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We propose a spin-dependent optical lattice potential that realizes a three-dimensional antiferro-
magnetic topological insulator in a gas of cold, two-state fermions such as alkaline earths, as well as
a model that describes the tight-binding limit of this potential. We discuss the physically observable
responses of the gas that can verify the presence of this phase, in particular rapid rotation in response
to the trap potential. We also point out how this model can be used to obtain two-dimensional flat
bands with nonzero Chern number.
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I. INTRODUCTION

The use of cold atomic gases to implement many-
body models of condensed matter physics is by now well-
advanced. The goal of this research is twofold: to simu-
late existing materials with cold atoms and to manufac-
ture Hamiltonians unseen in solids.

A particularly strong effort in the field over the last
decade has been directed towards recreating the integer
and fractional quantum Hall effects with cold atoms by
simulating an orbital magnetic field for neutral atoms,
achieving slow but steady progress. The quantum Hall
effects realize a large variety of topological states of mat-
ter. Not all of them have been unambiguously seen in
semiconductor heterostructures, and some of those not
yet obtained may be important for applications1. One
hopes that quantum Hall effects with cold atoms will
provide ways to investigate those states experimentally.

Parallel to that effort, a number of breakthroughs in
condensed matter physics in recent years have led to
an understanding that the integer quantum Hall effect
is but one particular system in a class of noninteract-
ing fermionic systems, in a variety of spatial dimensions,
which have received the name of topological insulators
(TI)2. All TIs have gapped bulk and gapless edge states,
and respond to external electromagnetic perturbations in
a quantized way3,4. The quantum Hall effect is confined
to two dimensions, but three-dimensional (3D) topologi-
cal insulators have also been observed experimentally. In
each spatial dimensionality there are five distinct types
of topological insulators and superconductors4, with only
two of those five seen experimentally in 3D in real mate-
rials. Cold atoms may end up providing the only way to
manufacture the 3D TIs not yet seen.

It is also suspected that in the presence of interactions
TIs may develop phases similar in some sense to those of
the fractional quantum Hall effect5. Theoretical study of
these interacting phases is currently a rapidly developing
subject. While it is not yet known if these phases can be
seen in a condensed matter context, it is natural to con-
sider TIs with cold atoms, whose interactions can often
be controlled or chosen in advance.

The distinctive signature of 3D TIs, in addition to gap-
less, Dirac-type excitations localized at the surfaces of the

system, is a strong, quantized magnetoelectric response.
The former is best seen as the 3D counterpart to the chi-
ral edge states of the integer quantum Hall phase, and
the latter as the counterpart of the Hall conductance of
that phase.

We propose a model which realizes an unusual (and
thus far unseen) 3D TI, called the antiferromagnetic
topological insulator (AFTI). The AFTI bulk is similar to
the standard strong TI described by Refs. 6–8. However,
time-reversal invariance, crucial to that type of a TI, is
implemented in a different way, with the result that the
magnetoelectric response of the TI becomes a ground-
state property in the trap potential always present in
cold atomic setups. As a result, in response to the ap-
plied trap potential this system starts rotating rapidly,
a tell-tale signature that we hope can be used to detect
this phase.

The model we propose can be implemented in cold
atoms by an extension of the idea of artificial gauge
fields9. The construction involves atoms with only two
internal states, and we hope not only that the model pro-
posed here possesses features (magnetoelectric response
to an applied scalar potential) making it more suitable for
observation and study with cold atoms, but also that this
provides a simplification compared to existing schemes to
implement strong TIs10,11, as we elaborate below.

Moreover, a tight-binding limit of this model acquires
sublattice symmetry and is a chiral 3D TI12. This is a
type of 3D insulator distinct from the standard strong TI
and, like the AFTI, not yet seen experimentally in solids.

Finally, we propose to use this insulator as a way to
create two-dimensional flat bands (surface bands of this
insulator) with nonzero Chern number, which are known
to have the potential to enhance interaction effects and
therefore aid the formation of fractional quantum Hall
states without strong magnetic fields.

II. ANTIFERROMAGNETIC TI

A starting point towards constructing a strong TI is an
identification of a time reversal operation T that satisfies
T 2 = −1. If it is a symmetry, it ensures that the energy
eigenstates come in degenerate Kramers pairs, which pro-
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vides the simplest way to understand that the edge spec-
trum must be gapless.

Realization of the TI requires a minimum of four dis-
tinct states per wave vector k. First, there needs to be
some degree of freedom on which the symmetry T can
be realized, which requires two states that we call spin.
With just these two states, however, there will not be
a gap in the bulk band structure, so to achieve a band
insulator there must be more states. The minimal imple-
mentations considered so far require four spin states, as
in the proposal of Ref. 11.

In an effort to minimize the number of internal states
that need to be manipulated, we propose instead to use
two sublattices, limiting the number of internal (spin)
states to two. Furthermore, we want to find a model on
the simplest lattice possible, so we restrict to nearest-
neighbor hopping terms; this rules out the diamond-
lattice tight-binding model of Ref. 6, for example.

The simplest approach to achieve the physics of the TI
that we have found realizes the AFTI13. The prototype of
such a system involves electrons that have a Zeeman cou-
pling to an Néel order parameter. This obviously breaks
T because the order parameter flips under the action of
time reversal, but the magnetic order may be such that
the symmetry is restored after an appropriate transla-
tion. We represent this translation by a unitary operator
T1/2, for translation through half the magnetic unit cell;
the symmetry is implemented by the antiunitary opera-
tor S = T T1/2, which satisfies S2 = −1 and therefore has
the crucial property necessary for nontrivial topological
physics.

An AFTI has two distinct types of surface, called “anti-
ferromagnetic” and “ferromagnetic” in this context. The
first type preserves the symmetry S of the bulk, and
therefore supports gapless surface states of Dirac type
just like a surface of the usual TI. Ferromagnetic surfaces
break the symmetry, which opens a gap, and the surface
realizes a half-quantum-Hall effect, just like a surface of
the usual TI with an added T -breaking perturbation3,14.

We have found a spin-dependent, optical lattice po-
tential that realizes the AFTI, as well as a tight-binding
model for the deep-well limit of this potential. The tight-
binding model has an extra chiral symmetry which is
interesting in its own right4, and we display band struc-
tures in Fig. 1 both in the chiral, tight-binding limit and
far from it so generic features are distinguishable.

A. Optical lattice

The following spin-dependent, noninteracting Hamil-
tonian realizes an AFTI:

HAF (p, r, s) =
p2

2m
+ V (r) + BZ(r) · σ,

V (r) = V [cos qx̂ · r + cos qŷ · r + cos qẑ · r]

BZ(r) = BZ

4∑
i=1
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FIG. 1. The spectra of Eq. (1) in (a) bulk, (b) a (100)
slab, and (c) a (111) slab, with parameters BZ = 3V/2 =
}2q2/2m = 1; and corresponding geometries for Eq. (2) [(d),
(e), (f)] with parameters t = tM = 1. (g) The bulk Brillouin
zone; the zone center Γ is not shown. (h,i) The (100) and
(111) surface Brillouin zones. (j) BZ(r).

where q = 2π/a sets the length scale. Here p and r are
the single-particle momentum and position; x̂, ŷ, and ẑ
are orthogonal unit vectors; and σ represents the vector
of Pauli matrices. Finally, the tetrahedral vectors bi are
defined as b1 = (−x̂ + ŷ + ẑ)/2, b2 = (x̂ − ŷ + ẑ)/2,
b3 = (x̂ + ŷ − ẑ)/2, b4 = −(x̂ + ŷ + ẑ)/2.

The potential V creates a spin-independent, cubic lat-
tice, while the Zeeman field BZ(r), a sum of four one-
dimensional, spin-dependent terms, creates an alternat-
ing magnetic “hedgehog” texture around the wells of that
lattice [see Figure 1(j)]. This is the NaCl structure, which
has the translation symmetry of a face-centered-cubic
(fcc) lattice.

The Zeeman field BZ(r) breaks T since σ = −σyσ∗σy,
but the symmetry is restored by a translation T1/2
through a (along any of the cubic axes). This Hamil-
tonian therefore has the symmetry S described earlier,
which enables a topologically nontrivial phase.

This Hamiltonian is gapped at a filling of one particle
for every well of V (r), which is two particles per unit cell
of BZ ; see Figure 1(a). (Each band is doubly degenerate
since the combination of S and inversion is a symmetry;
see below for inversion symmetry). In other words, BZ

gaps the simple cubic metal described by p2/2m + V .
The resulting insulator is topologically nontrivial, which
is computed most simply as follows.

In addition to the symmetry S, this Hamiltonian also
possesses inversion symmetry (p, r) → −(p, r). This al-
lows us to compute the bulk topological invariant, Eq. (6)
of Ref. 15, in terms of inversion parities at the eight
inversion-symmetric wave vectors Γ = 0, (X1,X2,X3) =
π(x̂, ŷ, ẑ), and Li = πbi. We find that at Γ both filled
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bands are inversion-even, at Xi both are inversion-odd,
and at Li there are one of each parity. The total number
of inversion-odd states is 10, which is twice an odd num-
ber; therefore the band structure is topologically nontriv-
ial. (Note that the prescription of Ref. 16 does not apply
to this system since the Kramers pairs are not degenerate
with respect to inversion at Li).

In this potential, a surface normal to x̂, ŷ, or ẑ [a
(100)-type surface] retains the symmetry S of the bulk,
and so is an antiferromagnetic surface in the terminology
of Ref. 13. Such a surface possesses gapless edge states,
as seen in Figure 1(b). By contrast, a surface normal
to bi [a (111)-type surface] breaks the symmetry and is
gapped, as in Figure 1(c). These surfaces support a half-
quantum-Hall effect.

B. Tight-binding model

In the deep-well limit, the Hamiltonian (1) reduces to
the following tight-binding model on the cubic lattice
with nearest-neighbor, spin-dependent hopping terms
(both t and tM are real):

Ĥtb =
∑
r∈A

∑
e

ĉ†r [t+ tMe · σ] ĉr+e + H.c. =
∑
r,r′

ĉ†rHr,r′ ĉr′ .

(2)

Here ĉr removes an atom at site r, e ∈ {±x̂,±ŷ,±ẑ},
H is the matrix of Ĥtb, and the spin indices have been
suppressed on ĉ, σ, and H; A signifies one of the two
sublattices of the bipartite division of the cubic lattice.
This model and captures the hedgehog character of Zee-
man field BZ . Starting from sublattice A, the barrier to
tunneling in the +ẑ direction is higher for an atom with
σz = +1 than for one with σz = −1, and the barriers to
tunneling along −ẑ are interchanged. These statements
also hold for z → x, y.

The bulk spectrum is given by

Hk = 2

(
0 gk
g†k 0

)
, ε(k) = ±2

√
t2f2k + t2MfMk,

gk =
∑

j∈{x,y,z}

(t cos kj − itMσj sin kj),

fk =
∑

j∈{x,y,z}

cos kj , fMk =
∑

j∈{x,y,z}

sin2 kj , (3)

and shown in Figure 1(d), where Hk is the Fourier trans-
form of Hr,r′ and is a matrix in sublattice as well as spin
space. As expected, it resembles the lowest two (doubly
degenerate) bands of the optical lattice model in Figure
1(a), particularly in that each band is doubly degenerate
at each wave vector. Note that there is a gap whenever
t, tM 6= 0. In the deep-well limit, the higher bands of
Figure 1(a) move off to high energies.

The tight-binding model has more symmetry than does
HAF : ΣHΣ−1 = −H, where ΣcA = cA, ΣcB = −cB on

sublattices A and B. This is known as “sublattice” or
“chiral” symmetry4,17, which places this model into sym-
metry class DIII, akin to phase B of 3He18. The associ-
ated topological invariant is particularly straightforward
to evaluate4,19,20:

N3 = π

∫
d3k

(2π)3
1

3!
εabc tr ΣDaDbDc = 1,

Da = H−1k ∂kaHk, (4)

where the integral is over the fcc Brillouin zone.
The surface bands of Ĥtb are shown in Figures 1(e)

and 1(f). They, too, resemble the corresponding spectra
for the optical lattice potential. On the (100) surface the
Dirac point sits in the center of the gap. More remark-
ably, on the (111) surface the disconnected bands that
can seen above the upper band in Figure 1(c) also mi-
grate to the center of the gap in the tight-binding limit.
That band, once at zero energy, is protected by chiral
symmetry (in this geometry there is only chiral symme-
try, so the system is formally in class AIII) and is nec-
essarily flat (the states in that band occupy one of the
two sublattices and their energy is protected by the in-
dex theorem as explained, for example, in Ref. 21, or by
a theorem of Lieb, Ref. 22). Moreover, it can be checked
numerically that this flat band has Chern number 1; this
is like the zeroth Landau level of a Dirac mode23.

III. “MAGNETOELECTRIC” RESPONSE IN
ULTRACOLD ATOMIC GASES

There has recently been much discussion of topologi-
cally nontrivial flat bands as a way to realize fractional
quantum Hall physics without an external magnetic field;
typical cases require tuning of parameters to achieve a
very flat band24. Here the flatness is perfect when the
surfaces respect the sublattice symmetry, with no tuning.

To realize the Hamiltonian Eq. (1) or its tight binding
version Eq. (2) we need to employ atoms with two inter-
nal levels, representing spin, which can be coupled by a
laser. A particularly promising approach would be to use
for these two levels the ground (3S0) and excited (3P0)
states of fermionic alkaline-earth-like atoms such as Sr or
Yb; this is attractive due to the extremely long lifetime
of the excited state and the fact that these states can be
coupled directly by an optical laser.

The tight-binding Hamiltonian Eq. (2) may be cre-
ated by directly imprinting the tunneling matrices onto
the atoms following Ref. 25. Alternatively, let us de-
scribe realizing the potential of Eq. (1). Working with
the alkaline-earth-like atoms, the scalar potential and σz
can be realized with lasers at “magic” and “anti-magic”
wavelengths25, while σx and σy potentials require a laser
operating at the 1S0–3P0 transition frequency. Match-
ing the wavelengths of these lasers would require setting
up two traveling waves at an angle for every standing
wave potential. Note that the 3P0 state is known to be



4

collisionally unstable. We can eliminate this instability
if we polarize the nuclear spins of the atoms preventing
two 3P0 atoms from scattering in the s-wave channel.
3P0-1S0 collisions may also be unstable, although recent
experiments indicate that at least in 87Sr this instability
is weak (below experimental sensitivity)26.

Let us now turn to discussing how to see the physics of
this TI in an optical lattice. In a crystal, the most dra-
matic consequence is the presence of the surface states
displayed above. The topological surface states have
a Dirac-like spectrum that connects the bulk bands.
While there is some spectroscopic information available
for atomic gases27, a more productive approach may be
to look at macroscopic properties, in particular the re-
sponse of the gas to external forces.

Consider atoms of mass m subject to an additional,
constant external force F. The orbital response tensor is
αi
j = ∂Lj/∂Fi, where L is the average angular momen-

tum density. One expects this quantity to vanish in lin-
ear response when the potential possesses time-reversal
and/or inversion symmetry. However, in a TI with sur-
face T -breaking, it takes the surprisingly large, isotropic
value

αi
j = ±m

h
δij , (5)

where h is Planck’s constant28. This response is very
strong. Indeed, applying a force of the order of Er/d,
where d is the linear size of the system and Er =
h2/(ma2) is the lattice recoil energy, we find from Eq. (5)
that the induced angular momentum is of the order
h(d/a)2, that is one quantum per 2D unit cell. That
far exceeds what was achieved by rotating the atomic
gases directly29, recent progress in this effort notwith-
standing30.

The striking signature of the TI phase in a gas of
fermions should then be a rotation of the cloud in re-
sponse to a linear potential gradient, if there were some
T -breaking present. In the present case, a parabolic trap
will necessarily break all the relevant symmetries (both
chiral symmetry if present and S, since it involves trans-
lations), enabling a strong response.

In fact, the mere presence of the trap induces rotation
in general; after all, shifting the trap by ∆s is essentially
equivalent to a force mω2∆s, for trap frequency ω. We
have computed the circulation for a gas tightly confined
in the [111] direction by a harmonic trap; see Fig. 2.
To make this numerically tractable we have imposed pe-
riodic boundary conditions (we do not expect a weak,
parabolic 2D trap to change any resulting physics), and

computed the circulation per 2D unit cell for Ĥtb
31,

L

mNsa2
=

π

ih

∫
d2k

(2π)2
εab tr (P −Q)(∂aP )H̃(∂bP ), (6)

on a 100-by-100 grid of the (111) Brillouin zone. Here

H̃ is the two-dimensional Fourier transform of Hr,r′ +
mω2s2/2 − Fs − µ, with s the [111] coordinate; P (Q)
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FIG. 2. (a) Net circulation L/m per two-dimensional unit
cell in a harmonic trap, in units of ta2/h, for tM = t, mω2a2 =
t/4, µ = 1.5t. The abscissa gives the position of the trap
center relative to the lattice. Also shown are the circulation
L/m (lower curve) and particle number per site n (upper) as
a function of position (in units of a) for (b) a bond-aligned
and (c) a site-aligned trap.

projects onto the negative- (positive-) energy states of H̃;
and Ns is the number of surface unit cells. The sign of L
changes for alternate bonds, since the T -breaking term
switches sign. The derivative |∂(L/Na3)/∂F | . 0.5m/h,
in agreement with Eq. (5), when the trap is aligned with
lattice sites; here N is the particle number, and provides
a suitable measure of the size of the trapped system since
the bulk density is one particle per site. The rotation
takes its maximum when the trap is aligned with the
bond centers, and the circulation is concentrated mainly
at the surfaces, as is clear from Figs. 2(b) and 2(c).

The resulting rotation may be measured with a variety
of methods: for example, by switching off the lattice and
observing a flattening of the rotating cloud; by measuring
the way the Fourier-transformed density distribution nk
vanishes at k = 0; by measuring the frequency modes of
the rotating gas32; or by Bragg spectroscopy33.

Note that the response tensor α is well-defined even in
the presence of interactions. The invariant for the chi-
ral limit is similarly well-defined with interactions, using
Green’s function rather than the single-particle Hamil-
tonian34. That is, the TI phase should be stable to the
introduction of weak interactions. It would be interest-
ing to check this result directly in cold Fermi gases, which
display Feshbach resonances that lead to tunable inter-
actions (although that might require using alkali atoms
coupled by Raman transitions instead of alkaline earths
as outlined above); it would be even more interesting to
study the Mott-type phases that should emerge upon in-
troducing very strong interactions35.

Finally, it is worth pointing out connections to other
systems that display interesting behavior in the pres-
ence of magnetic textures. In particular, such textures
have been argued to be give an important contribution to
the anomalous Hall effect in “colossal magnetoresistance”
materials36 and in MnSi37. Such textures can produced
with a Zeeman field such as of Eq. (1), when it is incom-
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mensurate with the lattice or when the lattice is absent
entirely.
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