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We consider the effects of Umklapp processes in doped two-leg fermionic ladders. These may
emerge either at special band fillings or as a result of the presence of external periodic potentials.
We show that such Umklapp processes can lead to profound changes of physical properties and in
particular stabilize pair-density wave phases.
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I. INTRODUCTION

As is well illustrated by the example of the one-dimensional Hubbard model1, Umklapp processes in strongly
correlated systems may lead to a profound restructuring of the ground state. Indeed, at half filling when the Fermi
wave vector is such that 4kF = 2π, Umklapp scattering processes connect opposite Fermi points and open a spectral
gap for single-particle excitations. In a similar way Umklapp processes in undoped two-leg fermionic ladders are
known to generate a variety of insulating states2–5. In both cases these Umklapp processes become relevant at the
particular density of one electron per site, independently of the details of the interactions. In multi-band systems
such as the 2-leg ladder there are other kinds of Umklapp processes that can connect Fermi points at certain other
band fillings, which generally depend on the microscopic details of both the band structure and the interactions.

One example where such processes may play a crucial role is the “telephone number compound”
Sr14−xCaxCu24O41

6,7. X-ray scattering techniques have established the presence of a standing wave in the hole
density without a significant lattice distortion in this material6. The simplest explanation for these findings is a
crystalline state of pairs of holes8,9. The physical origin of the hole crystal is likely to be the long-ranged Coulomb
interaction between ladders. Treating this interladder Coulomb interaction in a mean-field approximation leads to a
model of decoupled ladders subject to a (self-consistent) periodic potential9. The latter introduces Umklapp processes
and an important question of current interest is what effects these have both on the ground state and excitations of
the ladders.

A second example in which Umklapp processes may be important is x = 1/8 doped La2−xSrxCuO4
10. In this

material regular ”stripe” order is formed below a critical temperature 11. Stripes in neighboring planes are perpen-
dicular to each other and are shifted by one lattice spacing12. The unit cell in the CuO planes contains four sites,
which can be thought of as forming two undoped and two doped chains of atoms. Hence the period in the direction
perpendicular to the CuO planes is four. On the other hand, the doped chains are 3/4 filled. As a result the period
of the potential induced by the neighboring planes is also four, which coincides with the average distance between
holes in the doped chains. A simple model describing this situation is given by doped 2-leg ladders in presence of a
periodic potential. It is well established that La1.875Sr0.125CuO4 exhibits rather exotic 2D superconducting behavior
as a result of the CuO planes being effectively decoupled from one another13,14. Similar dynamical layer decoupling
has recently been observed in heavy fermion superconductor CeRhIn5

15.
Umklapp processes can in principle also be induced by imposing external periodic potentials. This has recently

been demonstrated by adsorbing noble gas monolayers on the surface on carbon nanotubes16.
From a theoretical point of view, there is one particular case, in which it is known that Umklapp processes have

very interesting physical consequences. This occurs in the so-called Kondo-Heisenberg model17,18 (KHM). The latter
describes a situation where the two legs of the ladder are inequivalent. Leg 1 is half-filled and as a consequence of
Umklapp interactions has a large Mott gap, while leg 2 has a density of less than one electron per site. At low energies
tunneling between the legs is not allowed due to the presence of a large Mott gap in leg 1, but virtual processes lead
to a Heisenberg exchange interaction between electron spins on the two legs. The resulting model describing the
low-energy physics of such a 2-leg ladder consists of a spin S=1/2 Heisenberg chain (leg 1) interacting via exchange
interactions with a one-dimensional electron gas (1DEG, leg 2). Generically the Fermi momentum of the 1DEG will be
incommensurate with the lattice. It was demonstrated in17 that this KHM exhibits quasi-long-range order of particular
composite order parameter at a finite wave vector. More recently it was shown18 that there also is quasi-long-range
superconducting order with wave number π, consituting an example of a 1D Fulde-Ferrell-Larkin-Ovchinnikov state19

in the absence of a magnetic field. In very recent work20 it was demonstrated that the pair-density wave (PDW) state
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is in fact much more general and in particular does not require the legs to be inequivalent.
In the following we consider spin-1/2 fermions on a two-leg ladder with Hubbard and nearest-neighbor density-

density interactions. In addition we allow an external periodic potential to be present. The Hamiltonian is given
by

Hladd(K) = −t
∑
m,σ

2∑
`=1

a†`,m+1,σa`,m,σ + a†`,m,σa`,m+1,σ − t⊥
∑
m,α

a†1,m,σa2,m,σ + a†2,m,σa1,m,σ

+ U
∑
m

2∑
`=1

n`,m,↑n`,m,↓ + V⊥
∑
m

n1,mn2,m + V‖
∑
m

2∑
`=1

n`,mn`,m+1 +
∑
m

2∑
`=1

W` cos(Kl) n`,m, (1)

where a`,m,σ are annihilation operators for spin-σ electrons on site m of leg ` of the ladder and n`,m,σ = a†`,m,σa`,m,σ.
U is the Hubbard interaction strength, V⊥ and V‖ are the density-density interaction strengths along the rung and leg
directions respectively and the periodic potential is characterized by its strength on each leg W1,2 and the wavenumber
of its modulation, K. The lattice model (1) has U(1)×SU(2) symmetry, with an additional Z2 symmetry if W1 = W2.
It is useful to rewrite the periodic potential term as∑

m

cos(Km)
[
W+(n1,m + n2,m) +W−(n1,m − n2,m)

]
, (2)

where W± = (W1 ±W2)/2. A nonzero W− breaks the symmetry between the two legs of the ladder. In the following
we consider a case where W− = 0 (“4kb Umklapp”) and one where W+ = 0 (“3kb + kab Umklapp”). A schematic
diagram of the ladder geometry can be seen in Fig. 1. In order see which wave numbers K will lead to the most
pronounced effects for weak interactions and small W1,2 it is useful to consider the band structure of Hladd in the
absence of interactions. It is useful to introduce the bonding (b) and antibonding (ab) variables by

cj,n,σ =
1√
2

(
a1,n,σ − (−1)ja2,n,σ

)
, (3)

where j = 1, 2 = b, ab. In terms of these operators the non-interacting tight-binding Hamiltonian Hladd,0 is diagonal
in momentum space

Hladd,0 =

2∑
j=1

∑
k

εj(k)c†j,σ(k)cj,σ(k) , (4)

where cj,σ(k) = L−1/2
∑
n e

ikncj,n,σ and

ε1(k) = −2t cos(k)− t⊥ , ε2(k) = −2t cos(k) + t⊥ . (5)

The corresponding band structure is shown in Fig. 1(b). For weak interactions the low energy degrees of freedom
occur in the vicinities of nkb and nkab where n in an integer and kb, kab are the Fermi momenta of the bonding and
antibonding bands respectively. It is then clear that external potentials with wave numbers K = n1kb + n2kab will
affect the low-energy degrees of freedom most strongly. In the following we concentrate on the cases K = 3kb + kab
and K = 4kb. As we will see, in the case of strong interactions but small t⊥ an analogous picture applies.

This paper is organized as follows. In Section II we derive the low-energy effective field theories in the “band”
and “chain” limits of the Hamiltonian (1) and discuss how we account for the external periodic potential. In Sec-
tion III we consider the 4kb Umklapp process in both band and chain representations of the model. By means of
renormalization group (RG) methods we derive the effective low energy theories describing the strong coupling fixed
points. In Section IV we analyze the effects of the 3kb + kab Umklapp process at low energies in both band and
chain representations of the model. Section V presents density matrix renormalization group (DMRG) calculations
in intermediate parameter regimes. Section VI contains the conclusions. A number of technical points are discussed
in several appendices.

II. LOW-ENERGY DESCRIPTION

There are two complementary ways of deriving a field theory description of the lattice Hamiltonian (1), each of
which applies to a particular limit of the model. One may start by considering the non-interacting Hamiltonian, di-
agonalizing the tight-binding model by transforming to bonding and antibonding variables and subsequently treating
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FIG. 1: (a): Extended Hubbard Ladder with different leg and rung hopping amplitudes and density-density interactions. (b):
The non-interacting band structure for the tight-binding model on the ladder, with the Fermi wavevectors labelled.

the interaction using perturbative RG methods5,21–23. Hereinafter this approach will be called the “band represen-
tation”. Alternatively, one may start by considering two strongly interacting uncoupled chains and treat the across
rung hopping t⊥ and density-density interaction V⊥ as perturbations24,25. This approach will be referred to as the
“chain representation”. In the following subsections we summarize both approaches in turn.

A. The Band Representation U, Vj � t, t⊥

Here the starting point is the tight-binding model obtained by dropping all interaction terms in the Hamiltonian
(1). The resulting model is diagonalized in terms of the bonding and antibonding (b/ab) variables (3), resulting in
split bonding and antibonding bands (4) as depicted in Fig. 1(b). As we are interested in the low-energy behaviour
of the system, we linearize the spectrum around the Fermi points. The low-energy projections of the lattice fermion
operators are then

cj,n,σ ∼
√
a0

[
Rj,σ(x)eikjx + Lj,σ(x)e−ikjx

]
, (6)

where L(x) and R(x) are left and right moving fermion fields close to the Fermi points, kb (kab) is the Fermi wavevector
in the bonding (antibonding) band and a0 is the lattice spacing, which serves as the short-distance cut-off of the theory.
The interactions are conveniently expressed in terms of currents5, which following Ref.26 we define as

IRij =
1

2
Ri,σ εσσ′ Rj,σ′ , IaRij =

1

2
Ri,σ(εσa)σσ′Rj,σ′ , (7)

JRij =
1

2
R†i,σ Rj,σ , JaRij =

1

2
R†i,σσ

a
σσ′Rj,σ′ , (8)

and similarly for left-moving fermion fields with R ↔ L. The low-energy Hamiltonian then takes the form H =∫
dx [H0 +HU +HW ], where

H0 =

2∑
j=1

vj

(
− iR†j,σ∂xRj,σ + iL†j,σ∂xLj,σ

)
,

HU =
∑
i,j

c̃ρijJ
R
ijJ

L
ij − c̃σijJaRij JaLij +

∑
i 6=j

f̃ρijJ
R
ii J

L
jj − f̃σijJaRii JaLjj ,

HW =
∑
P∈S

∑
γ=±

Wγ,P δK,P

[
ρ

(γ)
P (x) + h.c.

]
. (9)

Here ρ
(γ)
P (x) are the Fourier components of the low-energy projections of n1,l ± n2,l, c.f. Eq. (2), with momenta close

to P ; these components are discussed in some detail in Appendix A. The “4kF ” harmonics of the density operator
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include S = {2kb + 2kab, 4kb, 4kab, 3kb + kab, 3kab + kb}. In the following analysis we consider two particular cases
with P = 4kb and P = 3kb + kab. P = 4kab and P = 3kab + kb can be analysed in a similar manner to the cases
considered by exchange of band indices. The case P = 2kb + 2kab is left for future studies. We note that generically
the “2kF ” response is suppressed away from special fillings, where at least one band is completely filled. The response
at “2kF ” will not be considered in this work. The 4kF components of the density are obtained by integrating out the
high-energy degrees of freedom perturbatively in U , see Appendix B, and are given in terms of the currents as

ρ
(+)
4kb

(x) + h.c. =
(
IL11

)†
IR11 +

(
IR11

)†
IL11 ,

ρ
(+)
4kab

(x) + h.c. =
(
IL22

)†
IR22 +

(
IR22

)†
IL22 ,

ρ
(+)
2kb+2kab

(x) + h.c. = 8
{(
IL12

)†
IR21 +

(
IR21

)†
IL12

}
,

ρ
(−)
kb+3kab

(x) + h.c. = 2
{(
IL22

)†
IR21 +

(
IL21

)†
IR22 +

(
IR22

)†
IL21 +

(
IR21

)†
IL22

}
,

ρ
(−)
3kb+kab

(x) + h.c. = 2
{(
IL11

)†
IR12 +

(
IL12

)†
IR11 +

(
IR11

)†
IL12 +

(
IR12

)†
IL11

}
. (10)

The initial conditions for the coupling constants defined in (9) for the extended Hubbard model are

c̃ρii = U + V⊥ + 4V‖

[
1− 1

2
cos(2kia0)

]
,

c̃ρij = U − V⊥ + 4V‖

[
cos((kb − kab)a0)− 1

2
cos((kb + kab)a0)

]
,

f̃ρij = U + 3V⊥ + 4V‖

[
1− 1

2
cos((kb + kab)a0)

]
,

c̃σii = U + V⊥ + 2V‖ cos(2kia0),

f̃σij = c̃σij = U − V⊥ + 2V‖ cos((kb + kab)a0).

The analysis which we carry out in the band representation requires the bosonized Hamiltonian. Following Ref.27,
we bosonize the Hamiltonian according to

Rd,σ ∼
κd,σ√

2π
ei
√

4πϕd,σ , Ld,σ ∼
κd,σ√

2π
e−i
√

4πϕ̄d,σ , d = 1, 2 = b, ab, (11)

where ϕd,σ (ϕ̄d,σ) is the right (left) chiral component of a canonical boson field and {κd,σ, κd′,σ′} = 2δd,d′δσ,σ′ are
Klein factors to ensure the anti-commutation of different species of fermions. The boson fields have commutation
relations

[ϕd,σ(x), ϕd′,σ′(x
′)] = −[ϕ̄d,σ(x), ϕ̄d′,σ′(x

′)] =
i

4
sgn(x− x′)δd,d′δσ,σ′ , [ϕd,σ(x), ϕ̄d′,σ′(x

′)] =
i

4
δd,d′δσ,σ′ , (12)

which enforce anti-commutation relations for fermions of the same species. Then, we change to spin and charge bosons
according to

Φd,c =
1√
2

[ϕd,↑ + ϕd,↓ + ϕ̄d,↑ + ϕ̄d,↓] , Φd,s =
1√
2

[ϕd,↑ − ϕd,↓ + ϕ̄d,↑ − ϕ̄d,↓] ,

Θd,c =
1√
2

[ϕd,↑ + ϕd,↓ − ϕ̄d,↑ − ϕ̄d,↓] , Θd,s =
1√
2

[ϕd,↑ − ϕd,↓ − ϕ̄d,↑ + ϕ̄d,↓] , (13)

where Φ and Θ are dual bosons obeying [Θ(x),Φ(x′)] = iϑ(x−x′), where ϑ(y) the Heaviside step function. This rela-
tionship also implies that [∂xΘ(x),Φ(x′)] = iδ(x−x′) are canonically conjugate. The resulting bosonized Hamiltonian
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is given by

H0 +HU =

2∑
d=1

vd
2π

∑
γ=c,s

[
(∂xΦd,γ)

2
+ (∂xΘd,γ)

2
]

+
c̃ρdd

(2πa0)2

1

8π

[
(∂xΦd,c)

2 − (∂xΘd,c)
2
]

+
f̃ρ12

4π(2πa0)2
[∂xΦ1,c∂xΦ2,c − ∂xΘ1,c∂xΘ2,c] +

2∑
d=1

c̃σdd
(2πa0)2

[
cos
(√

8πΦd,s
)
− 1

8π

[
(∂xΦd,s)

2 − (∂xΘd,s)
2
]]

+
2f̃σ12

(2πa0)2

[
cos
(√

2π
(
Φ1,s + Φ2,s

))
cos
(√

2π
(
Θ1,s −Θ2,s

))
− 1

8π

(
∂xΦ1,s∂xΦ2,s − ∂xΘ1,s∂xΘ2,s

)]
+

[
c̃ρ12 − c̃σ12

(2πa0)2
cos
(√

2π
(
Θ1,s −Θ2,s

))
− c̃ρ12 + c̃σ12

(2πa0)2
cos
(√

2π
(
Φ1,s − Φ2,s

))]
cos
(√

2π
(
Θ1,c −Θ2,c

))
− 2c̃σ12

(2πa0)2
cos
(√

2π
(
Θ1,c −Θ2,c

))
cos
(√

2π
(
Φ1,s + Φ2,s

))
. (14)

There is a convenient way to classify the ground state phase of the ladder in terms of the spin and charge bosons.
Following Ref.5, phases will be classified by the number of spin and charge bosons which remain gapless. In particular,
we will use the notation CmSn where m is the number of gapless charge bosons and n is the number of gapless spin
bosons.

B. The Chain Representation t⊥ � t, U, t2/U

The field theory for the chain representation of (1) is derived in a succession of steps, outlined below; a detailed
derivation can be found in Ref.25. An important feature of the chain representation is that longer range density-density
interactions along the chain direction ∑

j,l

∑
m≥2

V‖,mnj,lnj,l+m (15)

can be easily accommodated. As long as V‖,m are sufficiently small and decreasing with m, the main effect of this
extended interaction is to decrease the value of Kc in (20). We will make use of this device for tuning the value of
Kc in the following.

The main assumption of the derivation is that the interchain hopping t⊥ is small in comparison to the high-energy
cutoffs, which for V⊥, V‖ � U are given by the single chain band-width and the exchange energy scale (∼ t2/U at
large U). The Hamiltonian is first bosonized for t⊥ = V⊥ = W1,2 = 0 using standard results for the one-dimensional
(extended) Hubbard model1,27. The resulting theory (as long as V‖ is not too large) is the sum of four Gaussian

models for spin and charge bosonic fields in each chain. Denoting the bosonic fields by Φ
(i)
j where i = c, s denotes the

spin or charge sector and j = 1, 2 denotes the chain, we form symmetric and antisymmetric combinations of the fields

Φc =
1√
2

(Φ
(c)
1 + Φ

(c)
2 ), Φf =

1√
2

(Φ
(c)
1 − Φ

(c)
2 ),

Φs =
1√
2

(Φ
(s)
1 + Φ

(s)
2 ), Φsf =

1√
2

(Φ
(s)
1 − Φ

(s)
2 ). (16)

In the absence of a periodic potential and away from commensurate fillings, the Φc field decouples from the other
fields. It is then described by a Gaussian (Tomanaga-Luttinger) theory with the Hamiltonian density

Hc =
vc
2

[
Kc(∂xΘc)

2 +K−1
c (∂xΦc)

2
]
, (17)

where Θc is the dual field to Φc, Kc < 1 is the Luttinger parameter in the charge sector and vc is the charge
velocity. The exact dependence of the two parameters in the Gaussian theory on the underlying lattice parameters is
complicated, but for V‖ = 0 can be extracted from the exact solution of the one-dimensional Hubbard model1,28.

The remaining bosonic fields are refermionized in terms of six Majorana fermion fields. For the right-moving
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components we have

χ0
R =

κsf√
πa0

sin(
√

4πφsf ), χ3
R =

κsf√
πa0

cos(
√

4πφsf ),

χ1
R =

κs√
πa0

sin(
√

4πφs), χ2
R =

κs√
πa0

cos(
√

4πφs) ,

ξ3
R =

κf√
πa0

sin(
√

4πφf ), ηR =
κf√
πa0

cos(
√

4πφf ) , (18)

where φa are the right-moving chiral components of the canonical Bose fields Φa (a = f, s, sf) and κa are Klein factors
fulfilling {κa, κb} = 2δa,b. Analogous expressions with R replaced by L and φ by φ̄ hold for the left-moving modes.

The next step of the derivation introduces the interchain tunneling t⊥. This induces a hybridization between the
η and χ0 fermions. Following25 we examine the part of the Hamiltonian which is quadratic in terms of the η and χ0

Majorana fermions. We linearize the spectrum about the wavevector Q = t⊥/
√
vcvs where E(Q) = 0 and introduce

the new Majorana fermions ξ1,2
R,L which diagonalize the aforementioned quadratic part of the Hamiltonian. The new

Majorana fermions are given by(
χ0
R
ηR

)
=

√
2

vs + vc

( √
vc cos(Qx)

√
vc sin(Qx)

−√vs sin(Qx)
√
vs cos(Qx)

)(
ξ1
R

ξ2
R

)
,(

χ0
L
ηL

)
=

√
2

vs + vc

(√
vc cos(Qx) −√vc sin(Qx)√
vs sin(Qx)

√
vs cos(Qx)

)(
ξ1
L

ξ2
L

)
. (19)

In terms of these new variables the low-energy Hamiltonian takes the form

H = Hc +H0 + Vint +HW , (20)

Hc =
vc
2

[
Kc(∂xΘc)

2 +K−1
c (∂xΦc)

2
]
, (21)

H0 =
ivc
2

(ξ3
L∂xξ

3
L − ξ3

R∂xξ
3
R) +

iu

2

∑
a=1,2

(ξaL∂xξ
a
L − ξaR∂xξaR) +

ivs
2

3∑
a=1

(χaL∂xχ
a
L − χaR∂xχaR) , (22)

Vint = −2(ξ3
Rξ

3
L)
[
gσ,−(χaRχ

a
L) + gc,ss(ξ

1
Rξ

1
L − ξ2

Rξ
2
L)
]
− gρ,−(ξ1

Rξ
1
L − ξ2

Rξ
2
L)2

−2gc,st(ξ
1
Rξ

1
L − ξ2

Rξ
2
L)

3∑
a=1

(χaRχ
a
L)− 2gσ,+

3∑
a>b,a,b=1

(χaRχ
a
L)(χbRχ

b
L) , (23)

HW =
∑
P∈S

∑
σ=±

Wσ,P δK,P

[
ρ

(σ)
P (x) + h.c.

]
. (24)

Here vc,s are the charge and spin velocities of uncoupled chains, S = {4kF , 4kF ±Q, 4kF ± 2Q} and

u =
2vcvs
vs + vc

. (25)

The Hamiltonian Hc+H0+Vint has the same symmetry U(1)×SU(2)×Z2 as the underlying lattice model for W1,2 = 0.
The coupling parameters of the continuum Hamiltonian are determined by the underlying lattice model (1)

gσ− =
α0V⊥

2
, gσ+ =

1

2
πvsgλ, gc,ss = u

(
α0

vs
V⊥ − 2gk

)
,

gc,st = u

(
α0

vc
V⊥ + πgλ

)
, gρ,− =

vsvc
(vs + vc)2

α0V⊥, (26)

where α0 is a short-distance cut-off, gk characterizes the four-fermion interaction in the Φf sector, which for |Kc−1| �
1 is given by gk ≈ 2π (1/Kc − 1), and gλ is the strength of the marginally irrelevant spin-current interaction for a single
extended Hubbard chain, which is known only for small U and V‖. The notable differences between this formulation
and the band representation is the presence of several different velocities vc 6= vs 6= u; for large intrachain interactions
these differences can be significant. The low-energy projections of the periodic potential with wave numbers close to
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4kF are derived in Appendix B 1

ρ
(+)
4kF

(x) ∼ iF

2
ei
√

4πΦc
{
ξ3
Rξ

3
L +

vs
(vs + vc)

[ξ1
Rξ

1
L − ξ2

Rξ
2
L]
}
, (27)

ρ
(+)
4kF−2Q(x) ∼ ivsF

2(vs + vc)
ei
√

4πΦc (ξ1
L − iξ2

L)(ξ1
R + iξ2

R) , (28)

ρ
(+)
4kF+2Q(x) ∼ ivsF

2(vs + vc)
ei
√

4πΦc (ξ1
R − iξ2

R)(ξ1
L + iξ2

L) , (29)

ρ
(−)
4kF−Q(x) = −iF

√
vs

2 (vs + vc)
ei
√

4πΦc
[(
ξ1
R + iξ2

R

)
ξ3
L + ξ3

R

(
ξ1
L − iξ2

L

)]
, (30)

ρ
(−)
4kF+Q(x) = −iF

√
vs

2 (vs + vc)
ei
√

4πΦc
[(
ξ1
R − iξ2

R

)
ξ3
L + ξ3

R

(
ξ1
L + iξ2

L

)]
. (31)

We note that ρ
(+)
4kF

(x) and ρ
(+)
4kF±2Q(x) are even under interchange of chains 1 and 2, while ρ

(−)
4kF±Q(x) are odd.

C. Correspondence between chain and band representations

The correspondence between chain and band representations is as follows

4kF ↔ 2(kb + kab) ,

4kF + 2Q ↔ 4kb ,

4kF − 2Q ↔ 4kab ,

4kF +Q ↔ 3kb + kab ,

4kF −Q ↔ 3kab + kb . (32)

Without lose of generality, we will consider the 4kF +Q and 4kF + 2Q Umklapp scattering processes. The following
analyses are easily performed for Q→ −Q and yield analogous results.

III. 4kb UMKLAPP

In this section we consider the 4kb Umklapp scattering process. This may become activated at commensurate filling
within the bonding band5 or at incommensurate fillings for an applied external potential modulated at 4kb. In the
following we analyze band and chain limits of (1) in turn and discuss the zero temperature phase diagram. The 4kb
Mott insulating phase in the two-leg ladder has been analyzed using RG in the band representation in a very recent
work by Jaefari and Fradkin20, which appeared while our manuscript was being completed. The main result of this
analysis is the existence of a pair-density wave phase. As our discussion differs substantially (both in details of the
RG procedure, the derivation of the low-energy projections of observables and the analysis of dominant correlations),
we nevertheless present it in detail in the following.

A. Band Representation

Here our general approach is to consider the 1-loop RG equations for the Hamiltonian (9) in presence of the 4kb
Umklapp interaction term. In the field theory limit the latter becomes

HW =
ũρ11

2

[
(IL11)†IR11 + (IR11)†IL11

]
. (33)

= − uρ11

(2πa0)
2 cos

(√
8πΦ1,c

)
. (34)



8

In the notations of Refs.23,26, the one-loop RG equations are

ċρ11 = −α1

4

[
(cρ12)2 + 3(cσ12)2

]
+
(
uρ11

)2
,

ċρ12 = −1

4
[cρ11c

ρ
12 + 3cσ11c

σ
12]− 1

4
[cρ12c

ρ
22 + 3cσ12c

σ
22] +

1

2
[cρ12f

ρ
12 + 3cσ12f

σ
12] ,

ċρ22 = −α1

4

[
(cρ21)2 + 3(cσ21)2

]
,

ċσ11 = −(cσ11)2 − α1

2
cσ12(cρ12 + cσ12) ,

ċσ12 = −1

4
[(cρ11 + cρ22)cσ12 + (cρ12 + 2cσ12)(cσ11 + cσ22)] +

1

2
[cρ12f

σ
12 + cσ12f

ρ
12 − 2cσ12f

σ
12] ,

ċσ22 = −(cσ22)2 − α1

2
cσ12(cρ12 + cσ12) ,

ḟρ12 =
1

4

[
(cρ12)2 + 3(cσ12)2

]
,

ḟσ12 = −(fσ12)2 +
1

2
cσ12(cρ12 − cσ12) ,

u̇ρ11 = cρ11 u
ρ
11, (35)

where α1 = (v1 + v2)2/(4v1v2) and the coupling constants have been rescaled by g̃ij = gijπ(v1 + v2). Equations (35)
agree with the RG equations reported in Ref.5 up to a factor of 2 in the equation for uρ11.

Further progress is made by numerically integrating these equations. We consider the case where the Umklapp
interaction emerges at a particular doping of an extended Hubbard ladder. We further restrict our discussion to
(sufficiently) small values of V⊥/U and V‖/U . Then, the numerical integration of Eqs. (35) gives

cρ11, u
ρ
11 →∞, with cρ11/u

ρ
11 → 1, (36)

whilst all other couplings remain small (their ratios to cρ11 vanish).
The coupling constants which flow to strong coupling are only in the bonding charge (1, c) sector of the bosonized

Hamiltonian (14) and cause the Φ1,c boson to become massive. Now, we employ two-cutoff scaling27, where we
integrate out the now massive Φ1,c boson and its disordered dual Θ1,c perturbatively in the remaining small couplings.
Expanding the partition function to second order in the small couplings, we obtain an effective action

Seff ≈ S̃0 + 〈S̃int〉1,c −
1

2

[
〈S̃2

int〉1,c − 〈S̃int〉21,c
]

+ . . . , (37)

with

〈O〉1,c =

∫
DΦ1,c e

−S1,c O, (38)

S1,c =

∫
dxdτ

{(
1 +

cρ11

8πv1(2πa0)2

) [
v1

(
∂xΦ1,c

)2
+

1

v1

(
∂τΦ1,c

)2]− uρ11

(2πa0)2
cos
√

8πΦ1,c

}
, (39)

S̃int =

∫
dxdτ

{
fρ12

(2πa0)2

1

4π

[
∂xΦ1,c∂xΦ2,c +

1

v1v2
∂τΦ1,c∂τΦ2,c

]
+
cρ12 − cσ12

(2πa0)2
cos
(√

2π
(
Θ1,c −Θ2,c

))
cos
(√

2π
(
Θ1,s −Θ2,s

))
−c

ρ
12 + cσ12

(2πa0)2
cos
(√

2π
(
Θ1,c −Θ2,c

))
cos
(√

2π
(
Φ1,s − Φ2,s

))
−2

cσ12

(2πa0)2
cos
(√

2π
(
Θ1,c −Θ2,c

))
cos
(√

2π
(
Φ1,s + Φ2,s

))}
, (40)

and S̃0 describes all other terms in the action which do not feature 1, c bosons. The action for the bonding charge
boson S1,c is an effective Sine-Gordon model27. The RG flow of the coupling uρ11 pins the charge boson Φ1,c to zero.
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Thus 〈Φ1,c〉1,c = 0 and two-point functions obey〈
eiβΘ1,c(τ,x)e−iβ

′Θ1,c(τ
′,x′)

〉
1,c
∝ δβ,β′e

−r1/ξ,

〈∂yΦ1,c(τ, x)∂y′Φ1,c(τ
′, x′)〉1,c ∝ ∂y∂y′

e−2r1/ξ

(2r1/ξ)
2 ,〈

∂yΦ1,c(τ, x)e−iβ
′Θ1,c(τ

′,x′)
〉

1,c
= 0, (41)

where y = x, v1τ and r2
1 = v2

1(τ − τ ′)2 + (x− x′)2. The first relation follows from topological charge conservation in
the sine-Gordon model and the second follows from the properties of massive bosons in one-dimensional systems. For
all other operator product expansions we use those of the corresponding Gaussian models. To second order in the
perturbative expansion the effective Hamiltonian density is of the form

Heff =
v̄2

2π

[
1

K2,c
(∂xΦ2,c)

2
+K2,c (∂xΘ2,c)

2

]
+

2∑
d=1

v̄d
2π

[
(∂xΦd,s)

2
+ (∂xΘd,s)

2
]

+ c̄σdd

[
cos
(√

8πΦd,s
)
− 1

8π

[
(∂xΦd,s)

2 − (∂xΘd,s)
2
]]

+ 2f̄σ12

[
cos
(√

2π(Φ1,s + Φ2,s)
)

cos
(√

2π(Θ1,s −Θ2,s)
)
− 1

8π

(
∂xΦ1,s∂xΦ2,s − ∂xΘ1,s∂xΘ2,s

)]
+ λ cos

(√
2π(Φ1,s − Φ2,s)

)
cos
(√

2π(Θ1,s −Θ2,s)
)
, (42)

where λ is a coupling constant generated in the RG procedure, which is second order in the remaining small couplings.
The λ-term carries conformal spin and as a result only has minor effects at weak coupling17. The structure of the
low-energy effective field theory Heff is the same as for the KHM17. We therefore can take over the RG analysis
of29 in order to infer the phase diagram. In the KHM there are two distinct phases: for ferromagnetic Heisenberg
exchange interactions between the spin-chain and the one-dimensional electron gas (1DEG) the RG flow is towards
weak coupling and approaches a C1S2 fixed point, described by a 3-component Luttinger liquid Hamiltonian for the
Φ2,c, Φ1,s and Φ2,s bosons. On the other hand, for antiferromagnetic Heisenberg exchange interactions between the
spin-chain and the one-dimensional electron gas (1DEG) the RG flow is towards strong coupling. Spin gaps open in
both spin sectors and one ends up with a C1S0 phase.

Which phase the Hamiltonian (42) flows to under RG depends on the values of the bare couplings and concomitantly
the ratios V‖/U and V⊥/U .

1. C1S2 Phase

For Hubbard model initial conditions the RG flow of (42) is always towards weak coupling as discussed by Balents
and Fisher5. This corresponds to ferromagnetic exchange between the spin-chain and the one-dimensional electron
gas (1DEG) in the KHM. More generally, we find that this phase occurs for f̌σ12 > 0, where f̌σ12 is the initial value
of the coupling f̄σ12 after integrating out the 1, c boson in our two-cutoff RG scheme. Integrating the RG equations
(35) with extended Hubbard model initial conditions (11) we observe that the values of fσ12 after the initial flow in
our two-cutoff scheme are positive, as long as V‖/U and V⊥/U are sufficiently small. Assuming that f̌σ12 are close to

the values of fσ12 after the initial flow47 this implies that the extended Hubbard model (1) with a half-filled bonding
band describes a C1S2 phase as long as V‖/U and V⊥/U are sufficiently small.

2. C1S0 Phase

Using the interpretation of (42) as the low-energy limit of a KHM, there is a second parameter regime, namely the
one corresponding to antiferromagnetic exchange interaction between the spin-chain and the 1DEG. Here it is known
that the RG flow is towards a strong coupling phase in which both spin bosons become gapped17. This phase occurs
when f̌σ12 < 0. following through the same arguments as in the C1S2 case, we conclude that the resulting C1S0 phase
occurs when V‖/U , V⊥/U are sufficiently large. In other words, the Coulomb interactions should not be screened too
strongly in order for the C1S0 phase to exist.

Next we turn to the characterization of the physical properties of the C1S0 phase. In this we are guided by
the existing field theory17,18 and numerical18 studies of the KHM. In particular it is known that the KHM exhibits
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unconventional finite-wavevector pairing18. In terms of the field theory the C1S0 phase is characterized by17

〈cos
(√

8πΦ1,c

)
〉 6= 0 , 〈cos

(√
2π(Φ1,s + Φ2,s)

)
〉 6= 0 , 〈cos

(√
2π(Θ1,s −Θ2,s)

)
〉 6= 0. (43)

Concomitantly Θ1,c, (Θ1,s + Θ2,s) and Φ1,s − Φ2,s are fluctuating fields, i.e. one-point functions of vertex operators
of these fields vanish and (appropriate) two-point functions decay exponentially. Using the fact that the expectation
values (43) are non-zero and that the only remaining gapless degree of freedom is the antibonding charge sector we
can establish the dominant quasi long range order in the C1S0 phase. To this end we consider the following order
parameters:
(1) bonding charge density wave (bCDW)

ObCDW (n) =
1

2

∑
σ=↑,↓

(
a†1,n,σ + a†2,n,σ

)(
a1,n,σ + a2,n,σ

)
. (44)

Bosonizing this at vanishing interactions gives

ObCDW (x) ∼ a0

√
2

π
∂xΦ1,c −

1

π
sin(2kbx+

√
2πΦ1,c) cos(

√
2πΦ1,s) + . . . (45)

(2) charge density wave (CDW)

OCDW (n) =
∑
σ=↑,↓

a†1,n,σa1,n,σ + a†2,n,σa2,n,σ

∼ a0

√
2

π
∂x(Φ1,c + Φ2,c)−

1

π
cos
(√

2πΦ1,s

)
sin
(
2kbx+

√
2πΦ1,c

)
− 1

π
cos
(√

2πΦ2,s

)
sin
(
2kabx+

√
2πΦ2,c

)
+

+Aei
√

2π(Φ1,c+Φ2,c) cos
(√

2π(Θ1,s −Θ2,s)
)

cos
(
2(kab + kb)x

)
+ . . . (46)

where A is an amplitude which vanishes in the U → 0 limit. This interaction induced terms for the charge density
wave operator are derived in Appendix (B). Using that that certain operators obtain expectation values in the C1S0
phase (43), we find the leading contribution is

OCDW (n)

∣∣∣∣
C1S0

∼ Ã cos
(
2(kb + kab)n

)
ei
√

2πΦ2,c + . . . (47)

(3) d-wave superconductivity (SCd)

OSCd(n) = a1,n,↑a2,n,↓ + a2,n,↑a1,n,↓

∼ 2ei
√

2πΘ1,c cos(
√

2πΦ1,s)− 2ei
√

2πΘ2,c cos(
√

2πΦ2,s)

+2ei
√

2πΘ1,c cos
(
2kbx+

√
2πΦ1,c

)
− 2ei

√
2πΘ2,c cos

(
2kabx+

√
2πΦ2,c

)
+ . . . (48)

(4) antibonding pairing (abP)

OabP (n) = (a†1,n,↑ − a
†
2,n,↑)(a

†
1,n+1,↓ − a

†
2,n+1,↓)− (a†1,n,↓ − a

†
2,n,↓)(a

†
1,n+1,↑ − a

†
2,n+1,↑)

∼ A0e
−i
√

2πΘ2,c

[
cos
(
2kab(x+

a0

2
) +
√

2πΦ2,c

)
+ cos

(√
2πΦ2,s

)
sin(kaba0)

]
+ ei

√
2πΘ2,c

{[
C1 cos

(√
4πΦ+,s

)
− C3 cos

(√
4πΘ−,s

)]
cos
(√

2πΦ1,c + 2kbx
)

+

[
C2 cos

(√
4πΦ+,s

)
− C4 cos

(√
4πΘ−,s

)]
sin
(√

2πΦ1,c + 2kbx
)}

+ . . . (49)

where the amplitudes Ca vanish in the U → 0 limit, Φ+,s = (Φ1,s + Φ2,s)/
√

2 and Θ−,s = (Θ1,s − Θ2,s)/
√

2. The
interaction-induced contribution in the bosonized expression (49) is derived in Appendix C. Using that some of the
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operators occurring in (49) have non-zero expectation values in the C1S0 phase (43), we conclude that the leading
contribution is

OabP (n)

∣∣∣∣
C1S0

∼ (−1)nC̃ei
√

2πΘ2,c + . . . (50)

The bosonized form (50) of OabP (n) coincides with the PDW order parameter identified by Berg et. al. in the low-
energy description of the KHM18, and with the analogous oder parameter OPDW proposed by Jaefari and Fradkin
for the doped two-leg ladder20.

Using the bosonized expressions of the various order parameters together with (43) we obtain the following results
for the long-distance asymptotics of correlation functions in the C1S0 phase

〈OCDW (x) O†CDW (0)〉 ∝ x−2 + cos
(
2(kb + kab)x

) A
|x|K2,c

+ . . . ,

〈ObCDW (x) O†bCDW (0)〉 ∝ e−|x|/ξb (at 2kb) + . . . ,

〈OSCd(x) O†SCd(0)〉 ∝ cos(2kabx)
1

|x|K2,c

1

|x|1/K2,c
+ . . . ,

〈OabP (x) O†abP (0)〉 ∝ (−1)x/a0

|x|1/K2,c
+ . . . , (51)

where ξb is correlation length for the bonding charge boson and K2,c is the Luttinger parameter for the charge sector
of the antibonding band. These results suggest that there are two different regimes:

1. K2,c < 1

Here the slowest decay of correlations is between the 2kab + 2kb components of OCDW . Hence the C1S0 phase
is identified as an incommensurate charge density wave.

2. K2,c > 1

Here the slowest decay of correlations is between the staggered components of OabP and concomitantly the C1S0
phase exhibits unconventional fluctuation superconductivity with finite wavenumber pairing. This “pair-density
wave” phase was identified in20.

Which regime is realized depends on the precise values of the microscopic parameters V⊥, V‖. Integration of the RG
equations (35) suggests that both regimes of K2,c can be realized, although K2,c < 1 seems to be the more generic
case.

As we mentioned before, the above analysis pertains to the case in which the Umklapp interaction is present
automatically as a consequence of the bonding band being half-filled. In the case when the Umklapp interaction is
induced through an external periodic potential, we expect the same physics to emerge at low energies and in particular
both C1S2 and C1S0 phases to exist.

B. Chain Representation

We now consider the effects of the 4kb Umklapp interaction in the chain representation. In order to simplify the
analysis we will focus on the case of extended density-density interactions along the chains, which have the effect of
decreasing the value of Kc (see the discussion at the beginning of section II B). The low energy projection of the
Umklapp term is

HW = λ

∫
dx
[
iei
√

4πKcΦc
(
ξ1
R − iξR2

) (
ξ1
L + iξ2

L

)
+ h.c.

]
, (52)

where we have rescaled the boson field Φc to absorb the Luttinger parameter in the kinetic term of the Hamiltonian.
The perturbation HW has scaling dimension d = 1 + Kc < 2 (for generic repulsive interactions) and so this term is
relevant in the RG sense. For long-range Coulomb interactions along the chains the Luttinger parameter becomes
small Kc � 1 and this term is strongly relevant in the RG sense. It will therefore dominate the marginal four-fermion
interactions in (20) and should be treated first. The Umklapp term is simplified by combining the Majorana fermions

into a complex (Dirac) fermion according to R = (ξR1 + iξR2 )/
√

2 and L† = (ξ1
L − iξ2

L)/
√

2 and then bosonizing R,L
in terms of a Bose field Φ̄ and its dual field Θ̄ following Ref.27. This gives

HW =
2λ

π

∫
dx cos

[√
4π(
√
KcΦc + Φ̄)

]
. (53)
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We proceed by carrying out a canonical transformation

Φ± =
1√
2

(√
KcΦc ± Φ̄

)
, Θ± =

1√
2

(
Θc√
Kc

± Θ̄

)
, (54)

where Θc is the field dual to Φc. In terms of the new bosonic fields the Hamiltonian density can be written as

H =
v

2

[
K (∂xΘ+)

2
+K−1 (∂xΦ+)

2
]

+m cos
(√

8πΦ+

)
+
v

2

[
K (∂xΘ−)

2
+K−1 (∂xΦ−)

2
]

+ g1∂xΘ+∂xΘ− + g2∂xΦ+∂xΦ− +
ivc
2

(
ξ3
L∂xξ

3
L − ξ3

R∂xξ
3
R

)
+

+
ivs
2

∑
a

(χaL∂xχ
a
L − χaR∂xχaR)− 2gσ−

(
ξ3
Rξ

3
L

)∑
a

(χaRχ
a
L)− 2gσ+

∑
a>b

(χaRχ
a
L)
(
χbRχ

b
L

)
−
(
ξ1
Rξ

1
L − ξ2

Rξ
2
L

) [
2gc,ss

(
ξ3
Rξ

3
L

)
+ gρ,−

(
ξ1
Rξ

1
L − ξ2

Rξ
2
L

)
+ 2gc,st

∑
a

(χaRχ
a
L)

]
, (55)

where g1,2 and m are redefined coupling constants and

v =
1

2

√(
vc + ũ/Kc

)(
vc + ũKc

)
, K2 = Kc

ũ+ vcKc

vc + ũKc
. (56)

As we are considering strongly repulsive interactions we have K � 1. By construction the cosine term in the sine-
Gordon model for the Φ+ boson is strongly relevant and will reach strong coupling before any of the other running
couplings becomes large. In other words, the Umklapp-induced gap in the Φ+ sector will be large compared to all
other low-energy scales.

In the next step we want to integrate out the Φ+ boson, similarly to what we did in the band representation. To
this end we express the ξ1,2 Majorana fermions in terms of the Dirac fermions R and L and then proceed to bosonize
them. The four-fermion interactions that involve the ξ1,2 Majorana fermions are proportional to(

ξ1
Rξ

1
L − ξ2

Rξ
2
L

)
=

1

2

[(
ξ1
R + iξ2

R

) (
ξ1
L + iξ2

L

)
+
(
ξ1
R − iξ2

R

) (
ξ1
L − iξ2

L

)]
,

= R†L† +RL ∼ i

2π
cos
[√

2π (Θ+ + Θ−)
]
. (57)

When integrating out the Φ+ boson we therefore only generate interactions proportional to cos
(√

8πΘ−
)
, which are

irrelevant as K � 1. At energies small compared to the mass gap of the Φ+ boson, the effective Hamiltonian density
has the form

Heff =
ṽ

2

[
K̃ (∂xΘ−)

2
+ K̃−1 (∂xΦ−)

2
]

+
ivc
2

[
ξ3
L∂xξ

3
L − ξ3

R∂xξ
3
R

]
+

ivs
2

[χaL∂xχ
a
L − χaR∂xχaR]− 2g̃σ−

(
ξ3
Rξ

3
L

)∑
a

(χaRχ
a
L)− 2g̃σ+

∑
a>b

(χaRχ
a
L)
(
χbRχ

b
L

)
. (58)

where g̃ are renormalized couplings, ṽ is the renormalized velocity and K̃ is the renormalized Luttinger parameter.
The effective Hamiltonian (58) is remarkably similar in form to the field theory limit of the KHM with the difference
that the velocity of the singlet and triplet Majorana modes are not equal.

In order to analyze the effective theory (58) further we carry out a RG analysis, which gives

˙̃gσ− = − 2

πvs
g̃σ−g̃σ+ , ˙̃gσ+ = −

g̃2
σ−
πvc
−
g̃2
σ+

πvs
. (59)

These RG equations are easily integrated. Defining g± = g̃σ−
π
√
vcvs
± g̃σ+

πvs
, Eqs. (59) become ġ± = ∓g2

±, which have the

solution

g±(l) =
g±(l0)

1± g±(l0)(l − l0)
. (60)

Assuming that gσ,± renormalize only weakly from their bare values up to the RG time l0 at which the Φ+ sector
reaches strong coupling, we conclude that

g̃σ,±(l0) > 0. (61)
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This then implies that the RG flow of g+ is always towards weak coupling. On the other hand, g− flows to a strong
coupling C1S0 fixed point if

g̃σ−(l0) > g̃σ+(l0)

√
vc
vs
, (62)

In order to get a sense of what this requirement implies in terms of the underlying microscopic theory we consider
the case when g̃σ±(l0) are close to their bare values and U, V‖, V⊥ are small. Then

gσ− ∼
V⊥a0

2
, gσ+ ∼ a0

(
U + 2 cos(2kFa0)V‖

)
, (63)

where a0 is the lattice spacing and kF ≈ π/2.

V⊥ & 2

√
vc
vs

(
U − 2V‖). (64)

Hence, just as was the case for the weak-coupling analysis of the previous subsection, having repulsive interactions
between neighboring sites is crucial for driving the systems into a C1S0 phase. Having established the existence of a
C1S0 phase in the chain representation, the next step would be to determine which correlations are dominant. This is
difficult for the following reason. General local observables can be expressed in terms of Ising models, but it remains
an open problem to determine how products of Ising order and disorder operators transform under (19).

IV. 3kb + kab UMKLAPP

In this section we consider the 3kb + kab Umklapp process. Unlike in the 4kb case, where the Umklapp emerged
automatically for a particular value of the doping as a result of the Hubbard interaction, we now need to introduce
an external periodic potential with the appropriate modulation.

A. Chain Representation

The 3kb+kab Umklapp is most easily treated in the chain representation. We add to the low-energy Hamiltonian (20)
the term

HW = λ

∫
dx
[
ρ

(−)
4kF,0+Q(x) + h.c.

]
= −iλ

∫
dx
[
(cos

(√
4πΦc

)
ξ1
R − sin

(√
4πΦc

)
ξ2
R)ξ3

L + ξ3
R(cos

(√
4πΦc

)
ξ1
L + sin

(√
4πΦc

)
ξ2
L)
]
, (65)

The scaling dimension of HW is d = 1 +Kc < 2 and the Umklapp is therefore strongly relevant in the RG sense for
the case of strong, long-ranged repulsive interactions (Kc � 1), see the discussion at the beginning of section II B.
In this case, the Umklapp term quickly flows to strong coupling under RG, while other interactions remain small in
comparison. However, a näıve mean-field treatment of the Umklapp term is not possible as it would break a (hidden)
continuous U(1) symmetry of the Hamiltonian. In order to analyze the effects of HW we therefore perform a field
redefinition (in the path integral)

ξ1
R = cos

(√
4πΦc

)
r + sin

(√
4πΦc

)
r0, ξ2

R = − sin
(√

4πΦc
)
r + cos

(√
4πΦc

)
r0,

ξ1
L = cos

(√
4πΦc

)
l − sin

(√
4πΦc

)
l0, ξ2

L = sin
(√

4πΦc
)
l + cos

(√
4πΦc

)
l0. (66)

The new fields r0, l0, r, l are fermionic in nature and the Jacobian of (66) is unity. The transformation (66) diagonalizes
the Umklapp interaction and removes from it the total charge boson Φc

HW = iλ(ξ3
Lr + lξ3

R). (67)
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The Lagrangian density then reads

L =
1

8π

[
v−1
c (∂τΦ)2 + vc(∂xΦ)2

]
+
√
Kcrr0(∂τ − iu∂x)Φ−

√
Kcll0(∂τ + iu∂x)Φ

+
1

2
r(∂τ − iu∂x)r +

1

2
r0(∂τ − iu∂x)r0 +

1

2
l(∂τ + iu∂x)l +

1

2
l0(∂τ + iu∂x)l0

+
1

2
ξ3
R(∂τ − ivc∂x)ξ3

R +
1

2
ξ3
L(∂τ + ivc∂x)ξ3

L +
1

2

3∑
a=1

[
χaR(∂τ − ivs∂x)χaR + χaL(∂τ + ivs∂x)χaL

]
+ iλ(ξ3

Lr + lξ3
R) + Vint, (68)

where we have defined Φ =
√

4π/KcΦc and

Vint = −2gs,cc(ξ
3
Rξ

3
L)(rl − r0l0)− gρ,−(rl − r0l0)2

− 2
[
gc,st(rl − r0l0) + gσ,−(ξ3

Rξ
3
L)
]∑

a

(χaRχ
a
L)− 2gσ,+

∑
a>b

(χaRχ
a
L)(χbRχ

b
L). (69)

To make further progress we now drop the terms containing rr0∂Φ and ll0∂Φ. These terms carry non-zero Lorentz
spin and do not produce singularities in perturbation theory. We also note that the corresponding interaction vertices
do not induce a mass for the r0 or l0 fermions.

Inspection of (68) then indicates that the Umklapp interaction acts as a mass term for the fermions (r, ξ3
L) and

(l, ξ3
R) and the neglected terms renormalize these gaps, in accordance with the scaling dimension of the original HW .

These substantial gaps allow us to integrate out the Fermi fields r, l, ξ3
R,L, leading to the following effective theory at

low energies

Heff = Hc + i
u

2
(l0∂xl0 − r0∂xr0) +

ivs
2

∑
a

(χaL∂xχ
a
L − χaR∂xχaR)

+ 2g̃c,st(r0l0)
∑
a

(χaRχ
a
L)− 2g̃σ+

∑
a>b

(χaRχ
a
L)(χbRχ

b
L). (70)

This effective Hamiltonian is of the same form as (58), found in the analysis of the 4kF + 2Q Umklapp, so it also is
similar to the KHM. If the four-fermion couplings are large, such that we can perform a mean-field treatment, the
resulting theory is a C1S0 phase, where the charge boson Φc remains massless, whilst the r0, l0 and χ Majorana
fermions have dynamically generated masses. To extract the low-energy behavior of our effective Hamiltonian with
weak four-fermion coupling, let us consider the RG equations

˙̃gc,st = − 2

πvs
g̃c,stg̃σ+, (71)

˙̃gσ+ = −
g̃2
c,st

πu
−
g̃2
σ+

πvs
. (72)

These equations can be integrated in the same way as (59). The RG flow is towards a C1S0 strong coupling phase if

g̃c,st(l1) > g̃σ+(l1)

√
u

vs
, (73)

where l1 is the RG time at which the Umklapp interaction strength λ reaches strong coupling. Considering the case
when the renormalized couplings are close to their original values we find that (73) is generically satisfied as for
repulsive interactions vs < vc.

In summary, depending on the values of the coupling constants the effective Hamiltonian (70) describes either a
C1S2 or a C1S0 phase. When the criterion (73) is not met, the effective Hamiltonian flows to weak-coupling under
RG and we end up in a C1S2 phase, where only the antisymmetric charge boson obtains a mass. Pairing fluctuations
may occur with finite-wavevector, but the correlations are unlikely to be dominant in the absence of a spin gap. On
the other hand, if (73) is fulfilled there is a spin gap and it is tempting to speculate that at low energies strong
superconducting correlations exist. The determination of the long-distance asymptotics of local operators in this
C1S0 phase is difficult, because their field theory expressions generally involve Ising order and disorder operators and
it is not known how these transform under (19).
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B. Band Representation

In the band representation the 3kb + kab Umklapp scattering adds a term to the Hamiltonian (9) of the form

HW = λ̃

∫
dx (IL11)†IR12 + (IL12)†IR11 + H.c. (74)

In the absence of the Umklapp interaction, the one-loop RG equations have been derived in5,26. The additional terms
in the one-loop RG equations are most easily derived using operator product expansions. The one-loop RG equations
are found to be of the form

ċρ11 = −α2

4

[
(cρ12)2 + 3(cσ12)2

]
+ 2λ2 ,

ċρ12 = −1

4
[cρ11c

ρ
12 + 3cσ11c

σ
12]− 1

4
[cρ12c

ρ
22 + 3cσ12c

σ
22] +

1

2
[cρ12f

ρ
12 + 3cσ12f

σ
12] + λ2 ,

ċρ22 = −α2

4

[
(cρ21)2 + 3(cσ21)2

]
,

ċσ11 = −(cσ11)2 − α2

2
cσ12(cρ12 + cσ12) ,

ċσ12 = −1

4
[(cρ11 + cρ22)cσ12 + (cρ12 + 2cσ12)(cσ11 + cσ22)] +

1

2
[cρ12f

σ
12 + cσ12f

ρ
12 − 2cσ12f

σ
12] ,

ċσ22 = −(cσ22)2 − α2

2
cσ12(cρ12 + cσ12) ,

ḟρ12 =
1

4

[
(cρ12)2 + 3(cσ12)2

]
+ λ2 ,

ḟσ12 = −(fσ12)2 +
1

2
cσ12(cρ12 − cσ12) ,

λ̇ =
λ

2
[cρ11 + cρ12 + fρ12] . (75)

where α2 = (v1 + v2)/4v1v2 and the coupling constants have been rescaled according to

cij =
c̃ij

π(vi + vj)
, fij =

f̃ij
π(vi + vj)

, λ =
λ̃√

2πv1π(v1 + v2)
. (76)

The next step is then to numerically integrate (75) in an attempt to infer the strong-coupling fixed point. To be
explicit, let us consider a particular example at vanishingly weak coupling, when the the 3kb+kab Umklapp interaction
emerges at a particular band filling. In the absence of interactions the Fermi momenta of bonding/antibonding bands
are

kb = arccos

(
− t⊥ + µ

2t

)
kab = arccos

(
t⊥ − µ

2t

)
. (77)

For the Umklapp to be present as a result of the Hubbard interactions we require 3kb +kab = 2π. For the ladder with
2t⊥ = t this corresponds to a chemical potential of µ = −0.245898t, resulting in vb = 1.98380ta0, vab = 1.85570ta0,
and concomitantly α = 1.0011. Integrating the RG equations leads to a flow with fσ12 → 0, cρ12 →∞ and

cρ11 → −
1

2
cρ12 , cρ22 → −

1

2
cρ12 , fρ12 →

1

2
cρ12 ,

cσ11 → −c
ρ
12 , cσ22 → −c

ρ
12 , cσ12 → cρ12 . (78)

In the case when U = 8V‖ = 16V⊥ and Umklapp coupling λ̃ = U , the RG flow is fρ12 →∞ while

cσij
fρ12

→ 0 ,
fσ12

fρ12

→ 0 ,
cρ11

fρ12

→ 0.9869 ,
cρ12

fρ12

→ 0.1648 ,
cρ22

fρ12

→ −0.006568 ,
λ

fρ12

→ 0.7169. (79)

Provided the extended interactions are sufficiently weak, we find the same pattern of diverging couplings, but the
final ratios depend on v1,2. In the band representation it is difficult to analyze the fixed point Hamiltonian further
and we leave this for future studies.
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V. NUMERICAL RESULTS: DMRG

In this section we use the density matrix renormalization group (DMRG) algorithm35,36 to study the extended
Hubbard model on the two-leg ladder. Hubbard-like models have been previously studied using DMRG, both on
single chains and multiple leg ladders37–44. In the following we first consider the case where the Umklapp interaction
does not play a role and analyze the resulting “generic strong coupling regime” in Section V A. Having established
this crucial reference point, we then turn to the case where the Umklapp interaction is marginally relevant.

A. Generic Strong Coupling Regime

For sufficiently small extended interactions, the (weak-coupling) RG flow of the model is towards a strong-coupling
fix point described by a SO(6) Gross-Neveu model5,21,23,31, which can be analyzed by exact methods30. In this theory
three of the bosons, Θ−,c, Φ+,s and Φ−,s, become massive under the RG flow whilst the remaining massless charge
boson Φ+,c is described by a U(1) Luttinger liquid theory. These fields are related to the previously introduced bosonic

fields by Θ±,d = (Θ1,d ±Θ2,d)/
√

2 and Φ±,d = (Φ1,d ±Φ2,d)/
√

2 for d = c, s. The values to which the bosons become
pinned by the RG flow can be extracted from a classical analysis of the effective theory. Following such an analysis,
the asymptotic form of the two-point function of the order parameters discussed in Section III A 2 are found to be5,31

〈OCDW (x) O†CDW (0)〉Generic ∝ A1x
−2 +A2 cos

(
2(kb + kab)x

)
x−2Kc ,

〈OSCd(x)O†SCd(0)〉Generic ∝ |x|−1/2Kc ,

〈OabP (x)O†abP (0)〉Generic ∝ |x|−1/2Kc , (80)

where Kc is the Luttinger parameter for the remaining massless Φ+,c boson. The 2kF response of the CDW and bCDW
order parameters are blocked by the presence of a spin gap, as is discussed in Appendix A 1. The second term in the
two-point function of the charge density wave (CDW) order parameter is interaction-induced, with the amplitude A2

vanishing in the U → 0 limit; further discussion of interaction-induced terms may be found in Appendix B.
As an example of the generic strong coupling regime, we present results for the Hamiltonian (1) on the 64 × 2

ladder with t = t⊥ = 1, U = 4 and V‖ = V⊥ = W1,2 = 0. As is usual with DMRG calculations, we take open

boundary conditions on the ends of the ladder36. We consider the system with N = 110 electrons and keep up to
m = 1500 density matrix states in the DMRG simulation, leading to truncation errors of ∼ 3× 10−6. Performing an
extrapolation of the ground state energy per site against the number of density matrix states kept in the calculation
allows one to estimate the relative error in quantities calculated by the DMRG algorithm. We define the relative error
in the ground state energy per site ε = (Ē0 − ĒDMRG)/Ē0, where Ē0 is the extrapolated value and ĒDMRG is the
measured value for the ground state energy per site. In this case, we find that m = 1500 density matrix states results
in a relative error of ε ≈ 5× 10−4.

Figure 2 shows the calculated two-point functions of the SCd and abP order parameters and appropriate power law
fits. Additional oscillations at 2kab are observed in the two-point function of the antibonding pairing order parameter,
which may be due to a small amplitude for the power law decay term and/or a large spin-correlation length for the
exponentially decaying terms. This would be consistent with a small spin gap in the system. The power law fits to
the two-point functions give the Luttinger parameter for the massless Φ+,c boson as Kc ≈ 0.45.

Figure 3 show the one-point function of the density operator across leg-1 of the ladder. The oscillations in the
density are induced by the the open boundary conditions on the ends of the ladder. The presence of a spin gap in
the system suppresses the 2kF response (Friedel oscillations) in the ladder, consequently the leading order oscillations
occur at 4kF = 2(kb + kab), known as “Wigner crystal” oscillations45. We fit the “Wigner crystal” oscillations to the
standard form45

〈n(x)〉4kF = ρ+A
sin (4kFx+ ϕ)

sin
(

π
L+1x

)2Kc
, (81)

where A and ϕ are fitting parameters, ρ is the average electron density and L is the length of the ladder. Additional
oscillations which arise in the one-point function of the density operator are from the sub-leading contributions to
the density operator, such as those discussed in Appendix B. In the presented fit we use the value for the Luttinger
parameter extracted from the two-point functions of the SCd and abP order parameter. The value of the Luttinger
parameter is also consistent with the long-distance asymptotics of the two-point function of the charge density operator,
as would be expected from the analysis of the one-point function.
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It is clear that the dominant correlations for the discussed generic strong coupling regime depend upon the micro-
scopic parameters of the Hamiltonian (1). For the case which we have considered, the Luttinger parameter Kc < 1/2
and the phase is best described by charge density wave correlations, with the leading contribution arising from the
2(kb + kab) interaction-induced component of the charge density.
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FIG. 2: DMRG data (solid) and power law fits (dashed) for (a) the superconducting d-wave order parameter OSCd, and (b) the
antibonding pairing order parameter OabP on the 64× 2 ladder with t = t⊥ = 1, U = 4, V‖ = V⊥ = 0 and N = 110 electrons.
Oscillations present in both two-point functions are contributions from sub-leading terms.

B. 4kb Umklapp

As is discussed in detail in Section III, there are two possible phases when the 4kb Umklapp interaction is present
and marginally relevant for the considered initial conditions. We consider in turn the C1S2 phase and the C1S0
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FIG. 3: DMRG data (solid) and fit (dashed) for the one-point function of the density operator on leg 1 of the the 64× 2 ladder
with t = t⊥ = 1, U = 4, V‖ = V⊥ = 0 and N = 110 electrons. The fit function parameters take values ρ = 0.857, A = 0.0054
and 2Kc = 0.91. The bonding and antibonding wavevectors are given by kb = ρbπ/2 = 1.17π/2 and kab = ρabπ/2 = 0.55π/2,
with ρb (ρab) the average density in the bonding (antibonding) band. The fit function takes the form (81) and is discussed in
Ref.45 for the 4kF Wigner crystal oscillations. Additional oscillations arise from the sub-leading contributions of the charge
density
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phase which may occur as a result of the 4kb Umklapp modifying the RG equation. To that end we have carried out
DMRG computations on the Hamiltonian

H = Hladd(π) + µ−
∑
j,σ

(
c†1,j,σ − c

†
2,j,σ

)(
c1,j,σ − c2,j,σ

)
, (82)

where Hladd(K) is given by (1) and the bonding band is at quarter-filling. The additional term in (82) corresponds
to a chemical potential for the antibonding pair and is introduced for convenience so that the antibonding density
can be varied while keeping the interaction parameters constant. A quarter-filled bonding band requires an applied
external potential of wavevector 4kb = π to activate the 4kb Umklapp interaction.

The reason for studying the model (82) rather than the doped ladder with quarter filled bonding band but without
external potential is that in the latter both the Mott gap and spin gaps depend on the interaction strengths U , V‖, V⊥
and therefore cannot be tuned independently. As a result spin and charge gaps can be comparable in size and small,
which makes a numerical analysis extremely challenging. In fact, our DMRG results for this case are inconclusive in
the sense that we have not found convincing evidence for the existence of a C1S0 phase.

On the other hand, applying an external potential as in (82) allows us to control the Mott gap in the bonding sector
without significantly affecting spin gaps. A sizeable Mott gap makes the numerical analysis much simpler.

1. C1S2 Phase

The RG analysis of section III shows that for sufficiently weak extended interactions (small V‖, V⊥) the RG flow
of the extended Hubbard model in the presence of a 4kb Umklapp interaction is towards a C1S2 fixed point. The
two-point functions of the order parameters discussed in section III then have the following forms

〈OCDW (x) O†CDW (0)〉C1S2 ∝ A3 cos(2kabx)|x|−K2,c−K2,s +A4 cos(2kbx)|x|−K1,s +A5x
−2 + . . . ,

〈ObCDW (x) O†bCDW (0)〉C1S2 ∝ e−|x|/ξb (at 2kb) + . . . ,

〈OSCd(x)O†SCd(0)〉C1S2 ∝ cos(2kabx)|x|−K2,c−1/K2,c + . . . ,

〈OabP (x)O†abP (0)〉C1S2 ∝ A6 cos(2kabx)|x|−K2,c−1/K2,c +A6|x|−K2,s−1/K2,c + . . . , (83)

where Aj are unknown amplitudes, ξb is the bonding charge boson correlation length and K2,c (K2,s) is the Luttinger
parameter for antibonding charge (spin) sector.

In this section we present DMRG results for the 64 × 2 extended-Hubbard ladder with t = 2t⊥ = 1, U = 8V⊥ =
8V‖ = 4 and applied external potential of period 4kb = π and amplitude W1 = W2 = 1.5. The chemical potential
µ− has been adjusted so that the total electron number is N = 90 with the bonding band at quarter-filling. Up to
m = 1200 density matrix states were kept in the simulations, leading to truncation errors of ∼ 10−6. This corresponds
to a relative error in the ground state energy per site of ε ≈ 10−4.

The presence of a charge gap in the bonding sector is confirmed by the examination of the Green’s functions in
the bonding (Gb(n)) and antibonding (Gab(n)) bands. The RG analysis suggests that Gab(n) decays as a power law,
whereas Gb(n) decreases with distance as an exponential multiplied by a power law.

The bonding Green’s function is shown in Fig. 4(a), where the leading oscillations at kb have been removed by
performing a fit to the Green’s function and dividing out the oscillatory part. So, in Fig. 4(a) we plot

Gb(n) =
Gb,Full(n)

cos (kbx)
,

where Gb,Full(n) is the full bonding Green’s function with oscillations at kb. The leading oscillation has been removed
in order to elucidate the long-distance behaviour of the Green’s function. In this case the asymptotic behaviour is
well described by an exponential multiplied by a power law, as predicted by the RG analysis. We perform a similar
procedure for the antibonding Green’s function in Fig. 4(b), where the leading oscillations occur at kab. The power law
decay of the antibonding Green’s function is in agreement with the RG analysis. The form of both Green’s functions
is consistent with the expectations of the C1S2 phase, with a single massive charge boson in the bonding sector of
the theory.

Having established the presence of a charge gap in the bonding sector, we now consider the two-point functions of
the order parameters (83), shown in Fig. 5. As with our analysis of the Green’s function, the two-point functions of
the antibonding pairing order parameter and the superconducting d-wave order parameter, shown in Fig. 5(a) and
Fig. 5(b) respectively, have had the leading order 2kab oscillation removed. Both two-point functions show power law
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FIG. 4: DMRG data (solid) and fits (dashed) for (a) the bonding Green’s function Gb(n) = 〈cb(32)c†b(32 + n)〉 with kb
oscillations removed (see text), and (b) the antibonding Green’s function Gab(n) = 〈cab(32)c†ab(32 + n)〉 with kab oscillations
removed. Additional oscillations in both cases are due to sub-leading contributions of the Green’s functions. For both figures
the 64 × 2 ladder is considered with t = 2t⊥ = 1, U = 8V⊥ = 8V‖ = 4 and W+ = 1.5. The chemical potential µ− was chosen
such that the bonding band is quarter-filled for the system with N = 90 electrons. Fit functions are of the form predicted by
the RG analysis.

decay with the same exponent, giving an approximate value for the Luttinger parameter in the antibonding charge
sector K2,c ≈ 0.35.

Figure 6 shows the two-point function of the charge density wave (CDW) order parameter. At intermediate
distances this is well described by x−2 decay, whilst for large distances it decays at slower-than-x−2 and oscillates
with wavenumber 2kab, as predicted from the bosonization analysis (83). Sub-leading 4kb contributions are also
observed. The long-distance decay is consistent with K2,s = 1, as expected from SU(2) symmetry. The dominant
correlations for considered parameters are of the charge density wave type.
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FIG. 5: DMRG data (solid) and fit functions (dashed) for (a) the two-point function of the antibonding pairing order parameter
OabP with the 2kab oscillations removed (see text), and (b) the two-point function of the superconducting d-wave order
parameter OSCd with 2kab oscillations removed on the 64 × 2 ladder with t = 2t⊥ = 1, U = 8V⊥ = 8V‖ = 4 and W+ = 1.5.
The chemical potential has been adjusted so that N = 90 coincides with a quarter-filled bonding band. Fit functions are of
the form given in Eqs. (83).

2. C1S0 4kb Mott Insulator Phase

As has been discussed in Section III A 2, in order for the C1S0 4kb Mott insulating phase to occur, it is necessary
for the interchain exchange interaction to be antiferromagnetic after the initial RG procedure. This can always
be achieved provided the interchain density-density interaction coupling is large V⊥ > U , such that for the initial
conditions the exchange interaction is antiferromagnetic and remains so under the RG procedure.
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FIG. 6: DMRG data (solid) and x−2 guide (dashed) for the two-point function of the charge density wave order parameter
OCDW on the 64× 2 ladder with t = 2t⊥ = 1, U = 8V⊥ = 8V‖ = 4 and W+ = 1.5. The chemical potential has been adjusted

so that N = 90 coincides with a quarter-filled bonding band. Sub-x−2 decay is observed with oscillations at ∼ 2kab at large
distances.

At the C1S0 fixed point, the 4kb Mott insulator phase is characterized by the following asymptotic forms of the
two-point functions

〈OCDW (x) O†CDW (0)〉 ∝ A8x
−2 +A9 cos

(
2(kb + kab)x

)
|x|−K2,c + . . . ,

〈ObCDW (x) O†bCDW (0)〉 ∝ e−|x|/ξb (at 2kb) + . . . ,

〈OSCd(x) O†SCd(0)〉 ∝ cos(2kabx)|x|−K2,c−1/K2,c + . . . ,

〈OabP (x) O†abP (0)〉 ∝ A10 cos(2kabx)|x|−K2,c−1/K2,c +A11 cos
(
2kbx

)
|x|−1/K2,c + . . . , (84)

where Ad are unknown amplitudes.
We present results for the Hamiltonian (82) on on the 96× 2 ladder with t = 2t⊥ = 1, V⊥ = 5, V‖ = 0 and U = 4.

The chemical potential µ− is used to set the total number of electrons to N = 88 whilst maintaining the bonding band
at quarter-filling. A periodic potential with period 4kb = π and amplitude W+ = 1 is applied to the bonding band.
Up to m = 2000 density matrix states were kept in the calculations, giving truncation errors of ∼ 10−7. The increased
number of states in the procedure results in a relative error for the ground state energy per site of ε ≈ 2× 10−5.

The presence of a spin gap in both bands and a charge gap in the bonding band is inferred from the forms of
the two-point functions (84) and the Green’s functions shown in Fig. 7. The RG analysis predicts that the bonding
Green’s function should decay exponentially, whilst the antibonding Green’s function should decay as an exponential
multiplied by a power law. In Fig. 7(a) the bonding Green’s function (Gb(n)) is shown with an exponential fit and
is well described by exponential decay, implying both spin and charge gaps in the bonding sector. Figure 7(b) shows
the antibonding Green’s function with with the leading oscillation at wavevector kab removed in order to more clearly
show the exponential multiplied by power law fit, as predicted by the RG analysis. The break in the plot of Gab(n)
close to n = 28 is a result of removing the oscillation; for this point the fit and Gab(n) differ in sign whilst both
magnitudes are close to zero. The fit gives an approximate value for the Luttinger parameter in the antibonding
charge sector K2,c ≈ 0.27.

With both Green’s functions being consistent with the C1S0 phase, the two-point functions of the order parameters
in Eqs. (84) are now considered. The two-point functions for the SCd order parameter and the abP order parameter
are presented in Fig. 8(a) and Fig. 8(b) respectively. In both cases the leading oscillation at frequency 2kab has
been removed in order to elucidate the form of the decay, which in both cases is well described by a power law
with an exponent consistent with K2,c ≈ 0.27. The absence of power law decay with exponent 1/K2,c for the
antibonding pairing order parameter is not inconsistent with being in the C1S0 phase, as the amplitude A11 is
interaction-dependent and may be much smaller than the amplitude A10 of the sub-leading decay, in which case at
short-distances the sub-leading decay would dominate.

The two-point function of the charge density wave order parameter is shown in Fig. 9. At long distances there
are large wavelength oscillations with wavevector 2kb + 2kab decaying at sub-x−2, consistent with the bosonization
predictions for the C1S0 phase (84). The exact form of the decay of the 2kb + 2kab oscillations cannot be accurately
extracted in the L = 96 system, due to the large spin correlation length and the amplitudes A8 and A9 being unknown.
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The two-point function of the bonding charge density wave order parameter can also be calculated, however in-
formation is not easily extracted from this two-point function due to the long spin correlation length and unknown
interaction-induced amplitudes of 4kF components of the bonding charge density operator, which are similar in form
to those in Eqs. B10.

As discussed in detail in Section III A 2, there are two possibilities for the dominant correlation in the 4kb Mott
insulator, depending upon K2,c. For the presented case, K2,c < 1 and the dominant correlations are of charge density
wave type, arising from the interaction-induced 2kb + 2kab component of the charge density.
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FIG. 7: DMRG data (solid) and fit function (dashed) for (a) the bonding Green’s function Gb(n) = 〈cb(48)c†b(48 + n)〉, and

(b) the antibonding Green’s function Gab(n) = 〈cab(48)c†ab(48 + n)〉, with the kab oscillation removed (see text), for the 96× 2
ladder with t = 2t⊥ = 1, U = 4, V‖ = 0, Vy = 5, W+ = 1 and N = 88 electrons. The chemical potential µ− was chosen such
that this corresponds to a quarter-filled bonding band. Oscillations in both plots are from other contributions to the Green’s
function. The break in data of (b) at n = 29 is a remnant of removing the kab oscillations.
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FIG. 8: DMRG data (solid) and fit functions (dashed) for (a) the absolute value of the two-point function of the superconducting
d-wave order parameter OSCd with 2kab oscillations removed (see text), and (b) the absolute value of the two-point function
of the antibonding pairing order parameter OabP on the 96× 2 ladder with t = 2t⊥ = 1, U = 4, V‖ = 0, Vy = 5, W+ = 1 and
N = 88 electrons. The chemical potential µ− was chosen such that this corresponds to a quarter-filled bonding band.

VI. CONCLUSIONS

In this work we have established a mechanism for finite wavevector pairing in doped fermionic ladders with equivalent
legs. This mechanism is driven by Umklapp scattering processes, which occur either at special band fillings as a result
of electron electron interactions, see also20, or are induced by “externally” applied periodic potentials. The latter
can arise via charge-density wave formation driven by the (three-dimensional) long-ranged Coulomb interaction in
real crystal structures. We have applied renormalization group (RG) methods in the low-energy limit of the lattice
model (1) for (i) weak interactions (”band representation”) and (ii) arbitrary interaction strength but very small
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FIG. 9: The two-point function of charge density wave order parameter OCDW (solid) and x−2 power law (dashed) for the
96× 2 ladder with t = 2t⊥ = 1, U = 4, V⊥ = 5 and W+ = 1. A chemical potential applied to the antibonding band is used to
set the electron number to N = 88 with the bonding band quarter-filled.

tunneling along the rung direction (“chain representation”). In both cases we have found that the theory describing
the strong coupling fixed point is the same as the low energy description of the so-called Kondo-Heisenberg Model
(KHM)17,18. In the case of the 4kb Mott insulator analyzed in section III this fact may be anticipated on the basis of
the following arguments. The 4kb Umklapp scattering process leads to formation of a Mott gap ∆ within the bonding
band. At low-energies the charge dynamics is the blocked by the Mott gap and at energies small compared to ∆ one
is left with spin degrees of freedom, that can be thought of in terms of an effective spin-1/2 Heisenberg chain. The
antibonding degrees of freedom remain gapless, and at low energies compared to ∆ the most important interaction
with the bonding degrees of freedom is then through an effective spin exchange interaction. The resulting picture is an
effective KHM, where the spin-1/2 chain corresponds to the bonding band and the role of the interacting 1D electron
gas is played by the antibonding band. The low energy limit is crucial for these considerations to hold, because in
the lattice model (1) electron number in the bonding band is not conserved.

Another important difference between the effective KHM that emerges as the low-energy description of the ladder
and the lattice KHM considered in17,18 is that the effective exchange interaction between the bonding and antibonding
bands is not a priori antiferromagnetic. In the case of weakly interacting Hubbard chains it is in fact ferromagnetic,
which results in a C1S2 phase as the exchange interaction is marginally irrelevant. On the other hand, we found that
extended density-density interactions (we explicitly consider repulsive nearest-neighbor interactions) can cause this
exchange interaction to become antiferromagnetic. In this case the low-energy sector of the theory is a C1S0 phase,
where the remaining gapless degree of freedom describes the antibonding charge sector and is characterized by its
Luttinger parameter K2,c. The dominant correlations are then either of superconducting PDW (if K2,c > 1) or CDW
(if K2,c < 1) type.

The activation of the Umklapp scattering process at 3kb + kab results in a similar low-energy description, although
here the remaining massless degree of freedom Φ̃2 is significantly more complicated: it is a combination of the
symmetric charge boson Φc and the U(1) doublet Majorana fermions ξ1,2, which are themselves comprised of the
SU(2) singlet Majorana fermion from the antisymmetric spin sector and a Majorana fermion from the antisymmetric
charge sector. The composite nature of this gapless degree of freedom makes the analysis of ground state correlations
difficult and we leave this issue to future studies.

It has been shown in Refs.46 that taking into account the crystal structure of e.g. CuO-based ladders leads to
significant differences in both the ground state properties and the phase diagram of the two-leg ladder. It would be
interesting to generalize the above treatment of Umklapp interactions to the case of CuO ladders and to study how
such scattering effects the ground state properties of the system.
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Appendix A: The Charge Density Operator

At commensurate fillings, or by applying an appropriate external periodic potential, Umklapp scattering processes
can be activated in the doped ladder. In this case, oscillatory components of the charge density which are usually
suppressed away from commensurate fillings now feature in the Hamiltonian. In this appendix we consider the 2kF
and 4kF harmonics of the charge density operator in the “band” and “chain” representations in turn.

1. 2kF Components of the Charge Density

We first consider the 2kF harmonics in the “band” representation. The number operators on each leg of the ladder
can be expressed in terms of the bonding/antibonding fermions introduced in (3) as

n1,j,α + n2,j,α = c†b,j,αcb,j,α + c†ab,j,αcab,j,α ,

n1,j,α − n2,j,α = c†b,j,αcab,j,α + c†ab,j,αcb,j,α . (A1)

Linearizing about the Fermi surface and taking the continuum limit as in (6), we obtain the following decompositions

n1,j,α + n2,j,α ∼ a0ρ
(+)
0,α (x) + a0

[
ρ

(+)
2kb,α

(x) e2ikbx + ρ
(+)
2kab,α

(x) e2ikbx + h.c.
]

+ . . . ,

n1,j,α − n2,j,α ∼ a0

[
ρ

(−)
kb+kab,α

(x) ei(kb+kab)x + h.c.
]

+ . . . , (A2)

where

ρ
(+)
0,α (x) = R†b,αRb,α + L†b,αLb,α +R†ab,αRab,α + L†ab,αLab,α ,

ρ
(+)
2kb,α

(x) = L†b,αRb,α , ρ
(+)
2kab,α

(x) = L†ab,αRab,α ,

ρ
(−)
kb+kab,α

(x) = L†ab,αRb,α + L†b,αRab,α . (A3)

We note that ρ0,α(x), ρ2kb,α(x) and ρ2kab,α(x) are even under interchange of legs 1 and 2 of the ladder, while
ρkb+kab,α(x) is odd. The components can then be bosonized following27 and (11-13). This leads to the following
expressions for components of the charge density operator

ρ
(+)
0 (x) =

∑
α

ρ
(+)
0,α (x) ∼ 1√

2π
∂xΦ+,c ,

ρ
(+)
2kb

(x) =
∑
α

ρ
(+)
2kb,α

(x) ∼ −2i ei
√
π(Φ+,c+Φ−,c) cos

[√
π(Φ+,s + Φ−,s)

]
,

ρ
(+)
2kab

(x) =
∑
α

ρ
(+)
2kab,α

(x) ∼ −2i ei
√
π(Φ+,c−Φ−,c) cos

[√
π(Φ+,s − Φ−,s)

]
,

ρ
(−)
kb+kab

(x) ∼ −2i ei
√
πΦ+,c

[
e−i
√
πΘ−,c cos

(√
π[Φ+,s −Θ−,s]

)
− ei

√
πΘ−,c cos

(√
π[Φ+,s + Θ−,s]

) ]
, (A4)

where Φ±,d = (Φ1,d ± Φ2,d)/
√

2 and Θ±,d = (Θ1,d ± Θ2,d)/
√

2 for d = c, s. In the final term we have used that
κb,↑κab,↑ ≡ κb,↓κab,↓ and (κb,σκab,σ)2 = −1. Here we note that the 2kF response of the charge density in spin gapped
phases is blocked as each term features a spin boson.

Having moved to a new basis of bosons, the ± bosons, we can consider refermionizing the spin bosons and the
antisymmetric charge bosons using the using the identities27

ei
√
πΦ+,s ∼ µ1µ2 + iσ1σ2 , ei

√
πΘ+,s ∼ σ1µ2 + iµ1σ2 ,

ei
√
πΦ−,s ∼ µ3µ4 + iσ3σ4 , ei

√
πΘ−,s ∼ σ3µ4 + iµ3σ4 ,

ei
√
πΦ−,c ∼ µ5µ6 + iσ5σ6 , ei

√
πΘ−,c ∼ σ5µ6 + iµ5σ6 , (A5)

where µi and σi are Majorana fermions. Then the 2kF components of the charge density operator can be expressed
in terms of the Majorana fermions as

ρ
(+)
2kb

(x) ∝ −2i ei
√
πΦ+,c [µ5µ6 + iσ5σ6] [µ1µ2µ3µ4 − σ1σ2σ3σ4] ,

ρ
(+)
2kab

(x) ∝ −2i ei
√
πΦ+,c [µ5µ6 − iσ5σ6] [µ1µ2µ3µ4 + σ1σ2σ3σ4] ,

ρ
(−)
kb+kab

(x) ∝ −4i ei
√
πΦ+,c [σ1σ2µ3σ4σ5µ6 − iµ1µ2σ3µ4µ5σ6] .
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Similar expressions are obtained in the chain description with leg indices substituted for band indices.

Appendix B: 4kF Density Components in the Band Picture

To derive the 4kF -components of the charge density, we consider the on-site Hubbard interaction

U

L∑
m=1

[n1,m,↑n1,m,↓ + n2,m,↑n2,m,↓] , (B1)

which gives a contribution Sint = S
(1)
int + S

(2)
int to the action

S
(1)
int = −U

2

∫
d2y

[
c†b,↑cb,↑ + c†ab,↑cab,↑

]
(y)
[
c†b,↓cb,↓ + c†ab,↓cab,↓

]
(y)

S
(2)
int = −U

2

∫
d2y

[
c†b,↑cab,↑ + c†ab,↑cb,↑

]
(y)
[
c†b,↓cab,↓ + c†ab,↓cb,↓

]
(y) . (B2)

We then decompose the continuum fields into their high and low-energy parts, e.g.

cb(x) = cb,<(x) + cb,>(x) . (B3)

The 4kF components of the charge density are then found by taking the average

−
〈
c†b(x)cb(x)Sint

〉
>

(B4)

over the high-energy degrees of freedom and keep only the 4kF oscillating parts. For example, we obtain a contribution

U

2

〈
c†b,↑,<(x)cb,↑,>(x)

∫
dydτ c†b,↑,>cb,↑,<

[
c†b,↓,<cb,↓,< + c†ab,↓,<cab,↓,<

] 〉
>
, (B5)

where we now use that〈
cb,↑,>(x) c†b,↑,>(τ, y)

〉
= Gb,>(−τ, x− y) = −

∫
k>Λ

dk

2π
e−ik(x−y)−εb(k)τ (B6)

is short ranged in τ , so it becomes

U

2
c†b,↑,<(x)

∫
dτdy Gb,>(−τ, x− y)cb,↑,<(y)

[
c†b,↓,<cb,↓,< + c†ab,↓,<cab,↓,<

]
(y). (B7)

Next we linearize about the Fermi surface, which decomposes the fermion operators into their chiral components

cb,↑,<(y) ' Rb,↑eikby + Lb,↑e
−ikby (B8)

and then we replace the arguments of the left and right moving fermions by x, which is justified as the Green’s function
is also short-ranged in x− y. Implementation of this procedure leads to the following results for the 4kF -components
of the charge density

ρ
(+)
4kb

(x) ∼ UGb,>(3kb)
∑
α=↑,↓

L†b,αRb,αL
†
b,−αRb,−α ,

ρ
(+)
4kab

(x) ∼ UGab,>(3kab)
∑
α=↑,↓

L†ab,αRab,αL
†
ab,−αRab,−α ,

ρ
(+)
2kb+2kab

(x) ∼ U

2

[
Gb,>(kab + 2kb) +Gb,>(kb + 2kab)

] ∑
α=↑,↓

{
2L†b,αRb,αL

†
ab,−αRab,−α

+2L†b,αRab,αL
†
ab,−αRb,−α + L†b,αRab,αL

†
b,−αRab,−α + L†ab,αRb,αL

†
ab,−αRb,−α

}
,

ρ
(−)
kb+3kab

(x) ∼ U

2

[
3Gb,>(kab + 2kb) +Gab,>(3kab)

] ∑
α=↑,↓

{
L†ab,αRab,αL

†
ab,−αRb,−α + L†ab,αRab,αL

†
b,−αRab,−α

}
,

ρ
(−)
3kb+kab

(x) ∼ U

2

[
3Gab,>(kab + 2kb) +Gb,>(3kb)

] ∑
α=↑,↓

{
L†b,αRb,αL

†
b,−αRab,−α + L†b,αRb,αL

†
ab,−αRb,−α

}
. (B9)
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These expressions can be bosonized following Ref.27, giving

ρ
(+)
4kb

(x) ∼ −2UGb,>(3kb) e
i
√

4πΦ+,c ei
√

4πΦ−,c ,

ρ
(+)
4kab

(x) ∼ −2UGab,>(3kab) e
i
√

4πΦ+,c e−i
√

4πΦ−,c ,

ρ
(+)
2kb+2kab

(x) ∼ C2kb+2kab e
i
√

4πΦ+,c

[
cos
(√

4πΦ−,s
)

+ cos
(√

4πΘ−,s
)
− cos

(√
4πΘ−,c

)]
,

ρ
(−)
3kb+kab

(x) ∼ C3kb+kabei
√

4πΦ+,c

[
e−i
√
πϕ̄−,c cos(

√
πϕ−,s)− ei

√
πϕ−,c cos(

√
πϕ̄−,s)

]
,

ρ
(−)
kb+3kab

(x) ∼ Ckb+3kabe
i
√

4πΦ+,c

[
e−i
√
πϕ−,c cos(

√
πϕ̄−,s)− ei

√
πϕ̄−,c cos(

√
πϕ−,s)

]
, (B10)

where Cp are non-universal prefactors that are proportional to U for small interactions and the fields ϕ±,d and ϕ̄±,d
are chiral components of the boson field Φ±,d for d = c, s which satisfy

Φ±,d = ϕ±,d + ϕ̄±,d ,

Θ±,d = ϕ±,d − ϕ̄±,d .

Once more we may refermionize Eqs. (B10) in terms of the new basis of bosons, i.e.

R1 + iR2 ∼
κ+,s√
πa0

ei
√

4πϕ+,s , L1 + iL2 ∼
κ+,s√
πa0

e−i
√

4πϕ̄+,s ,

R3 + iR4 ∼
κ−,s√
πa0

ei
√

4πϕ−,s , L3 + iL4 ∼
κ−,s√
πa0

e−i
√

4πϕ̄−,s ,

R5 + iR6 ∼
κ−,c√
πa0

ei
√

4πϕ−,c , L5 + iL6 ∼
κ−,c√
πa0

e−i
√

4πϕ̄−,c , (B11)

where κ are Klein factors introduced to ensure that different Majoranas anticommute. This choice of basis for the
Majorana fermions will make the “dictionary” (32) between the “band” representation and the “chain” representation
particularly clear. The 4kF components of the charge density are local with respect to the Majoranas

ρ
(+)
4kb

(x) ∝ ei
√

4πΦ+,c [R5L6 −R6L5 + i(R5L5 +R6L6)] ,

ρ
(+)
4kab

(x) ∝ ei
√

4πΦ+,c [R5L6 −R6L5 − i(R5L5 +R6L6)] ,

ρ
(+)
2kb+2kab

(x) ∝ ei
√

4πΦ+,c i [2R4L4 +R5L5 −R6L6] ,

ρ
(−)
3kb+kab

(x) ∝ ei
√

4πΦ+,c [(L5 + iL6)R3 − (R5 + iR6)L3] ,

ρ
(−)
kb+3kab

(x) ∝ ei
√

4πΦ+,c [(R5 − iR6)L3 − (L5 − iL6)R3] . (B12)

1. “4kF” Density Components in the Chain Picture

In this Appendix we determine the Fourier components with momenta close to 4kF of the low-energy projections
of n1,l ± n2,l, c.f. eqn (2), in the chain picture. For uncoupled chains we have

n1,l ± n2,l

∣∣∣
t⊥=0

∝
∑
n∈Z

ρ̃
(±)
2nkF

(x)e2inkF x. (B13)

For non-zero t⊥ this expressions gets modified to

n1,l ± n2,l ∝
∑
P∈S±

ρ
(±)
P (x)eiPx, (B14)

where S± are appropriately defined sets of momenta. Our starting point is the bosonized expression for the 4kF
components of the charge density of the extended Hubbard chains describing the uncoupled legs ` = 1, 2 of the ladder
(i.e. t⊥ = 0 = V⊥ = W1,2)

ρ
(`)
4kF

(x) ∼ F̃ ei4kF xei
√

8πΦ
(c)
` + h.c. , (B15)
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where F̃ is a non-universal amplitude. The sum of the 4kF densities of the two legs can be expressed in terms of the
rotated boson basis (16) as

ρ̃
(+)
4kF

(x) ∼ 2F̃ cos(4kFx+
√

4πΦc) cos(
√

4πΦf ). (B16)

We will now take into account the effects of a nonzero t⊥ by following through the same steps as in the analysis of
the Hamiltonian in section II B. Refermionizing in terms of Majorana fermions using the identities

κ̃ei
√
π
(

Φf+Θf

)
=
√
πa0

(
ξ3
R + iηR

)
,

κ̃e−i
√
π
(

Φf+Θf

)
=
√
πa0

(
ξ3
L + iηL

)
, (B17)

where κ̃ is a Klein factor and κ̃2 = 1 leads to

cos(
√

4πΦf ) = iπa0

(
ξ3
Rξ

3
L + ηRηL

)
. (B18)

Finally, performing the rotation (19) we arrive at

cos(
√

4πΦf ) ≈ iπa0

{
ξ3
Rξ

3
L +

vs
vs + vc

[
ξ1
Rξ

1
L − ξ2

Rξ
2
L −

1

2
e2iQx

(
ξ1
R − iξ2

R

) (
ξ1
L + iξ2

L

)
−1

2
e−2iQx

(
ξ1
R + iξ2

R

) (
ξ1
L − iξ2

L

) ]}
. (B19)

Substituting (B19) into (B16) then gives us expressions for the Fourier components of the total symmetric charge
density of the ladder for non-zero t⊥

ρ
(+)
4kF

(x) ∼ iFei
√

4πΦc

[
ξ3
Rξ

3
L +

vs
vs + vc

(
ξ1
Rξ

1
L − ξ2

Rξ
2
L

)]
,

ρ
(+)
4kF+2Q(x) ∼ iFvs

2 (vs + vc)
ei
√

4πΦc
(
ξ1
L + iξ2

L

) (
ξ1
R − iξ2

R

)
,

ρ
(+)
4kF−2Q(x) ∼ iFvs

2 (vs + vc)
ei
√

4πΦc
(
ξ1
L − iξ2

L

) (
ξ1
R + iξ2

R

)
,

and F = F̃ πa0 is a non-universal constant. The analogous analysis for the antisymmetric combination of charge
densities gives the following result

ρ
(−)
4kF−Q(x) = −iF

√
vs

2 (vs + vc)
ei
√

4πΦc
[(
ξ1
R + iξ2

R

)
ξ3
L + ξ3

R

(
ξ1
L − iξ2

L

)]
, (B20)

ρ
(−)
4kF+Q(x) = −iF

√
vs

2 (vs + vc)
ei
√

4πΦc
[(
ξ1
R − iξ2

R

)
ξ3
L + ξ3

R

(
ξ1
L + iξ2

L

)]
, (B21)

where F is the same non-universal constant as in the (+) component case.

Appendix C: Higher Harmonics of the Bond-Centered Antibonding Superconducting Order Parameter

We consider the order parameter for bond-centered pairing in the antibonding band:

ΦB(j) = cab,↑(j)cab,↓(j + 1)− cab,↓(j)cab,↑(j + 1)

and consider the higher-order term generated by the four-fermion interaction. We integrate out the high-energy part
of the Hubbard interaction (B2) by splitting the fermion operators into fast (high-energy >) and slow (low-energy <)
components as shown in (B3). We separate the “mixed” part of the bond-centered pairing order parameter into four
contributions

O1 = cab,↑,>(x)cab,↓,<(x+ a0), O3 = cab,↑,<(x)cab,↓,>(x+ a0),

O2 = −cab,↓,>(x)cab,↑,<(x+ a0), O4 = −cab,↓,<(x)cab,↑,>(x+ a0). (C1)
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We now discuss in some detail the perturbative averaging of the operator O1 with respect to the interaction term

S
(1)
int . We have

〈O1S
(1)
int 〉> = −U

2

∫
d2y

〈
cab,↑,>(x)cab,↓,<(x+ a0)

×
[
c†ab,↑,<cab,↑,< + c†ab.↑,<cab,↑,> + c†ab,↑,>cab,↑,< + c†ab,↑,>cab,↑,> + b↔ ab

]
(y)

×
[
c†ab,↓,<cab,↓,< + c†ab.↓,<cab,↓,> + c†ab,↓,>cab,↓,< + c†ab,↓,>cab,↓,> + b↔ ab

]
(y)

〉
>

.

This can now be averaged over the high-energy parts and the resulting expression evaluated in the continuum limit
by following the same steps as in Appendix B. We then bosonize, following27, and the result is

〈O1S
(1)
int 〉> ∼

U

2

κab,↓κab,↑
(2π)2

iei
√

2πΘ2,c

{
Gab,↑,− cos

(√
2πΦ1,c + 2kbx

)
cos
(√

4πΦ+,s − kaba0

)
+

Gab,↑,− sin
(√

2πΦ1,c + 2kbx
)

sin
(√

4πΦ+,s − kaba0

)
+

iGab,↑,+ sin
(√

2πΦ1,c + 2kbx
)

cos
(√

4πΦ+,s − kaba0

)
−

iGab,↑,+ cos
(√

2πΦ1,c + 2kbx
)

sin
(√

4πΦ+,s − kaba0

)}
(C2)

where Gab,↑,± = Gab,↑(2kb − kab)±Gab,↑(kab − 2kb). There terms arise from the four-fermion products

Rab,↓(x+ a0)Lab,↑(x)L†b,↓(x)Rb,↓(x) Lab,↓(x+ a0)Rab,↑(x)R†b↓(x)Lb,↓(x) .

These describe the coupling of “2kb” density oscillations in the bonding band to bond-centered hole pairs in the
antibonding band. Carrying out the analogous analyses for O2, O3 and O4 we find the sum of the contributions is
given by

〈ΦBS(1)
int 〉 ∼ e

i
√

2πΘ2,c

[
C1 cos

(√
2πΦ1,c + 2kbx

)
+ C2 sin

(√
2πΦ1,c + 2kbx

) ]
cos
(√

4πΦ+,s

)
+ . . . , (C3)

where the complex coefficients C1,2 are given in terms of Gab,↑,± and where we have retained only the terms which
contribute power-law decay to the two point function. Terms which have zero expectation value in the 4kb Mott
insulator, e.g. contributions proportional to sin(

√
4πΦ+,s) or sin(

√
4πΘ−,s), have been dropped from (C3). The order

parameter ΦB being bond-centered is important; the contributions (C3) which decay as a power law in the 4kb Mott

insulating phase vanish due to cancellation in the site-centered case. Following through the same steps for S
(2)
int we

find that

〈ΦBS(2)
int 〉 ∼ −e

i
√

2πΘ2,c

[
C3 cos

(√
2πΦ1,c + 2kbx

)
+ C4 sin

(√
2πΦ1,c + 2kbx

) ]
cos
(√

4πΘ−,s

)
+ . . . . (C4)

Combining the two contributions gives the following result for the interaction induced contribution to the low-energy
projection of ΦB(j)

〈ΦBSint〉 ∼ ei
√

2πΘ2,c

{ [
C1 cos

(√
4πΦ+,s

)
− C3 cos

(√
4πΘ−,s

)]
cos
(√

2πΦ1,c + 2kbx
)

+

[
C2 cos

(√
4πΦ+,s

)
− C4 cos

(√
4πΘ−,s

)]
sin
(√

2πΦ1,c + 2kbx
)}

+ . . . (C5)
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