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We present band gaps, electron effective masses and valence band effective mass Hamiltonian
parameters as well as strain deformation potentials of the crystal field splittings for AlN, GaN and
InN obtained from quasiparticle self-consisent GW calculations. Excellent agreement is obtained
with experimental data for the crystal field and spin-orbit coupling splittings of bulk AlN and
GaN. For InN, the discrepancy on the crystal field splitting is likely due to the residual strain
in InN thin films from which that experimental value was extracted. We obtain a negative spin-
orbit splitting for InN, which is plausible in view of the stronger negative contribution of In-4d
in InN than Ga-3d in GaN. The inverse effective mass parameters Ai agree well with previous
G0W0 calculations except for A6. We find that the A6 parameter describing the band dispersion in
directions intermediate between in- and perpendicular to the basal plane is not well described by the
quasicubic approximation. Good agreement with the most reliable experimental data is obtained
for hole effective mass parameters in AlN and GaN, extracted from exciton binding energies and
their fine structure. For InN and GaN, the spin-splittings of the bands in the plane due to spin-orbit
coupling requires the inclusion of linear in k and spin terms.

I. INTRODUCTION

The group-III nitride semiconductors, AlN, GaN, and
InN are important for a variety of optoelectronic and elec-
tronic applications. To model electronic states, optical
properties and transport in quantum well heterostruc-
tures, nanowires and nanoparticles of these materials,
one often uses a description in terms of a 6-band effective
mass Hamiltonian describing the valence band maximum
manifold of nearly degenerate states near the center of
the Brillouin zone. Within the envelope function approx-
imation, the states of these nanostructures are described
as a linear combination of products of slowly varying en-
velope functions and the Bloch functions of the crystal
near the valence band maximum. This effective mass
Hamiltonian approach is also used in the theory of ex-
citons and shallow acceptors. The effective mass Hamil-
tonian for semiconductors with zincblende structure was
introduced by Luttinger and Kohn.1,2 Its form is deter-
mined by the theory of invariants. Its generalization for
wurtzite crystals was introduced by Rashba, Sheka and
Pikus (RSP).3–7

The parameters for these effective mass Hamiltoni-
ans, include inverse effective mass parameters, describ-
ing all the terms of order k2, crystal field and spin-orbit
splittings at Γ and some linear in k terms. Strain de-
pendent terms are added to the energy splittings. Sev-
eral previous works have fitted these parameters to first-
principles band structure results.8–10 Because there were
significant discrepancies on these parameters from dif-
ferent groups, and validation of these parameters by ex-
perimental methods is indirect, some efforts were made
to arrive at a recommended set of values.11,12 Recently,
there has been a resurgence of interest13–15 in improv-
ing these valence band parameters because more accurate
band structure methods have become available going be-
yond the local density approximation used in the work

of the 90s. Among the group-III nitrides, InN requires
perhaps the most important revisions because its band
gap is now accepted16,17 to be 0.7 eV while it was long
believed to be about 1.89 eV.18

Rinke et al.13 used G0W0 quasiparticle band struc-
tures starting from optimized effective potential exact
exchange + LDA correlation, but focused on the fit only
very near the Γ-point. de Carvalho et al.15 use G0W0

starting from hybrid functional HSE calculations. Svane
et al.14 used quasiparticle self-consistent GW calcula-
tions, very similar to the calculations reported here but
did not extract effective mass Hamiltonian parameters.
It focused only on the effective masses and splittings.

In the present paper, we revisit the problem once more
with several differences to be mentioned from the previ-
ous work. First, we use the quasi-particle self-consistent
GW (QSGW) method developed by van Schilfgaarde et
al.19,20 This method has a distinct advantage for deter-
mining the fine structure of the band structure, such as
effective masses. In fact, its use of a linearize muffin-
tin orbital basis set allows for a real space representation
of the GW self-energy. This can then be Fourier trans-
formed back to k-space on a much finer mesh than the
k-mesh for which the GW calculations need to be car-
ried out. This is important to extract reliable effective
masses.

Second, we have re-evaluated the process for most re-
liably extracting the effective mass Hamiltonian parame-
ters. While some derive directly from the effective masses
without spin-orbit coupling in or perpendicular to the
basal plane, some of the parameters such as A6 required
fitting the band structures in an intermediate k-space di-
rection if one does not wish to rely on quasicubic approxi-
mations. The linear in k-parameter A7 also requires care-
ful evaluation of the band anti-crossing behavior. These
aspects will be discussed in detail below. The determina-
tion of the spin-orbit and crystal field splittings and the
validity of the quasicubic approximation for the former
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also requires some discussion. We show that in GaN and
InN, relativistic terms linear in k need to be included to
properly describe the spin-splittings.

Finally, the crystal field splitting at Γ is particularly
sensitive both to the GW corrections to the band struc-
ture and to the crystal structure, such as c/a ratio. This
means in practice it is dependent on uniaxial strain. We
therefore think it is essential to include a description of
the latter in terms of deformation potentials.

As our main new results, we mention that we find a
crystal field splitting in GaN much closer to experiment
than in previous work. Secondly, we find a negative spin-
orbit splitting for InN. We also discuss the recent exper-
imental work on AlN band parameters in view of our
results.21,22

II. FIRST-PRINCIPLES COMPUTATIONAL
METHOD

We use the density functional theory23,24 in the local
density approximation to determine the equilibrium crys-
tal structure parameters. The full-potential linearized
muffin-tin orbital method25,26 is used to solve the Kohn-
Sham equation.

The quasiparticle band structures are calculated using
the quasiparticle self-consistent GW approach (QSGW)
as developed by van Schilfgaarde and Kotani.19,20 As
is well known the GW method originally proposed by
Hedin27 uses a product of the one-electron Green’s func-
tion G and the screened Coulomb interaction W as first
approximation for the quasiparticle self-energy. Within
the random phase approximation, the screening polar-
izability is itself derived from the independent particle
Green’s function, G0, so that the self-energy, schemati-
cally written as Σ = iG0W0, can be viewed as a func-
tional of G0. A new non-local exchange correlation po-
tential can then be extracted from the energy dependent
Σ and defines hence a new independent particle Hamilto-
nian as starting point for a new G0. The QSGW method
consists in iterating this process to convergence. It pro-
vides in a sense the best one-electron independent par-
ticle Hamiltonian so that the quasiparticle shift from it
is minimized. At convergence, the quasiparticle Hamil-
tonian and the Kohn-Sham Hamiltonian have the same
eigenvalues. Although we start from LDA, the final
QSGW eigenvalues are independent of this approxima-
tion.

In practice, other details of the GW implementation
used here set it apart from other recent calculations for
the nitrides, mentioned in the introduction. It is imple-
mented in the FP-LMTO method and uses a mixed basis
set of plane waves and LMTO product basis functions
for all two electron operators, such as the Coulomb in-
teraction, the polarizability and the self-energy operator.
Details can be found in Ref. 20 and its performance for
a wide variety of semiconductors is shown to be excellent
in Ref. 19. More specifically, it slightly overestimates

the gaps because of the underestimation of the screening
by the random phase approximation but agrees to better
than 0.1 eV for all known semiconductors after we scale
the GW-correction by a factor 0.8. This correction factor
is included in the calculations here.

Some specific details of our calculations follow. We
use a double (κ,Rsm) basis set consisting of spdf and
spd functions for the first and the second set of group
III and N atoms. In addition we add 3d and 4d local
orbitals of Ga and In atoms, and also spd floating or-
bitals. Here, κ is the smoothed Hankel function decay
constant and Rsm is smoothing radius. We use a GW
k-point set of 4× 4× 4 for AlN and GaN. In the case of
InN, we found the results to be particularly sensitive to
the k-point convergence and therefore used 6×6×4. The
self-energy is approximated by a diagonal approximation
above a certain cut-off energy, as discussed in Kotani et
al.20 We choose this parameter to be 2 Ryd in GaN, AlN
and InN. Spin-orbit coupling is added independent of the
GW-self energy in the end.

III. EFFECTIVE MASS HAMILTONIAN AND
PROCEDURE FOR EXTRACTING ITS

PARAMETERS

The effective mass Hamiltonian can be described in
terms of the operators for L = 1 angular momentum rep-
resenting the basis states of the 3-fold degenerate valence
band maximum (VBM) at Γ without spin-orbit coupling,
the Pauli matrices, representing the spin, the wave vec-
tor k and the strain tensor ε. The only allowed terms
are those up to terms of second order in any of these
quantities whose combination has the A1 symmetry. In
wurtzite, this Hamiltonian is described by:

H = ∆1L
2
z + ∆2Lzσz +

√
2∆3(L+σ− + L−σ+)

+(A1 +A3L
2
z)k

2
z + (A2 +A4L

2
x)(k2x + k2y)

−A5(L2
+k

2
− + L2

−k
2
+)

−2iA6kz({Lz, L+}k− − {Lz, L−}k+)

+A7(k−L+ + k+L−) + (α1 + α3L
2
z)(σ+k− + σ−k+)

+α2(L2
+k−σ− + L2

−k+σ+)

+2α4σz({Lz, L+}k− + {Lz, L+}k+)

+2iα5kz({Lz, L+}σ− − {Lz, L−}σ+)

+(D1 +D3L
2
z)εzz + (D2 +D4L

2
z)ε⊥

−D5(L2
+ε− + L2

−ε+)

−2iD6({Lz, L+}ε−z − {Lz, L−}ε+z) (1)

Here, {Lz, L−} = 1
2 (LzL− + L−Lz) is the symmetrized

product, L± = 1√
2
(±iLx−Ly), σ± = 1

2 (±iσx−σy), k± =

kx ± iky, k2⊥ = k2x + k2y, ε⊥ = εxx + εyy, ε±z = εxz ± iεyz,
ε± = εxx−εyy±2iεxy. The parameters ∆1, ∆2, ∆3 are the
crystal field splitting and spin-orbit coupling parameters.
The A1 − A6 are inverse effective mass type parameters
and the A7 is a non-relativistic (spin-independent) linear
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in k term. Relativistic terms linear in k and spin are
described by the α1−α5 terms. The parameters A1−A5

are directly related to the hole masses in the plane and
perpendicular to the plane by means of

−(m
‖
hh)−1 = A1 +A3

−(m
‖
sh)−1 = A1

−(m⊥hh)−1 = A2 +A4 +A5

−(m⊥lh)−1 = A2 +A4 −A5

−(m⊥sh)−1 = A2 (2)

The parameter A6 only affects the bands in directions
intermediate between the plane and perpendicular to it.
While in Kim et al.10 these were obtained by means of the
quasicubic approximation from the previous parameters,
we here determine it directly by fitting the bands in an
intermediate direction. We will show explicitly that the
quasicubic approximation is not sufficient.

As described in detail in Kim et al.10 the A7 param-
eter is related to the avoided band crossing of the light
hole and crystal field split-off band. When it is set to
zero the bands cross. The split-off band then has a large
effective hole mass. When A7 is switched on, the cross-
ing is lifted. The light hole and split-off hole masses are
changed respectively by

±2A2
7/|∆1|. (3)

The parameter A7 is determined by fitting the non-
parabolic shapes of the bands near this crossing directly
by manually adjusting A7 until good agreement is ob-
tained.

The crystal field splitting parameter at Γ is directly ob-
tained from the calculation without spin-orbit coupling.
It is defined as the difference ∆1 = E(Γ5) − E(Γ1) be-
tween the doublet and singlet of the VBM. When spin-
orbit coupling is included the Γ5 state splits in to a Γ9 and
Γ7 state. The latter can then interact with the nearby
crystal field split-off state Γ1 because in double group
notation, Γ1 becomes Γ7. This leads to the eigenvalues
given by

E9 = ∆1 + ∆2

E7± =
∆1 −∆2

2
±
√

(
∆1 −∆2

2
)2 + 2∆2

3 (4)

The two splittings allow us to determine the param-
eters ∆2 and ∆3. we already know ∆1 or assume it is
not changed by spin-orbit coupling. While in some other
cases, this procedure may lead to difficulties, (it may lead
to an imaginary ∆3) it works fine for all nitrides consid-
ered here. On the other hand, one may assume a qua-
sicubic approximation for spin-orbit coupling ∆2 = ∆3.
In that case, there are only two parameters determining
the two energy splittings and they can directly be deter-
mined.

The crystal field splitting ∆c = E(Γ5)−E(Γ1) is sensi-
tive to uniaxial strain. For a uniaxial volume conserving
(traceless) strain in the z-direction, εxx = εyy = −εzz/2.
Eq.(1) then gives

∆c = ∆1 + (D3 −D4)εzz (5)

On the other hand, for an isotropic volume change, the
strain tensor is εxx = εyy = εzz = ε/3 with ε = dV/V . In
that case,

∆c = ∆1 + (D3 + 2D4)
dV

V
(6)

By fitting ∆1 extracted from the band structure for
isotropic and uniaxial strains, we can determine both D3

and D4. In the quasicubic approximation D3 = −2D4,
there would be no isotropic strain change in crystal field
splitting, and the uniaxial effect reduces to 3

2D3εzz. Thin
films are often under biaxial strain, which has both a uni-
axial and isotropic component. By providing both D3

and D4, the change in crystal field splitting can easily
be obtained for any biaxial strain situation that might
occur depending on growth conditions, temperature and
film-thickness. The parameters D1 and D2 only lead to
shifts of the bands and were not determined. The pa-
rameters D5 and D6 only enter when strains breaking
the hexagonal symmetry are considered. We did not de-
termine them here because they are of less interest for
thin films.

Finally, we also determine the band gap hydrostatic
strain deformation potentials as

av = dEg/d lnV. (7)

IV. RESULTS

A. Band structure parameters

The structural parameters obtained from our LDA op-
timization are in good agreement with experiments and
previous calculations and are given in Table I for refer-
ence. For InN no experimental value is available for the
u-parameter, but our value agrees well with that of de
Carvalho et al.15, 0.378, Svane et al.14. 0.379 and Rinke
et al.13, 0.380.

The band structures near the VBM without spin-orbit
coupling are shown for AlN, GaN and InN in Fig. 1
for k along the c-axis (k‖) and in the plane (k⊥). The
solid lines indicate the fits by means of the effective mass
Hamiltonian. Separately, in Fig. 2 we show the bands for
a direction between the two at an angle of 45◦ illustrating
the inadequacy of using the quasicubic approximation for
A6.

The band structures including spin-orbit coupling are
shown in Fig. 3 together with the effective mass Hamil-
tonian results. These include the same parameters as
before plus the spin-orbit splitting parameters at Γ. It
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TABLE I. Lattice parameters(Å) a, c, c/a, u

AlN GaN InN

LDA Expt. LDA Expt. LDA Expt.

a 3.112 3.11a 3.157 3.19a 3.508 3.54b

c 4.975 4.978a 5.143 5.166-5.185a 5.666 5.718a

c/a 1.599 1.601a 1.629 1.627a 1.615 1.613b

u 0.382 0.382a 0.376 0.377a 0.380 −

a Expt. from Schulz et al.28
b Expt. from Ueno et al.29

shows that now the bands become spin-split in the plane.
Along the c-axis, they are still degenerate because by
time reversal ψkzσ = ψ−kz−σ and by the glide mirror
plane perpendicular to the c-axis ψkzσ = ψ−kzσ. Hence
there is a Kramer’s degeneracy. In order to fully adjust
the spin-splittings in the plane, we also needed to add the
small relativistic linear in k ,α terms, for GaN and InN.
This is shown in Fig.4. For AlN, we notice that along k‖,
the upper band crosses the second band but not the third
band. This is because the upper band has Γ7 symmetry
along the line ∆ = Γ− A, the second band has Γ9 sym-
metry and the third band has Γ7 symmetry. Bands of
the same symmetry cannot cross because an interaction
between the two avoids the crossing.

The parameters are summarized in Table II. Here we

use ∆
‖
so = 3∆2, ∆⊥so = 3∆3. In the quasicubic approx-

imation ∆
‖
so = ∆⊥so = ∆ZB

so , the latter being the value
in the zincblende structure. Using this approximation,
we can extract ∆1 and ∆2 directly from the two band
splittings using Eq.4.

Finally, we include the (spin averaged) effective masses
of the three separate valence band maxima, A, B, C
when spin-orbit coupling is included as shown in Table
III. Here, A means Γ9, B means Γ7+ and C means Γ7−.

V. DISCUSSION

The crystal field and spin-orbit coupling parameters
are compared with other recent calculations and experi-
mental data in Table IV. We note that the crystal field
splitting is sensitive to strain. The experimental values
quoted here for AlN are for bulk single crystals.34,35. For
GaN, they correspond to 500 µm thick layers.36 For InN,
the only value we could find is for a rather thin film of
only 670 nm on r-plane sapphire.37 This value is likely to
be influenced by some residual strain.

We can see in Table II that the QSGW values differ
significantly from the LDA values for the deformation
potentials. While for AlN and GaN, the quasicubic ap-
proximation D3 + 2D4 ≈ 0 are reasonably well obeyed,
the deviation from quasicubic is significant for InN. The
band gap deformation potentials are all negative. The
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FIG. 1. Valence bands of AlN,GaN and InN without spin-
orbit coupling, dots represent QSGW results, full lines rep-
resent the RSP fits including A7, dashed lines excluding A7.
The zero of energy is at the Γ5-state.

decrease of the band gap with increasing lattice constant
is the usual behavior in covalent semiconductors. Our
values are comparable to those of Rinke et al.13: −9.8
eV for AlN, −7.6 for GaN, and −4.2 for InN.

We found the crystal field splitting of InN to be very
sensitive to computational details. For example, using a
smaller GW k-point set, we obtained a negative crystal
field splitting of −14.8 meV. A small compressive strain
along the c-axis could easily reduce the crystal field split-
ting and even make it negative. This is accompanied by a
significant change in the band structure as illustrated in
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FIG. 2. Valence bands of AlN, GaN and InN without spin-
orbit coupling in the direction between in-plane and perpen-
dicular to plane at angle 45◦, LHS: using quasicubic approx-
imation, RHS: using manual fitting. The zero of energy is
at the doubly degenerate Γ5-state. Dots represent QSGW
results, full lines represent the RSP fits.

Figs. 5,6. The valence band maximum in that case moves
away from Γ due to the repulsion between the crystal field
split-off and light hole band. We can see that this off-Γ
valence band maximum persists up to a positive crystal
field splitting of about 15 meV. Given the deformation
potentials, we can see that uniaxial compressive strain
of order 1–2 % could cause the crystal field splitting to

TABLE II. Band structure parameters: inverse masses (A1 −
A6) (in units ~2/2me), energy splittings (∆1 −∆3) (in meV),
A7 and αi (in units e2/2), band gap and deformation poten-
tials (in eV). The value of A6, ∆1,∆2,∆3 in parentheses are
obtained in the quasicubic approximation. Electron effective
masses (in units me). The hole masses correspond to the
band structure without spin-orbit coupling. The hole masses
obtained with A7 from Eq. 3 are in parentheses.

parameter AlN GaN InN

Eg 6.19 3.60 0.70

A1 −4.05 −5.98 −15.7

A2 −0.28 −0.58 −0.63

A3 3.71 5.44 15.2

A4 −1.71 −2.46 −7.10

A5 1.90 2.53 7.14

A6 −1.05(−2.75) −1.55(−3.31) −5.03(−9.45)

A7 0 0.03 0.09

∆1 −245(−245) 12.2(18.2) 43.7(43.4)

∆
‖
so = 3∆2 18.6(18.9) 11.7(5.4) −9.5(−9.2)

∆⊥so = 3∆3 22.5(18.9) 16.2(5.4) −5.9(−9.2)

m
‖
e 0.32 0.20 0.09

Expt. 0.29-0.4a 0.20b 0.05-0.07 c

m⊥e 0.31 0.22 0.09

m
‖
hh = m

‖
lh 2.94 1.85 2.00

m
‖
sh 0.25 0.17 0.06

m⊥hh 11.11 1.96 1.69

m⊥lh w/o A7 0.26 0.18 0.07

m⊥lh with A7 - 0.30(0.28) 0.10(0.10)

m⊥sh w/o A7 3.57 1.72 1.59

m⊥sh with A7 - 0.36(0.39) 0.17(0.18)

α1 - 0.0028 −0.0095

α2 - 0.0080 0.0135

α3 - −0.0030 0.0110

α4 - 0.0028 0.0035

α5 - 0 0

D3 −D4 (LDA) 6.04 5.43 2.70

D3 + 2D4(LDA) 0.23 −0.14 2.78

D3 −D4(QSGW) 14.3 4.71 2.98

D3 + 2D4(QSGW) 0.52 −0.04 −1.25

av = dEg/d lnV −9.78 −8.41 −2.33

a Ref. 30
b Ref. 12 and references therein
c Refs. 31 and 32

go from positive to negative and shift the valence band
maximum away from Γ.

Our crystal field splitting for GaN is in better agree-
ment with experiment than previous results. It was al-
ready pointed out by Kim et al.10 that this value was
likely overestimated by LDA (or GGA) because the Γ1v

valence band is repelled by the Γ1c conduction band and



6

-500

-400

-300

-200

-100

 0

-0.1 -0.05  0.05  0.1

En
erg

y (
me

V)

k⊥                  Wave vector (2π/a)                     k||

7+Γ

Γ9

Γ7-

AlN

Γ

-100

-80

-60

-40

-20

 0

-0.1 -0.05  0.05  0.1

En
erg

y (
me

V)

k⊥                  Wave vector (2π/a)                     k||

GaNΓ9

7+Γ

Γ7-

Γ

-100

-80

-60

-40

-20

 0

-0.1 -0.05  0.05  0.1

En
erg

y (
me

V)

k⊥                  Wave vector (2π/a)                     k||

InN7+Γ

Γ9

Γ7-

Γ

FIG. 3. Valence bands of AlN, GaN and InN including spin-
orbit couplings, but neglecting the αi spin-dependent terms.
The zero of energy is at the valence band maximum, which
is Γ9 in GaN, Γ7+ in AlN and InN. Dots represent QSGW
results, full lines represent the RSP fits.

hence, an underestimate of the gap results in an overesti-
mate of the crystal field splitting. Clearly it is extremely
sensitive to computational details, since it depends on
the precise computational details of the GW method as
well as the crystal structure, which must be truly strain
free.

We also note that we find here a negative value for
the spin-orbit splitting in InN, in contrast to earlier
reports.13,15 We note that in order to ascertain the sign of
the spin-orbit coupling we need to examine the symmetry
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zero of energy is at the valence band maximum. Dots repre-
sent QSGW results, full lines represent the RSP fits.
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of the valence band states at Γ. Whereas the Γ7+ state
has a small pz component in its wave function, the Γ9

has no pz component by symmetry. We find definitely a
Γ7+ > Γ9 > Γ7− ordering. The negative spin-orbit split-
ting arises from the contribution of the In-4d orbitals to
the effective spin-orbit splitting. Because the latter lie
below the VBM they give rise to a negative contribution.
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TABLE III. Hole effective mass with spin-orbit coupling in-
cluded. The masses obtained from directly fitting the effec-
tive mass Hamiltonian bands near the Γ point are given in
the first line for each material, the numbers in parentheses
are obtained from second order perturbation theory as given
in Eq. 10 in Kim et al.10. Only for GaN, a direct comparison
to experimental values obtained form exciton binding energies
is available.

m
‖
A m

‖
B m

‖
C m⊥A m⊥B m⊥C

AlN 2.94 0.25 2.83 0.56 3.53 0.46

(2.94) (0.25) (2.89) (0.50) (3.53) (0.50)

GaN 1.85 0.55 0.20 0.69 0.50 0.80

(1.85) (0.51) (0.22) (0.33) (0.42) (0.82)
a 1.76 0.419 0.299 0.349 0.512 0.676

InN 2.00 1.86 0.06 0.15 0.14 1.26

(2.00) (1.81) (0.06) (0.13) (0.13) (1.53)

a Expt. from Rodina et al.33

-40

-20
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 40
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En
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me
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 0.05 Γ

             k
 0.1 0.05 Γ

 ┴

(a) ∆  = 5 meV (b) ∆  = 15 meV (c)  ∆  = 25 meV1 1 1

Γ1 Γ1 Γ1

Γ5

Γ5

Γ5

FIG. 6. Valence bands of InN without spin-orbit coupling
calculated from the effective mass Hamiltonian , with various
positive crystal field splitting

This is well known to be also the case for ZnO.38 In that
case, the Zn-3d states are closer to the VBM. The value
in GaN is already small due to the coupling with the
Ga-3d and the small value of the N-2p atomic spin-orbit
coupling which tend to compensate each other. One may
expect the In-4d contribution to be larger in magnitude
because In is a heavier atom. Therefore it is plausible
that it becomes negative in InN.

Next, we compare the Ai parameters to previous work.
Our results agree quite closely with those of Rinke et al.13

except for the parameter A6. As we mentioned earlier,
this parameter requires some care to extract it. Rinke et
al.13 used an automatic fitting to calculated band struc-
tures on a mesh of points near Γ but restricted themselves
to obtaining a fit only very near Γ. In contrast, our fitted
band structures can be seen to fit very well over a rather
extended region of k-space and down to energies of order
100 meV below the VBM. This is important if one wants

TABLE IV. Comparison of the band gaps (in eV) and va-
lence band splittings (in meV) to previous calculations and
experiment.

QSGW Ref.15 Ref. 13 Expt.

AlN Eg 6.19 6.55 6.47 6.3

∆1 −245 −260 −295 −230a,−225b

∆
‖
so 19 22 36b

∆⊥so 22 22

Γ9 − Γ7+ −239.2 14.9 14a, 25b

Γ9 − Γ7− 12.9 −235.9 −218a,−214b

GaN Eg 3.60 3.85 3.24 3.5

∆1 12 34 34 10c

∆
‖
so 12 17 18.6c

∆⊥so 16 20 16.5c

Γ9 − Γ7+ 3.2 8.7 7c

Γ9 − Γ7− 20.4 49.3 23 c

InN Eg 0.70 0.76 0.67 0.65-0.8

∆1 44 38 67 19-24d

∆
‖
so −9 11

∆⊥so −6 20

Γ9 − Γ7+ −6.5 5.4 3d

Γ9 − Γ7− 40.7 47.4 21d

a Chen et al.34
b Silveira et al.35
c B. Gil et al.36
d Goldhahn et al.37

to apply the method for calculating shallow acceptors
which have binding energies of this order of magnitude.

For AlN, Gil21,22 recently reviewed how well the A1,A2

parameters fit the experimental data on the 1s−2s exci-
ton splitting. In order to obtain a good fit, he found it is
important to also include the anisotropy of the dielectric
constants. The best fit corresponded to A1 = −3.95 and
A2 = −0.27, in excellent agreement with our calculated
values. The reason why only the A1 and A2 enter here
is that in AlN, the VBM has Γ1 symmetry and thus the
split-off hole band lies above the usual heavy and light
hole. From Eq. 2 we can see that then A1 and A2 are
respectively the inverse masses for the directions parallel
and perpendicular to the c-axis. They enter the reduced
mass of the excitons that goes into the equation for the
exciton binding energy.

For GaN, the most complete set of valence band effec-
tive masses is obtained again from a study of the exciton
fine structure by Rodina et al.33. Their values are in-
cluded in the above Table III for comparison. For InN, no
reliable experimental data on the hole masses are avail-
able to the best of our knowledge.

The conduction band effective masses for AlN, GaN
and InN all agree well with experimental data and are
only slightly anisotropic. The experimental values in-
cluded in TableII do not resolve the anisotropy.
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VI. CONCLUSION

The parameters of the valence band effective mass
Hamiltonians were determined for AlN, GaN and InN
from quasiparticle self-consistent GW band structures.
Because the crystal field splitting is strongly dependent
on strain, the relevant strain deformation potentials are
also determined. Good agreement is obtained with ex-
periment for the band gaps and valence band maximum
splittings at Γ in AlN and GaN. Our calculated effective
masses, including spin-orbit coupling effects also agree
well with those extracted from exciton fine structure in
AlN and GaN. For InN, it is concluded that experimental
data for strain free material is not yet available. We find
the spin-orbit coupling parameter in InN to be negative
and show that the band structure will be strongly depen-
dent on strain. For both GaN and InN relativistic terms
linear in k and spin need to be included to fully account
for the spin-splitting of the bands away from Γ.
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