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We study the effect of a time-dependent driving field with a large amplitude on a system com-
posed of two coupled qubits (two-level systems). Using the rotating wave approximation (RWA)
makes it possible to find simple conditions for resonant excitation of the four-level system. We
find that the resonance conditions include the coupling strength between the qubits. Numerical
simulations confirm the qualitative conclusions following from the RWA. To reveal the peculiar-
ities of resonant transitions caused by the quasi-level motion and crossing in a periodic driving
field, we use Floquet states, which determine the precise intermediate states of the system. Cal-
culating the quasi-energy states of the multi-level system makes it possible to find the transition
probabilities and build interference patterns for the transition probabilities. The interference pat-
terns demonstrate the possibility of obtaining various pieces of information about the qubits, since
the positions of transition-probability maxima depend on various system parameters, including the
coupling strength between the qubits.

PACS numbers: 85.25.-j, 42.50.Hz, 03.67.-a

I. INTRODUCTION

Recently much attention has been focused on the spec-
troscopy of Josephson junction-superconducting circuits
with a weak link which can be considered as “macro-
scopic atoms” with sizes of the order of tens or hundreds
of micrometers1,2. Single Josephson-junction qubits are
characterized by relatively long relaxation times (tens of
microseconds) which allows to consider them as one of the
most promising elements for the realization of quantum
information processors3. Spectroscopic investigations of
artificial “Josephson atoms” are carried out at sufficiently
low temperatures in the micro-wave and millimeter-wave
regions, since the spectral lines of Josephson junctions are
located in that spectral region. However, practical mea-
surements are not simple because stable tunable micro-
wave sources are not easy to produce in this range. Mea-
surement difficulties are connected with the frequency
dependence of the dispersion and damping, as well as
with strict requirements to impedance control tolerances
which limit the application of broadband spectroscopy.

In this regard several groups have used amplitude
spectroscopy4–8 which obtains information by means of
the response function “sweep” over the signal amplitude
and some control parameter (an applied magnetic flux or
a bias). This method may be applied to systems with
crossing energy levels between which the transitions can
be realized by changing external parameters. The fre-
quency of such a driving field can be orders of magnitude
lower than the distance between levels. This means that
the system evolves adiabatically, except for the immedi-
ate vicinity of quasi-crossing levels, where Landau-Zener
quantum coherent transitions and Stückelberg interfer-
ence can be observed9–12 (see Ref. 13 for an overview).
The main advantage of this type of spectroscopy is that
the system is investigated in wide ranges of the ampli-
tude change. Thus, in alternating fields, multiphoton

processes and Landau-Zener transitions, also observed
earlier in Ref. 14, take place.

For a driven two-level system, drastic effects on the
tunneling rate arise from quasi-energy crossing and
anticrossing15,16. At certain amplitudes of the driving
field, dynamical localization and trapping of the system
into a non-linear resonance can take place17–25. As the
parameters are changed when the level-approaching and
level-crossing take place, the effects of band-to-band tun-
neling (Landau-Zener transitions) can occur. In the lan-
guage of wave functions, an interference of different zone
states, predicted by Stückelberg11 is possible. As applied
to qubits these effects have lately been discussed in nu-
merous works26–41.

Coupled qubits have also been created (see, e.g.,
Ref. 42–50). In these works the basic parameters of
qubits and coupling constants have been measured and
also some relaxation characteristics of coupled qubits
have been studied. Rabi-spectroscopy of two coupled
qubits both experimentally and theoretically have been
investigated in publications44,45,47,49,50. Recently differ-
ent schemes of controlled coupling between two or more
qubits have been proposed48,51–53. However, at present
there are no studies of the way the coupled qubits behave
in strong fields. Meanwhile, the extension of the ampli-
tude spectroscopy method makes it possible to give much
information about coupled multi-qubit clusters.

The goal of this work is to describe quantum-
mechanical phenomena in a system of coupled qubits
from the point of view of quasi-energy states at differ-
ent parameters of multi-level systems. It is possible to
control the magnetic fluxes (biases) which penetrate the
circuits and we will take these bias parameters to be
dependent on time42–50. Although generally, for spec-
troscopic investigations, the response dependence on the
frequency is studied, we will focus our attention here on
the response dependence on the signal amplitude and the
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control parameters. Our approach differs from the one
used in Ref. 54,55, where the density matrix equation was
used to determine the steady state populations of coupled
qubits. We assume here that the qubits are relevant for
quantum information processing only in the case when
they have negligible dissipation. In this case, to analyze
the dynamics of the system it is most natural to proceed
directly from the Schrödinger equation, which allows us
to understand the dynamics and to identify features of
the evolution of systems in strong alternating fields.
First, we shall investigate the nonlinear time dynamics

of the coupled qubits by using the RWA In this approx-
imation the system exhibits generalized Rabi resonances
where the role of the coupling parameter may be inves-
tigated. Secondly, for high-field amplitude excitations
we shall apply the quasi-energy representation to under-
stand the influence of the driving field on the transition
probabilities and the population of the energy levels. Us-
ing the RWA and numerical calculations of quasi-energy
levels as a function of the driving field we will be able to
demonstrate that the effect of the quasi-energy avoided
crossing leads to drastically increased transition probabil-
ities between the qubits steady states. Finally, we shall
develop a numerical method for calculating the transi-
tion probabilities in the quasi-energy representation and
build interference patterns for the transition probabili-
ties. The quasi-energy basis allows us to analyze the
influence of phase fluctuations on the observable effects
that have not previously been studied in previous works.
As we demonstrate in the following, the peaks of the tran-
sition probabilities between the directly coupled states
shift if the inter-qubit coupling changes, the indirectly
coupled states the peak positions are not affected by the
inter qubit coupling. This effect can be observed in ex-
periments using the technique of amplitude spectroscopy.
It will be demonstrated that Landau-Zener-Stückelberg
interferometry or amplitude spectroscopy may be consid-
ered as a tool to obtain the coupling parameter by seeing
the shift of the peak of the resonances (the population
maxima).

II. EQUATION OF MOTION OF COUPLED

QUBITS

The main features of coupled qubits system behavior
can be understood in the framework of the Hamiltonian:

H = −
1

2

(

ǫ1+ǫ2+J ∆2 ∆1 0
∆2 ǫ1−ǫ2−J 0 ∆1

∆1 0 −ǫ1+ǫ2−J ∆2

0 ∆1 ∆2 −(ǫ1+ǫ2)+J

)

, (1)

where ǫi is the control parameter of qubit i (i = 1, 2), ∆i

is the corresponding tunneling matrix element, and the
parameter J quantifies the strength of the interaction
between the qubits. The form of the Hamiltonian differs
from44,54,55 only by a simple redefinition of parameters.
Near the half-flux quantum point, each flux qubit ex-

periences a double-well potential and the tunneling en-
ergy through the potential barrier separating the wells
becomes ∆i. The wells correspond to currents of magni-
tude Ii circulating in opposite directions along the loop,

and the above Hamiltonian is actually written in this
circulating current basis. Following Ref. 43,44, in a con-
stant field the control parameters ǫi can be expressed in
terms of the bias fi = Φext

i /Φ0 (Φ
ext
i is the flux threading

the qubit loop (magnetic flux), penetrating circuit i, Φ0

is the flux quantum) by the relation

ǫi = ǫ0i

(

fi −
1

2

)

, (2)

where ǫ0i = 2|Ii|Φ0. The parameters ǫi and ∆i determine
the spectrum of the uncoupled qubits (J = 0): Ei =

± 1
2

√

ǫ2i +∆2
i . The ferromagnetic/antiferromagnetic in-

teraction between the qubits is characterized by the cou-
pling strength J = ±|J |. With the help of an addi-
tional superconducting circuit it is possible to realize
ferromagnetic as well as antiferromagnetic interactions
between the qubits48. For a planar circuit the antifer-
romagnetic interaction is determined by the expression
|J|
2 = M12I1I2, where M12 is the mutual inductance.
The state of the system can be represented by four am-

plitudes Cα(t), α = 1, ..., 4, so that |Ψ〉 =
∑

Cα(t)|α〉,
where |α〉 is the basis of the time-independent Hamilto-
nian Eq. (1). The spectrum Eα and eigenvectors |α〉 of
the Hamiltonian (1) are not difficult to find.
To study the time-dependent evolution of the coupled

qubits we use the eigenstates of the Hamiltonian Eq. (1)
as the basis, since expanding in this basis is a well con-
trolled procedure. Let us now consider the case when the
control parameters ǫ1,2 are time-dependent. For the case
of coupled qubits, we introduce a driving field of the form

ǫ1(t) = ǫ10+A1 cos(ω1t+θ1), ǫ2(t) = ǫ20+A2 cos(ω2t+θ2).
(3)

For simplicity, we will only discuss the case when driving
fields of only one frequency ω = ω1 = ω2 are applied to
the system and the two fields have the same phase shift
θ = θ1 = θ2. In this paper, we also assume that the
system is subject to a sequence of synchronized pulses
of alternating fields whose duration is much longer than
the period of the field. At the same time, we take into
account the fluctuations in the arrival times of pulses and
their durations against a fixed period of the field16.
We will solve the time-dependent Schrödinger equation

to determine the resonant conditions of the qubits,

i~
∂

∂t
|Ψ(t)〉 = H(t)|Ψ(t)〉. (4)

We perform the canonical transformation:

|Ψ(t)〉 = U(t)|Ψ(t)〉 (5)

where the unitary matrix U(t) = exp [iS(t)/2~], with

S(t) = φ1(t)
(

I 0
0 −I

)

+ φ2(t)
(

σz 0
0 σz

)

+ Jt
(

σz 0
0 −σz

)

, (6)

and phases φ1,2(t) = ǫ(1,2)0t +
A1,2

~ω sinωt. The trans-

formed Hamiltonian H has the following form
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H(t) = −
∆1

2

∞
∑

n=−∞

Jn

(

A1

~ω

)

×

(

0 0 e−i((ǫ10+J)/~+nω)t 0
0 0 0 e−i((ǫ10−J)/~+nω)t

ei((ǫ10+J)/~+nω)t 0 0 0
0 ei((ǫ10−J)/~+nω)t 0 0

)

−
∆2

2

∞
∑

n=−∞

Jn

(

A2

~ω

)

×

(

0 e−i((ǫ20+J)/~+nω)t 0 0
ei((ǫ20+J)/~+nω)t 0 0 0

0 0 0 e−i((ǫ20−J)/~+nω)t

0 0 ei((ǫ20−J)/~+nω)t 0

)

, (7)

where the following relation for Bessel functions was used

exp

(

i
A

~ω
sinωt

)

=
∑

n

Jn

(

A

~ω

)

exp (inωt). (8)

From Eq. (7) it follows that the resonance conditions are
given by ǫ10 ± J + n~ω ≈ 0, ǫ20 ± J + n~ω ≈ 0, and
population trapping is controlled by the two conditions
Jn(

A1

~ω ) = 0 and Jn(
A2

~ω ) = 0. It is evident that in this
case the resonance conditions depend on the coupling
constant. In the RWA in the Hamiltonian Eq. (7) fast
oscillating components can be neglected with the excep-
tion of those for which the resonance conditions are satis-
fied. Then the Hamiltonian describing the slow dynamics
will have the simple matrix form which we can find, in
general, the four quasi-energies.
It should be noted that the obtained results are valid in

the framework of the RWA17 and cannot describe the sys-
tem dynamics at an arbitrary amplitude time-dependent
field. To leave the framework of the RWA limitations
we will apply the numerical solution of the Schrödinger
equation in the next section. Recent studies beyond the
RWA can be found in Refs. [26,27,31–33].

III. QUASI-ENERGIES AND TRANSITION

AMPLITUDES IN A STRONG DRIVING FIELD

To obtain results for high-field amplitudes a quasi-
energy representation is used. This representation gives
the precise intermediate system state in a periodically-
driven field with an arbitrary amplitude and allows to
detect the peculiarities of resonant transitions caused by
the motion and crossing of quasi-levels when the field
changes.

A. Quasi-energies of multi-level systems

Let us consider the Hamiltonian of a multi-level system
and let us take it to be periodic with period T = 2π/ω

H(t) = H(t+ T ). (9)

According to Floquet’s theorem, the general solution of
the Schrödinger equation can be decomposed into the
complete set of functions

|Ψk(t)〉 = |Φk(t)〉e
−iQkt/~, |Φk(t+T )〉 = |Φk(t)〉, (10)

where the functions |Φk(t)〉 are the solutions of the equa-
tion

(

H(t)− i~
∂

∂t

)

|Φk(t)〉 = Qk|Φk(t)〉, (11)

and the real parameter Qk is called the quasi-
energy16,56(k is the quantum number determining the
quasi-energy).
The quasi-energies Qk and eigenfunctions |Φk(0)〉 at

the initial moment of time (which may be chosen
arbitrarily16) are found by the solution

F (T )|Φk(0)〉 = e−iQkT/~|Φk(0)〉, (12)

where F (T ) = P̂ exp(−i
∫ T

0 H(t)dt/~), P̂ is the chrono-
logical ordering operator. The value of the functions
|Φk(t)〉 at any moment of time are obtained from the
equation (11). Since quasi-energies are not uniquely de-

fined Q
′

k = Qk + n~ω, we will depict them in the first
“Brillouin” zone (0 < Qk < ~ω).
Expanding the periodic functions |Φk(t)〉 in Fourier

series15,16,56 can be used to find the quasi-energies. The
coefficients of the Fourier series in turn satisfy an infinite-
dimensional system of linear equations which is approxi-
mately solved by a finite-dimensional approximation. In
this work the form of the functions Qk is found numeri-
cally. First, we do not need to work with large-size sub-
matrices; secondly, this approach allows us to obtain a
controllable approximate solution.
An arbitrary wave function may be expanded in the

complete Floquet basis

|Ψ(t)〉 =
∑

k

ck|Φk(t)〉e
−iQkt/~, (13)

where the coefficients ck are defined by the initial wave
function: ck = 〈Φk(0)|Ψ(0)〉. So the Floquet time-
evolutional operator can be found from Eq. (13):

F (t, 0) =
∑

|Φk(t)〉e
−iQkt/~〈Φk(0)|. (14)

Let us take the system to be initially in the state |α〉,
which is a steady state of the time-independent Hamil-
tonian Eq. (1). Let us also suppose that the electro-
magnetic pulse has an unknown phase. The transition
probability into the excited state |β〉 of the Hamiltonian
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Eq. (1), averaged over the relative phase, is described by
the following expression:

Pα→β(t) =
∑

k,l

e−i(Qk−Ql)t/~
∑

n

M
(n)
k (t)M

∗(n)
l (t), (15)

where

M
(n)
k (t) =

1

T

∫ T

0

e−inωτ 〈β|Φk(τ + t)〉〈Φk(τ)|α〉dτ .

(16)
Notice that the sum with respect to n appears in Eq. (15)
because the Fourier expansion of the Floquet states has
been used in the intermediate manipulations.
The expression Eq. (14) manifests that in a strong

field the system evolution occurs through the interme-
diate quasi-energy states of qubits. It may be shown
that the transition probability Eq. (15) in general con-
tains strongly oscillating-in-time terms which may be be
canceled when the time interval t is long enough. The
exception is the contribution of the states with almost
equal quasi-energies. After averaging the expansion for
the probability Eq. (15) by the time interval t we find

Pα→β =
∑

k

∑

n,n′

∣

∣

∣

∣

〈β|Φ
(n−n

′

)
k 〉〈Φ

(n)
k |α〉

∣

∣

∣

∣

2

, (17)

where the Fourier components are defined by the relation

|Φ
(n)
k 〉 =

1

T

∫ T

0

einωt |Φk(t)〉dt. (18)

The transition probabilities for different harmonics can
be calculated according to Eq. (17). To do that we solve
numerically Eq. (11) and take the Fourier components
according to Eq. (18).

B. Numerical results for coupled qubits in a strong

driving field

We now present numerical results of the coupled qubits
response in a strong driving field. We will use the lan-
guage of quasi-energies crossing which depend on the sys-
tem parameters. It is well known that when the ampli-
tude of the driving field and control parameter change,
the quasi-energies of different symmetry classes may cross
but if they are of the same symmetry class they form an
anticrossing. As a result the transition amplitudes may
change drastically for such parameters15,16,56,57. Special
attention will be paid to the dependence of the level pop-
ulations on the interaction parameter. As was recently
shown46, the interaction parameter can be varied over a
wide range by using an intermediate coupler which, for
instance, may be an additional Josephson loop placed
between the two main qubit loops. So, we are going to
investigate here the behavior of the level populations as
a function of the coupling parameter of the qubits.
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FIG. 1: (Color online). (a) Energies Eα of the Hamiltonian
(1), and (b) the quasi-energies Qk as functions of the control
parameters ǫ0 = ǫ20 = 2ǫ10 and the coupling parameter J .
We used the qubit parameters: ∆2/h = 1.5∆1/h = 0.45 GHz,
ω/2π = 1 GHz, and A2/h = 2A1/h = 7 GHz.

First we shall depict a 3D plot of the qubit energy
dependence on the control parameter and the coupling
parameter. Figure 1(a) shows the energy surfaces for
the time-independent Hamiltonian Eq. (1) (when A =
0). Figure 1(b) shows the transformation of the dis-
persion surfaces to quasi-energy surfaces when the time-
dependent field is applied to the qubits. In order to
understand what quasi-energies cross, we have depicted
some of the characteristic cross sections of the quasi-
energy surface in Fig. 1(b).

The dependencies of the quasi-energies and transition
probabilities on the control parameter, at a given am-
plitude of the alternating field, were investigated. In
Fig. 2(a, b) the quasi-energies are shown as functions
of the control parameter ǫ0 = ǫ20 = λǫ10 for J = 0 (a)
and J/h = −0.1 GHz (b), respectively. In this case, a set
of quasi-energy level crossings which produce additional
peaks for transition probabilities between the eigenstates
of the Hamiltonian Eq. (1) is observed, in Fig. 2(c, d).
Several examples of the quasi-energy level crossings in
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FIG. 2: (Color online). (a, b) The quasi-energies as functions of the control parameter ǫ0 for an external amplitude A/h = 4
GHz. The bottom row (c, d) shows the transition probabilities P 1→2 (blue), P 1→3 (red) and P 1→4 (green). The coupling
parameter J = 0 for the left column (a, c), and J/h = −0.1 GHz for the right column (b, d) were chosen. The following qubit
parameters were used here ω/2π = 1 GHz, ∆2/h = 1.5∆1/h = 0.45 GHz, ǫ0 = ǫ20 = 2ǫ10, and A = A2 = 2A1.
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FIG. 3: (Color online). The upper row line (a,b) presents quasi-energy versus the field amplitude A (which is also measured
in GHz) for coupled qubits; ǫ0 = ǫ20 = 2ǫ10, ǫ0/h = 4 GHz. The bottom row (c, d) shows the transition probabilities P 1→2

(blue), P 1→3 (red) and P 1→4 (green). The other parameters and designations are the same as in Fig. 2.

Fig. 2 and their coincidence with the resonance peaks
are shown by the gray vertical dotted lines.

The quasi-energy dependence, in Fig. 2(b), on the con-
trol parameter can be easily understood in the framework
of perturbation theory. We shall explain the meaning
of the quasi-energy levels formation, which is shown in
Fig. 2(a). Let us mentally draw a set of lines parallel to
the vertical axis at distances n~ω from each other and
then move the fragments of dispersion curves from each
line to the first Brillouin zone (0 < Qk < ~ω). It is shown

below that the obtained picture will approximately cor-
respond to the pictures shown in Fig. 2. As can be seen
from Fig. 2(a) the dependence of quasi-energies on the
parameter ǫ0 is very simple at ǫ0 ≫ ∆: the quasi-energies
behave in accordance with the almost linear laws of dis-
persion of the uncoupled qubits (defined by ~ω module).
The above explanation also provides a key to understand-
ing the meaning of Fig. 1 (b). Notice that when ǫ0 ∼ ∆,
the curvature of the qubits dispersion plays an impor-
tant role in the formation of the resonance peaks [see
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FIG. 4: (Color online). The transition probabilities: P 1→2 (a, b), P 1→3 (c, d), and P 1→4 (e, f) of two coupled qubits
(∆2/h = 1.5∆1/h = 0.45 GHz) as functions of the driving amplitude field A = A2 = 2A1, (ω/2π = 1 GHz) and control
parameter ǫ0 = ǫ20 = 2ǫ10 for different values of the coupling parameter: (a, c, e) J = 0 and (b, d, f) J/h = −0.3 GHz.

Fig. 2(d)].
Figure 3(a) shows the dependence of the four quasi-

levels of two non-interacting qubits in an alternating
field. In the RWA, the dependence of the quasi-energies
on the driving amplitude may be found approximately
from the average Hamiltonian defined by Eq. (7). The
inclusion of the interaction leads to an effective repulsion
of quasi-energy levels [Fig. 3(b)]. At the same time the
populations have peaks when the quasi-levels approach
each other [Fig. 3(c)]. Also this effect occurs for inter-
acting qubits.
As can be seen from Fig. 3(a, b), the quasi-energies

exhibit a nontrivial dependence on the field amplitude
for the two coupling parameters J = 0 [see Fig. 3(a)] and
J = −0.1 GHz [see Fig. 3(b)]. In this case, the appear-
ance of additional quasi-energy crossings and the forma-
tion of new peaks for the transition probabilities might
be possible here [see Fig. 3(c, d)]. The circles show addi-
tional quasi-energy levels crossing and their coincidence
with resonance peaks (the gray dashed lines in Fig. 3).
The dependencies of the transition probabilities be-

tween the states of two qubits built at one time accord-
ing to the alternating field amplitude and the control
parameter are more informative and obvious. The inter-
ference patterns in Fig. 4 for the interacting qubits are
qualitatively understandable on the basis of the results
given in section II. The positions of the “bright spots”

on the probability diagrams, at definite values of ǫ0 and
the field amplitudes, coincide with the positions of the
given transitions on the dependence of the quasi-energies
on the amplitude, as shown in Fig. 3. We see that the
system possesses a distinct behavior depending on the
coupling parameter J , which causes a shift of the peaks
depending on J along the bias direction. Figure 5 clar-
ifies the radical change that the interaction between the
qubits makes on the level populations. First, from the
RWA analysis follows that a shift of the resonance peaks
as a function of the coupling constant should be observed.
These shifts can be seen in Fig. 5(a) and (b) (in the tran-
sitions P 1→2 (a) and P 1→3 (b) the shifts with increasing
the coupling constant of qubits are shown by the arrows).
Secondly, for the transitions P 1→4 the resonance peaks
do not move when the coupling parameter J is changed.
We note that in order to calculate the level populations

for the coupled qubits in Fig. 5, a definite relationship
between the control parameters: ǫ0 = ǫ20(t) = λǫ10(t)
(where λ is a parameter that determines the slope lines
in the plane ǫ20 and ǫ10) has been assumed. The analysis
in the framework of the RWA (Section II) has shown
that the locations of the resonance peaks are given by
the following conditions:

ǫ20 + J + n~ω ≈ 0, (1 → 2), (19)

ǫ10 − J + n
′

~ω ≈ 0, (2 → 4),
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FIG. 5: (Color online). The transition probabilities: P 1→2

(a), P 1→3 (b), and P 1→4 (c), as a function of the control
parameter ǫ0 = ǫ20 = 2ǫ10 for different coupling constants J :
black dotted lines J = 0, dashed blue J/h = −0.3 GHz, and
continuous red J/h = −0.8 GHz. Here we have set: ∆2/h =
1.5∆1/h = 0.45 GHz, ω/2π = 1 GHz, and A2/h = 2A1/h = 7
GHz.

and

ǫ10 + J +m~ω ≈ 0, (1 → 3), (20)

ǫ20 − J +m
′

~ω ≈ 0, (3 → 4).

We can see in Figs. 2, 3 and Fig. 5 for the populations as
well as for the interference patterns in Fig. 4(b, d), that
the resonance peaks undergo a shift by a distance |J | for
the transitions 1 → 2 [see Fig. 4(b) and Fig. 5(a)] and
3 → 4. At the same time, for the transitions 1 → 3 [see
Fig. 4(d) and Fig. 5(b)] and 2 → 4, the peaks are shifted
by a distance |J |/λ. Also shown in the figures is the fact
that due to the chosen relations between the parameters
(for example, when λ = 2) and the relevant conditions
(ǫ0 + J + n~ω ≈ 0 and 2ǫ0 + J +m~ω ≈ 0) the “bright”
resonances of a quantum-coherent tunneling in the tran-
sition 1 → 3 [Fig. 4(d)] are seen twice as often than for
the transition 1 → 2 [Fig. 4(b)]. Depending on the sign of
the coupling constant J (ferromagnetic or antiferromag-
netic coupling), there is a shift of the resonance peaks to
the right or to the left.
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FIG. 6: (Color online). The transition probabilities: P 1→2

(a), P 2→4 (b), and P 1→4 (c) as functions of the control pa-
rameter ǫ0 = ǫ20 = 2ǫ10 and the coupling parameter J . The
qubit parameters are the same as in Fig. 5 and the field am-
plitudes used here are A2/h = 2A1/h = 7 GHz. The color
bar is the same as in Fig. 5.

Also note that the transitions to a higher excited level
are due to virtual transitions that are possible when
both of the paired resonance conditions Eq. (19) and/or
Eq. (20) can be fulfilled with the participation of second
and third intermediate levels, respectively. A character-
istic feature of this transition is the absence of peaks at
integer values of the control parameter of the qubits, and
the lack of resonance shifts when the coupling constant
J is changed. The positions of the resonance peaks (for
1 → 4) for fixed J are determined by ǫ0 = s~ω

λ+1 , where

s ≡ n+n
′

= m+m
′

, and do not depend on the coupling
constant.

Thus, Figs. 5(a, b) demonstrate the shift of peaks when
increasing the parameter J and that agrees qualitatively
with the results of the analysis on the basis of the RWA
(see section II). These conclusions manifest the fact that
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the experimental study of the response of a system of
coupled qubits will make it possible to obtain some addi-
tional information and in particular determine the qubit
coupling parameter.
In Fig. 6(a, b) we show the dependence of the popu-

lation for the transitions 1 → 2 and 2 → 4 depending
on the control parameter and the interaction parameters
of qubits. For the selected slope parameter, λ = 2 is a
clearly visible position of the resonance peaks, defined by
Eq. (19). Resonant lines defined by Eq. (20) look quite
similar. In contrast, the resonance peaks in Fig. 6(c) for
the transition 1 → 4 are determined by the intermediate
states, so according to Eqs. (19) and Eq. (20) these will
be located at the intersection of the lines.

IV. CONCLUSIONS

In this work we have presented results on the behav-
ior of two interacting qubits in a strong driving field.
The principal difference of our approach from the works
devoted to the laser spectroscopic investigations of multi-
level atomic systems is that we study the excitation prob-
ability dependencies on the applied field amplitude and
the control parameter at a fixed frequency of the applied
field.
For a better understanding of the effects of driving

fields on a multi-level system we use the RWA, which al-
lows to find simple conditions of the system resonant ex-
citation. We have shown that these conditions differ from
those that occur in the case of a single qubit. The most
important result here is that these conditions of the res-
onant excitation include the interaction qubit constant.
The realized numerical simulation confirms the qualita-
tive conclusions as follows from the RWA.
Our results show that the change of the field amplitude

and the control parameter have a strong effect on the sys-
tem dynamics. At the same time, the quasi-energy basis
proves to be the most adequate for describing states in
periodic time-dependent fields. The quasi-energy repre-
sentation gives the precise intermediate states of a sys-
tem in a driving field with an arbitrary amplitude and
allows to detect the peculiarities of resonant transitions
caused by quasi-level motion and crossing as a function
of changing parameters. This numerical method of cal-
culating quasi-energy states of multi-level systems made
it possible to find the transition probabilities in a quasi-
energy representation and build interference patterns for
the transition probabilities. The interference patterns
obtained are very sensitive to the coupling strength of the
qubits, suggesting a method to extract the value of the
coupling parameter. The other parameters of the qubits,
in particular the tunneling rates, also significantly affect
the interference pattern so they can also be obtained in
experiments.
The RWA as well as the numerical calculations of

quasi-energy levels of the qubits in the strong driving field
has shown that the effect of avoided crossings leads to

drastically increased transition probabilities between the
qubits steady states. Surprisingly, the peaks of the tran-
sition probabilities between the directly coupled states
shift with changing the inter-qubit coupling J , but for in-
directly coupled states the peak positions are not affected
by J . This effect should be observed in experiments using
the technique of amplitude spectroscopy.
The theory developed in this work should allow to ex-

tend the technique of amplitude spectroscopy used ear-
lier for a single qubit4–8 to more complicated systems.
Clearly, amplitude spectroscopy can be used for study-
ing the spectra of artificial quantum objects: quantum
wells, quantum dots, quantum wires etc. in which the
distances between energy levels are significantly smaller
than in atomic systems.
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(1967)]; H. Sambé, Phys. Rev. A 7, 2203 (1973).

57 M. Grifoni and P. Hänngi, Phys. Rep. 304, 219 (1998).


