [100] axis the evolution of ( )tφΔ  depends 

on the angle between the probe polarization plane and the [100] direction, ψ , and may be written 

as: 

( ) ( ) ( ) ( ) ψψφ 2sin2cos tctMbtMat yz ++=Δ .    (1) 
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The first two terms in Eq. (1) give the dynamics of the layer magnetization, which in general 

evolve spatially non-uniform. Here, a  and b  are constants and ( )tM yz ,  are determined by the 

spatial distributions of the magnetization and the probe light field inside the magnetic layer. In 

case of no light absorption and no reflection at the (Ga,Mn)As/GaAs interface we have 

( ) ( )∫ −=
d

phzz dzdzktzM
d

tM
0

)](2cos[,1  and ( ) ( )∫ −=
d

phyy dzdzktzM
d

tM
0

)](2sin[,1 , where the 

magnetic layer is located at dz <<0  and phk  is the photon wavenumber in the layer. The 

contributions of the z and y magnetization components to the rotation of probe polarization are 

due to the magneto-optical anisotropy and are governed by the circular [14] and giant linear [15] 

dichroism in (Ga,Mn)As, respectively. The third term in Eq. (1) describes the dynamical 

photoelastic perturbation induced by the strain pulse in the presence of a static magneto-optical 

anisotropy of the magnetic layer [13]. The constants a, b, and the dependence c(t) are not known 

with high precision. Nevertheless, Eq.(1) allows us to extract ( )tM z  and ( )tM y  from 

measurements of ( )tφΔ  for three different probe beam polarizations e: e.g., for e||M0; e⊥M0; and 

0Me∠  with an angle of 45 degrees between e and M0. The resulting evolutions of ( )tM z  and 

( )tM y  for the two B-values from above are shown in Fig. 2 (c) and 2(d). 

Figure 3 (a) shows fast Fourier transform spectra of ( )tM z  for different B. The spectra 

obtained from ( )tM y  look similar. Generally, two spectral lines are seen whose central 

frequencies, fl and fh, shift smoothly to higher values with increasing B, while the spacing 

lh fff −=Δ ≈2 GHz between them remains almost constant, see Fig. 3(b). The solid line in 

Fig. 3(b) shows the calculated magnetic field dependence [16] of the spatially uniform 

magnetization precession frequency, which correlates well with that of fl, supporting the origin of 

the observed signal in the magnetization precession. The amplitudes of the two spectral lines 

vary with magnetic field. The most interesting feature in this respect is, that at fields around 

B=B0=225±25 mT only a single line corresponding to the lower frequency component is 
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observed. This is also demonstrated by Fig. 3 (c), which shows the peak intensities of the low 

and high frequency spectral lines versus B. Both vary non-monotonically with B, and the high 

frequency spectral line disappears around B=B0, while the low frequency one is still present. 

The dependence of the spectrum on magnetic field is the main experimental observation 

of the present work. Earlier work [5], in which SWs were excited optically, also demonstrated a 

doublet of lines in the SW spectrum, but the amplitudes of the peaks did not depend on B. Thus, 

the present tool using picosecond strain pulses may represent an exceptional instrument for 

controlled SW excitation.  

 

3. THEORETICAL ANALYSIS AND DISCUSSION 

The physics underlying SW excitation is related to the spin-phonon interaction in ferromagnetic 

materials, as discussed in literature [17]. In bulk materials energy and momentum conservation 

for the spin-phonon interaction result in strict selection rules for the SW excitation or, in case of 

strong coupling, for excitation of hybrid magnon-phonon modes. In thin films momentum 

conservation is relaxed so that a monochromatic acoustic wave may excite a resonant standing 

SW independent of its wavelength [18]. In our experiments the ultrashort strain pulse 

corresponds to an acoustic phonon wavepacket that contains a broad distribution of frequencies, 

so that the excitation cannot be considered as monochromatic. Nevertheless, we show below that 

a strain pulse, propagating through the layer in forward and subsequently in backward direction, 

excites SW modes whose amplitudes are strongly dependent on the SW frequency and thus on B. 

Moreover for certain conditions only a single SW mode may be excited by the strain pulse. For 

this purpose we analyze the magnetization dynamics by the Landau-Lifshitz equation [19]: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇+∇−×−=

∂
∂ MMM

M
2

0M
DF

t
γ ,    (2) 

where γ , F , D  and 0M , are the gyromagnetic ratio, the magnetic free energy density, the 

exchange stiffness constant, and the magnetization magnitude, respectively. F contains 
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contributions determined by the magnetic layer properties and the applied magnetic field. In 

addition to the case of an unstrained crystal, F contains also magneto-elastic terms for biaxially 

strained (Ga,Mn)As [20]. 

 The strain pulse propagation through the magnetic layer causes a variation of F in time, t, 

and space, z, resulting in a complicated trajectory of M. When the strain pulse leaves the 

magnetic layer, M continues to precess about its equilibrium position while relaxing towards M0 

[note, that relaxation is not included in Eq. (2)]. During this precession the asymptotic solutions 

of the magnetization components Mi can be obtained in linear approximation in which the 

deviation from steady-state 0),(),( MMM −= tztzδ  is written as a superposition of standing SW 

eigenmodes ( )( )zS n
i : 

( ) )cos()(, )(

0

)()( n
in

n

n
i

n
i tzSCtzM αωδ +=∑

∞

=

,                                (3) 

where the ( )nC  and )(n
iα  are the stationary amplitude and phase of the n-th mode with frequency 

nω  (n=0, 1, 2…). Calculation of the mode amplitudes )(nC  shows that they are proportional to 

the overlap integrals: 

 )(nC ~ ∫
d

n
i

n dzzSz
0

)()( )()(ε ,       (4) 

where )()( znε  is the spatial distribution of the strain pulse Fourier component with phonon 

frequency identical to that of the SW, nω , in the magnetic layer (see Appendix).  

In order to evaluate the overlap integral Eq.(4), we need to know )()( znε  and ( )( )zS n
i . 

The properties of the propagating spatial strain pulse were studied in numerous works 

experimentally and theoretically using various approaches (see, for example, [21,22]). It is 

known that the shape of the strain pulse injected into the substrate is similar to that shown in 

Fig.1(b). For strain amplitudes ≤ 410−  and low temperatures (T<100 K) the damping is not 

essential and the spatial profile of the initial strain pulse is approximately conserved while 
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travelling through the substrate. Thus, at any coordinate the time evolution of the strain induced 

by the initial strain pulse )(tinε  traveling toward the open surface of the sample is 

)/(),( szttz in −= εε . In the frequency range between 8 and 20 GHz, relevant for our case, the 

Fourier spectrum of the strain pulse is a smooth function of frequency (see the inset in Fig.1 (c)). 

It is important that the z -dependence of the strain harmonics )()( znε  is governed by the 

properties of the acoustic wave reflection from the free surface at dz = , namely by the 

requirement of zero stress at surface of the sample. Neglecting nonlinearity and dispersion 

during pulse propagation through the magnetic film, we can express the strain as a superposition 

of the incident and the reflected components: )/)2(()/(),( sdztszttz inin −+−−= εεε . 

Accordingly, we get 

( )sdzsdiiz ninn
n n /)(sin)/exp(2)( )()( −= ωεωε ω ,       (5) 

where )( n
in
ωε is the spectral amplitude of the initial strain pulse at frequency ωn. The z -dependent 

factor ( )sdzn /)(sin −ω  is the key feature which, as we will see below, determines the efficiency 

of excitation of a certain SW mode. This factor is independent of the particular shape of the 

strain pulse, which enters the expression for )()( znε  only through the spectral amplitude. 

 

A. The role of magnetic boundary conditions 

The SW eigenmodes ( )zS n
i

)(  and their frequency spectrum depend on the magnetic boundary 

conditions. These conditions have major impact on the analysis of the SW amplitudes governed 

by the overlap integral in Eq. (4). In this subsection we present the results of model calculations 

of SW amplitudes for various boundary conditions. The aim of this consideration is to show that 

the SW amplitudes are strongly dependent on the magnetic field due to the dependence of the 

overlap integral Eq.(4) on the resonance frequency, and for certain conditions only one SW 

mode may be excited. 
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Within the macroscopic Landau-Lifshitz approach, the boundary conditions can be 

introduced through the surface magnetic energy surfF . Most commonly, it is assumed that 

θ2cosssurf KF =  (where θ  is the angle between M at the surface and the normal to the 

surface n ). The surface magnetic energy parameter Ks depends on the surface easy axis, that can 

be oriented either normal ( 0<sK ) or parallel to the surface ( 0>sK ). Then the boundary 

conditions can be written as 0cos2 =⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂× θsKD n

n
MM  [23].  

For (Ga,Mn)As the magnetic boundary condition parameters have been discussed 

intensively during the last decade but the problem is still unsolved [3-8]. Three extreme cases 

were reported earlier for (GaMn)As with M0 close to [100] [5,6]: (i) extremely high values of 

sK >0, almost equivalent to the pinning boundary conditions Mz,y = 0; (ii) 0=sK , which 

corresponds to a “free surface” with 0, =
∂

∂
z

M yx ; and (iii) 0<sK , where typically surface- and 

bulk-like modes exist in the SW spectrum. 

First we analyze the amplitudes of the SWs assuming the pinning conditions at the 

interfaces (Ks>0). For homogeneous magnetic properties of the film, one easily obtains 

[ ]dznS n
i /)1(sin~)( +π  [24] and from Eqs. (4) and (5) for the amplitude of n-th SW mode we 

can write:  

22
)(

)1(
sin)1(~

+−
+

nx
xnC

n

nn π ,       (6) 

where ( )sdx nn πω /= .  

For simplicity we consider the frequency spacing between different modes to be much 

less than the fundamental frequency 0ω . Then the )()( znε are almost the same for all SW 

eigenmodes and we may assume )()( )0()( zzn εε = for any mode number, n. The results of 

calculation for this simplified case are presented in Fig. 4. The solid lines in Fig. 4(a) show the 

spatial shapes of ( )( )zS n
z  for the four lowest modes (n=0, 1, 2 and 3). The amplitudes ( )nC  of 
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these modes as functions of the dimensionless parameter sd πω /  are shown in Fig.4 (b). We see 

that all the SW modes have an oscillating shape with the number of oscillations increasing with 

the increase of n. In general, they all can be excited by the strain pulse in the whole range of 

frequencies. The relative amplitudes of the excited SW mode depend on the frequency and 

correspondingly on the applied magnetic field, which determines ωn, but for certain values of ω 

only a single SW mode has nonzero amplitude. From Eq. (7) we obtain that if the parameter 

sd πω / takes on an integer value. i.e. 

( )1+= n
s
d

π
ω          n=0, 1, 2…                                                  (7)   

only the n-th SW mode is excited, while the amplitude of all other modes is equal to zero.

 The lowest fundamental mode (n=0) may be the only excited mode if ω0d/πs=1 

(indicated by the vertical dashed line in Fig. 4 (b)). The dashed line in Fig. 4 (a) shows the 

spatial distribution of the corresponding resonant harmonic of the strain pulse 

( )sdzz /)(sin~)( 0
)0( −ωε , which has two nodes at the interfaces of the magnetic layer. 

Obviously, the overlap integral of )()0( zε with ( )( )zS n
z  is nonzero only for the fundamental mode 

( )0
zS .  

Figures 5 and 6 show the results of calculations performed for the other boundary 

conditions, assuming either a free surface (Ks=0) or mixed bulk- and surface-like modes (Ks<0). 

In these cases the amplitudes ( )nC  also depend strongly on SW mode number n and frequency ω, 

but the exact dependencies are very different from those for pinning boundary conditions. In 

particular, ( ) 0=nC  for some values of n and ω, but the calculations do not show the excitation of 

a single SW at any ω.  

 

B. Comparison with experiment 

The model calculations clearly show that the amplitudes of various SW modes excited by the 

strain pulse depend on magnetic field and this dependence is governed by the magnetic boundary 
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conditions. The boundary conditions for (Ga,Mn)As are debated widely in literature, but, 

unfortunately, it is impossible to assess what boundary conditions should be applied in our 

particular experimental case.  

Comparing the experimental data and the theoretical results we need to choose boundary 

conditions so, that the two lowest SW modes have a frequency separation equal to 

lh fff −=Δ =2 GHz and only the lowest SW mode is excited at B=225 mT. Indeed, for the case 

0<sK , we can find values of D and Ks ( 218 Tm105 −⋅=D  and Tm102.1/2 9−⋅−=DKs ) which 

give the frequency separation between the lowest surface-like and bulk-like modes of about 2 

GHz and this value is almost independent on B. However, the calculated field dependence of 

excitation efficiency given by Eq.(4) (see Fig. 6) does not demonstrate a single spectral line 

around 12 GHz in the field range B=200÷250 mT that is measured experimentally. Alternatively, 

for large positive Ks corresponding to the pinning boundary conditions we get perfect agreement 

between the calculated and experimental field dependencies of the SW modes amplitudes. 

Indeed, the single line observed in the measured spectrum around B=B0 [see Fig.3 (a)] has the 

frequency fl=12 GHz, corresponding to the fundamental radial frequency ω0 given by Eq. (7). 

Thus, for the assumed magnetic pinning boundary conditions we have excellent agreement with 

the experiment if we associate the lower frequency (fl) spectral line with the fundamental SW 

mode (n=0). However, it is not possible to find a reasonable value of D, which would provide 2 

GHz frequency splitting between the lowest SW modes [6]. Thus, we cannot unambiguously 

attribute the high-frequency (fh) spectral line observed in the experiment with the SW mode with 

n=1. Additional ambiguity in the theoretical analysis of the signal spectra comes from the fact, 

that the probe wavelength is close to the fundamental absorption band and we cannot analyze 

quantitatively the efficiency of optical detection for various SW modes. 

Apparently, the problems in getting agreement for both the spectrum and amplitude for 

various SW modes could be solved for a wider class of boundary conditions. This should happen 

as long as the mode’s spatial structure is determined by volume inhomogeneities of the magnetic 
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anisotropy parameters, suppressing the magnitude of magnetization near the interfaces [6]. 

Although it is difficult to assess the mode amplitudes for this case quantitatively, the fast spatial 

oscillations of the eigenfunctions ( )( )zS n
z  with n>0 suggest that the efficiency of their excitation 

is small, if the condition (7) is fulfilled for the mode with n=0.  

The consideration given in the theory section does not include the dissipation of SW 

modes. In principle, one cannot completely exclude resonance conditions for interaction of SWs 

with other excitations (e.g. plasmons, incoherent phonons), which could result in strong damping 

of the upper SW mode at B=B0. This statement however is too speculative and we do not 

consider details in the present paper. 

 

4. CONCLUSION 

We have demonstrated the excitation of spin wave modes in a (Ga,Mn)As layer by picosecond 

strain pulse. We find a strong dependence of the amplitudes of the excited SWs on the magnetic 

field and, consequently, on the SW frequency. Only one spectral line, which can be attributed to 

the fundamental SW mode, is observed when the magnetization precession period is equal to the 

strain pulse travel time forward and backward through the magnetic layer. This observation is 

discussed and analyzed theoretically in terms of excitation efficiency, which depends crucially 

on the spatial shape of magnetization of distinct SW modes and their overlap with the 

corresponding Fourier component in the acoustic wavepacket. In spite of difficulties in getting  

full agreement between theory and experiment for SW frequencies and amplitudes we show that 

it is possible to realize the case when only one SW mode is excited. Such selective excitation of 

one SW mode opens potential in various applications. 

The technique of exciting SWs by picosecond strain pulses is a prospective tool for spin 

current manipulation in devices in which hypersonic nanostructures, like phonon cavities [25] or 

sasers [26,27], are combined with electro-magnetic and opto-magnetic components in a single 

semiconductor chip. The understanding established here on the excitation of a single SW mode 
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gives a useful guide how to tailor both magnetic layer and phonon pulse such that SWs of 

particular frequencies are excited.  

The work was supported by the Deutsche Forschungsgemeinschaft (BA 1549/14-1), the 

European Community’s Seventh Framework Programme under Grant Agreement No. 214954 

(HERODOT), the Russian Foundation for Basic Research, the Russian Academy of Sciences, 

and the National Science Foundation Grant DMR10-05851. 

 

APPENDIX: THEORY OF SPIN WAVE EXCITATION BY STRAIN PULSES 

In order to describe in detail the spin wave excitation process by a strain pulse we consider the 

dynamics of the magnetization, M , within the macroscopic model by Landau and Lifshitz, 

neglecting dissipation [19] as described by Eq. (2). The Landau-Lifshitz equation is 

complemented by the boundary conditions through introducing the magnetic surface energy, 

surfF , which is assumed as θ2cosssurf KF = , where θ  is the angle between the magnetization 

and the external normal to the surface, n. A positive or negative value of the surface magnetic 

energy parameter sK  corresponds to an in-plane or normal orientation of the surface easy axis. 

Accordingly, the boundary conditions are 0cos2 =⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂× θsKD n

n
MM  [23]. 

Although the mathematical approach to simulation of the magnetization dynamics is quite 

clear, such problems are rarely solved straightforwardly. The Landau-Lifshitz equation in 

spectral representation is a fourth-order differential equation and the solution for the SW modes 

in the film involves some cumbersome algebra (see [23] and references therein). Another 

difficulty lies in considering the magnetization excitation process originating from an external 

perturbation, that makes impossible to use the mode expansion formalism for the magnetization 

ingeneral. However, in our case, in which the strain pulse drives the magnetization during a 

finite time, we managed to obtain a relatively simple expression for the magnetization, which at 

large times does correspond to the mode expansion.  
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It is convenient to introduce the spherical angles ϑ  and ϕ , which characterize the 

direction of M  instead of the magnetization projections: ϑcosMM z = , ϕϑ sinsinMM y = , 

ϕϑ cossinMM x = . The equilibrium values of ϑ  and ϕ , 0ϑ  and 0ϕ , are determined by the 

particular forms of F  and surfF . Because F  contains magneto-elastic terms, the strain pulse 

drives the magnetization out of equilibrium, causing its precession, which persists even after the 

pulse has left the film. Within the linear-response model, we assume δϑϑϑ +≈ 0  as well as 

δϕϕϕ +≈ 0 , and obtain for δϑ  and δϕ  the following equations: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂+−−=

∂
∂ ),(sin

sin
''

2

2

0
2''''

0

tzF
z

DFF
t

εδϕϑδϕδϑ
ϑ

γδϑ
ϕεϕϕϑϕ              (A1) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂−+=

∂
∂ ),(

sin
''

2

2
''''

0

tzF
z

DFF
t

εδϑδϕδϑ
ϑ

γδϕ
ϑεϑϕϑϑ . 

Here 0/ MFF ≡  and the derivatives are taken at the equilibrium values 0ϑ  and 0ϕ . The 

boundary conditions for Eq. (A1) are  

0,
*
1 =

∂
∂±=

∂
∂

zlz
δϕδϑδϑ ,      (A2) 

where )2/(* 0 sKAMl =  and the +  and −  signs correspond to 0=z  and dz = , respectively. 

We do not analyze here the explicit form of the free energy and the equilibrium directions of the 

magnetization, which was done in detail in Ref. [12]. It is important that if the easy axes for the 

bulk and the surface are not parallel to each other, the steady-state magnetization in the film can 

be in general spatially nonuniform, and the coefficients in Eq.(A1) become z -dependent. Below 

we assume that this is not the case. We will also show that for the magnetic boundary conditions 

that allow selective excitation of spin wave modes, the equilibirium magnetization is in fact 

uniform.  

It is convenient to perform a Fourier transformation of Eqs. (A1). This results in fourth-

order differential equations in the variable z . We therefore obtain four wave vectors q  for a 

given frequencyω :  
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( ))(1 222242
22

2
umm Dvv

D
q ωωγ

γ
−+±−= ,      (A3) 

where ( ) 1
0

2'''''' sin)( −−= ϑγω ϑϕϕϕϑϑ FFFu  is the frequency of the spatially uniform magnetization 

precession and ( ) 2/sin/ ''
0

2''22
ϑϑϕϕ ϑγ FFDvm += . In a bulk ferromagnetic crystal mv  determines 

the dispersion of spin waves. In particular, for ω  close to 0ω  we have 0
22

0 /ωωω qvm+≈ . Once 

these wavevectors are known, it is straightforward to calculate the solution of the spectral analog 

of Eq.(A1) using the variation-of-parameters method. The resulting constants are determined by 

the boundary conditions (A2), by which the solutions for the spectral components )(zωδϕ  and 

)(zωδϑ  become uniquely fixed. Then, the temporal evolution of the magnetization can be 

obtained through the inverse Fourier transform.  

The form of the solutions )(zωδϕ  and )(zωδϑ  allows one to perform the analysis of the 

magnetization dynamics for times when the strain pulse has left the film. )(zωδϕ  and )(zωδϑ  

can be split into resonant and transient parts: )()()( )()( zzz trres
ωωω δϕδϕδϕ +=  and 

)()()( )()( zzz trres
ωωω δϑδϑδϑ += . For the resonant part we have 

( )

( )∫

∫
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    (A4) 

( )

( )∫

∫

+
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o

d
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e
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zzzdzzz

0

0

)(

)()()()(
)(

1

)()()()(
)(

1)(
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ϕςϑςεϕ
ω

δϕ

ϕϑω

ϕϑωω

.     

In this equation the zeroes of eΔ  and oΔ  correspond to the eigenfrequencies of even and odd 

free spin wave (SW) modes of the film, and oe,ϑ , oe,ϕ  are the corresponding eigenmodes. The 

explicit expressions for oe,Δ  and oe,ϑ , oe,ϕ  are: 
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where the 2
1q  and 2

2q  correspond to the plus or the minus signs in Eq.(4), and 
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0

''2
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The resonant Fourier components have poles at the frequencies of the SW modes. This allows us 

to perform the inverse Fourier transformation for them analytically, which provides harmonic 

time dependencies for ),()( tzresδϑ  and ),()( tzresδϕ : 

 ( )∑ +=
n

n
n

nnres tzCtz )()()()( cos)(),( ϑαωϑδϑ       

( )∑ +=
n

n
n

nres tzCtz n )()()( cos)(),( )(
ϕαωϕδϕ .               (A7) 

Here, the summation goes over the spin wave eigenmodes and the index n  gives both the mode 

number and parity with n being even or odd for spatially even and odd modes, respectively. )(nC , 

)(n
ϑα , and )(n

ϕα  are amplitude and phases for the mode n. Note that Eq.(8) accounts explicitly for 

different oscillation phases of ),()( tzresδϑ  and ),()( tzresδϕ , and the eigenfunctions )()( znϑ  and 

)()( znϕ  of Eq.(8) must be modified accordingly from those of Eq.(6). Specifically, in the 

expressions for )(zϕ  in Eq.(6) one has to take the factor 1ξ  instead of 1ξ .  

In the manuscript we define the eigenmodes in terms of the magnetization projections 

rather than angles ϑ  and ϕ . Of course, both formulations are equivalent. While operation with 

ϑ  and ϕ  is the adequate choice in the used mathematical routine, reformulation of the final 

results in terms of magnetization projections is convenient because of the used optical method of 

precession detection. In the actual geometry, where the equilibrium magnetization is close to the 

[100] direction, the projections of the eigenmodes are 0)()( =zS n
x , )()( )()( zzS nn

y ϕ= , and 

)()( )()( zzS nn
z ϑ−= .The expression for the mode amplitudes )(nC  can be easily obtained from 

Eq.(A4). We are not aiming to obtain a quantitative expression, but note that they are 

proportional to the overlap integrals ∫
d

n
n zzdz

0

)( )()( ϑε  and ∫
d

n
n zzdz

0

)( )()( ϕε , where )()( znε  is the 

Fourier component of the strain corresponding to the frequency of the n -th spin wave mode.  
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Now let us return to the analysis of the spectrum of the SW modes. In fact, we are 

interested in the modes with frequencies close to 0ω . In this case we have the following 

approximate expressions for the wavevectors 1q  and 2q : 

D
viq

v
q m

m

u

γ
κκ

ωω 2,,
2/)(

222

22

1 ==
−

= .    (A8) 

 

For typical material parameters, 2κ  is a few tenths of inverse nanometers, while 1q , as we will 

see below, is of the order of d/1 . From this estimate it follows that the SW mode structure is 

determined mainly by the terms proportional to )2/(cos 1 dzq −  or )2/(sin 1 dzq −  for even or 

odd modes, respectively, while the )2/(cosh 2 dz −κ  or )2/(sinh 2 dz −κ  contributions perturb 

the magnetization only slightly in the thin regions very close to the interfaces. Hence in the 

following analysis we will neglect these latter contributions. 

Since 2κ  is almost independent on frequency, the dispersion relations set to zero for even 

and odd SW modes, 0=Δe  and 0=Δo , respectively, can be considered as equations for finding 

1q . Taking into account that 21 κ<<q  and 12 >>dκ , we get in this approximation the dispersion 

relations: 

Rdqdq =
2

tan
2

11       (A9) 

for even modes and  

Rdqdq −=
2

cot
2

11       (A10) 

for odd modes, where 

( ) *sin/
sin/

2 20
2''''''

0
2''

2

lFFF
FdR

κϑ
ϑκ

ϕϕϑϑϑϑ

ϕϕ

++
= .    (A11) 

Naturally, for different material and surface parameters one gets a broad variety of SW spectra 

and eigenmodes. Apparently, the solution of the dispersion equations (A9), (A10) corresponds to 
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effective pinning, if 1>>R . However, for large negative R  in addition to SW modes with real 

1q , two surface-like modes with imaginary 1q  appear.  

 

 

References 

1. A. Kirilyuk, A. V. Kimel, and T. Rasing, Rev. Mod. Phys. 82, 2731 (2010) and 

references therein. 

2. H. Kurebayashi, O. Dzyapko, V. E. Demidov, D. Fang, A. J. Ferguson, and S. O. 

Demokritov,   Nature Materials 10, 660 (2011). 

3. S. T. B. Goennenwein, T. Graf, T. Wassner, M. S. Brandt, M. Stutzmann, J. B. Philipp, 

R. Gross, M. Krieger, K. Zürn, P. Ziemann, A. Koeder, S. Frank, W. Schoch, and A. 

Waag, Appl. Phys. Lett. 82, 730 (2003). 

4. T. G. Rappoport, P. Redlinski, X. Liu, G. Zaránd, J. K. Furdyna, and B. Jankó, Phys. 

Rev. B 69, 125213 (2004). 

5. D. M. Wang, Y. H. Ren, X. Liu, J. K. Furdyna, M. Grimsditch, and R. Merlin, Phys. Rev. 

B 75, 233308 (2007). 

6. X. Liu, Y. Y. Zhou, and J. K. Furdyna, Phys. Rev. B 75, 195220 (2007). 

7. M. Sperl, A. Singh, U. Wurstbauer, S. K. Das, A. Sharma, M. Hirmer, W. Nolting, C. H. 

Back, W. Wegscheider, and G. Bayreuther, Phys. Rev. B 77, 125212 (2008). 

8. C. Bihler, W. Schoch, W. Limmer, S. T. B. Goennenwein, and M. S. Brandt, Phys. Rev. 

B 79, 045205 (2009). 

9. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986). 

10. H.-Y. Hao and H. J. Maris, Phys. Rev. B 63, 224301 (2001). 

11. A. V. Scherbakov, A. S. Salasyuk, A. V. Akimov, X. Liu, M. Bombeck, C. Bruggemann, 

D. R. Yakovlev, V. F. Sapega, J. K. Furdyna, and M. Bayer , Phys. Rev. Lett. 105, 

117204 (2010). 



 20

12. T. L. Linnik, A. V. Scherbakov, D. R. Yakovlev, X. Liu, J. K. Furdyna, and M. Bayer, 

Phys. Rev. B 84,  214432 (2011). 

13. L. Thevenard, E. Peronne, C. Gourdon, C. Testelin, M. Cubukcu, E. Charron, S. Vincent, 

A. Lemaître, and B. Perrin, Phys. Rev. B 82, 104422 (2010). 

14. B. Beschoten, P. A. Crowell, I. Malajovich, D. D. Awschalom, F. Matsukura, A. Shen, 

and H. Ohno, Phys. Rev. Lett. 83, 3073 (1999). 

15. A.V. Kimel, G.V. Astakhov, A. Kirilyuk, G. M. Schott, G. Karczewski, W. Ossau, G. 

Schmidt, L.W. Molenkamp, and Th. Rasing, Phys. Rev. Lett. 94, 227203 (2005). 

16. The calculations were carried out in the frame of the theoretical model described in detail 

in Ref [12]. The best agreement with the experimental data was obtained for the 

following parameters of magneto-crystalline anisotropy: perpendicular uniaxial field 

B2⊥=48 mT, in-plane uniaxial field B2||=15 mT, perpendicular cubic field B4⊥=-33 mT, 

and in-plane cubic field B4||=-36 mT.  

17. J.W. Tucker and V.W. Rampton, Microwave ultrasonics in solid state physics, (North-

Holland, Amsterdam 1972)  

18. M. Pomerantz, Phys. Rev. Lett. 7, 312 (1961). 

19. E.M. Lifshits and L.P. Pitaevskii, Statistical Physics, Pt.2, (Pergamon, Oxford 1980).  

20. L. Dreher, D. Donhauser, J. Daeubler, M. Glunk, C. Rapp, W. Schoch, R. Sauer, W. 

Limmer, Phys. Rev. B 81, 245202 (2010). 

21. G. Tas and H. J. Maris, Phys. Rev. B 49, 15046 (1994). 

22. P. J. S. van Capel and J. I. Dijkhuis, Phys. Rev. B 81, 144106 (2010) 

23. A.G. Gurevich, G.A. Melkov, Magnetization oscillations and waves, (CRC-Press, Boca 

Raton 1996).  

24. C. Kittel, Phys. Rev 110, 1295 (1958). 

25. M. F. Pascual Winter, G. Rozas, A. Fainstein, B. Jusserand, B. Perrin, A. Huynh, P. O. 

Vaccaro, and S. Saravanan, Phys. Rev. Lett. 98, 265501 (2007). 



 21

26. R. P. Beardsley, A.V. Akimov, M. Henini, and A. J. Kent, Phys. Rev. Lett. 104, 085501 

(2010). 

27. P. M. Walker, A. J. Kent, M. Henini, B. A. Glavin, V. A. Kochelap, and T. L. Linnik, 

Phys. Rev. B  79, 245313 (2009). 



 22

Figure captions 

Figure 1. (a) The schematic of experiment with picosecond strain pulses. (b) Time profile  of the 

strain pulse, εin(t), injected into the GaAs substrate. (c) Fourier spectrum of the strain pulse; the 

inset shows the spectral part corresponding to the range of magnetization precession frequencies 

experimentally observed.  

 

Figure 2. (a), (b) Kerr rotation signals measured for various polarizations of the probe beam at 

applied magnetic fields of B=100 mT (a) and 250 mT (b); the horizontal bars indicate the time 

intervals during which the strain pulse is present inside the film. (c), (d) Temporal evolutions of 

the mean magnetization projections ( )tM z  and ( )tM y  for the same B as in (a), obtained from 

the measured Kerr rotation signals using Eq. (1). 

 

Figure 3. (a) Amplitude spectra, obtained by FFT of the temporal curves in a 2 ns time window 

for the z-projection of the magnetization at different applied magnetic fields, indicated at each 

curve. The B values for which only low frequency SW mode is detected are highlighted. (b) 

Central frequencies of the excited SW modes as functions of B. The solid line shows the 

calculated frequency of the spatially uniform magnetization precession. The magnetic anisotropy 

parameters were chosen close to those derived for a similar sample [16]. (c) Magnetic field 

dependencies of the peak intensities of the low- and high-frequency SW modes. The arrows in 

(b) and (c) indicate the frequency and magnetic field around which single spectral line is 

observed. 

 

Figure 4. 

(a)  Spin wave eigenfunctions (solid lines) of the four lowest modes calculated for pinning 

boundary conditions (Ks>0). The dotted line shows the spatial dependence of the Fourier 

component of the acoustic wave packet in the strain pulse with frequency ω0, which corresponds 
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to the condition ω0d/πs=1 and is equal to 12 GHz for the studied structure. (b) Dependencies of 

the SW mode amplitude on the normalized resonance frequency ωd/πs for the four lowest 

modes. The vertical dash-dotted line corresponds to the frequency at which only the ground 

mode n=0 is excited. The vertical arrows indicate the frequencies related to the experimental 

conditions at B=0 and B=500 mT.   

 

Figure 5.  

(a)  Spin wave eigenfunctions (solid lines) of the four lowest modes calculated for “free surface” 

boundary conditions (Ks=0). The dotted line shows the spatial dependence of the Fourier 

component of the strain pulse with frequency ω0=12 GHz (b) Dependencies of the SW mode 

amplitude on the normalized resonance frequency ωd/πs for the four lowest modes. The vertical 

dash-dotted line corresponds to the frequency ω=12 GHz at which ωd/πs=1. The vertical arrows 

indicate the frequencies related to the experimental conditions at B=0 and B=500 mT.   

 

Figure 6.  

(a)  Spin wave eigenfunctions (solid lines) of the four lowest modes calculated for the boundary 

conditions, which give mixed surface- and bulk-like modes in the SW spectrum  (Ks<0). The 

dotted line shows the spatial dependence of the Fourier component of the strain pulse with 

frequency ω0=12 GHz. (b) Dependencies of the SW mode amplitude on the normalized 

resonance frequency ωd/πs for the four lowest modes. The vertical dash-dotted line corresponds 

to the frequency ω=12 GHz at which ωd/πs=1. The vertical arrows indicate the frequencies 

related to the experimental conditions at B=0 and B=500 mT.   
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Figure 2.  M. Bombeck et al. “Excitation of spin waves….”  
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Figure 3.  M. Bombeck et al. “Excitation of spin waves….”  
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Figure 4.  M. Bombeck et al. “Excitation of spin waves….”  
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Figure 5.  M. Bombeck et al. “Excitation of spin waves….”  
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Figure 6.  M. Bombeck et al. “Excitation of spin waves….”  
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