
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Phononic self-energy effects and superconductivity in
CaC_{6}

A. Sanna, S. Pittalis, J. K. Dewhurst, M. Monni, S. Sharma, G. Ummarino, S. Massidda, and
E. K. U. Gross

Phys. Rev. B 85, 184514 — Published 14 May 2012
DOI: 10.1103/PhysRevB.85.184514

http://dx.doi.org/10.1103/PhysRevB.85.184514


BH11677

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Phononic self-energy effects and superconductivity in CaC6

A. Sanna1,2, S. Pittalis3, J. K. Dewhurst1,2, M. Monni4,

S. Sharma1,2, G. Ummarino5, S. Massidda4 and E. K. U. Gross1,2
1 Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany)

2 European Theoretical Spectroscopy Facility (ETSF)
3Department of Physics and Astronomy, University of Missouri–Columbia, Columbia MO, 65211 (USA)
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We study the graphite intercalated compound CaC6 by means of Eliashberg theory. We perform
an analysis of the electron-phonon coupling and define a minimal 6-band anisotropic structure, that
leads to a Fermi surface dependance of the superconducting gap. A comparison of the superconduct-
ing gap structure obtained using the Eliashberg and the superconducting density functional theory
is performed. We further report the anisotropic properties of the electronic spectral function, the
polaronic quasi-particle branches and their interplay with Bogoljubov excitations.
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The electron-phonon interaction leads to many signif-
icant physical phenomenon in solids (notably, supercon-
ductivity), and has therefore been studied extensively
both in model systems and in real materials. One impor-
tant aspect of this kind of interaction is the formation of
a coupled electron-phonon system with new interesting
features such as the appearance of polaronic sub-bands
branching from the main electronic bands. This low en-
ergy features of the electronic structure can be observed
thanks to the recent developments in the resolution of
Angle-Resolved Photo Emission Spectroscopy (ARPES).

The theoretical background to deal with metallic po-
larons has been laid down by Engelsberg and Schrief-
fer (ES)1. For this they used a field theoretical ap-
proach combined with Einstein-Debye model to mimic
the phonon spectrum. The ES theory shows the damping
of electrons by phonons and the development of branches
in the electronic dispersion corresponding to energy and
strength of the phonon modes. In superconductors, the
electron-phonon interaction leads to the formation of
a superconducting gap below the critical temperature
Tc. These phenomena can be well described within the
Eliashberg theory which extends the ES theory to the
superconducting state4,5 and reduces to the ES theory in
the non-superconducting normal state.

Due to several computational complexities, a proper
account of the material specific electronic and phononic
structures could not be achieved until very recently–
Eiguren et al.2 and Eiguren and Ambrosch-Draxl3 stud-
ied the effect of the electron-phonon interaction on the
electronic self-energy in the normal state. The main
properties of the spectral function in the superconduct-
ing state have been reported by Scalapino5,6 and, more
recently have also been studied using the ARPES exper-
imental data7–9. However, to the best of our knowledge,
no first-principles attempt has been made to study the
effect of polarons in the superconducting state.

In the present work we use the Eliashberg4,5,23,24

method to study the behavior of ES polarons; a detailed

analysis of the electronic self-energy, including electron-
phonon contributions is performed. In particular, the
features originating from the anisotropy of the electron-
phonon coupling are investigated. Most importantly, it
is shown how the polaronic branches change in the su-
perconducting state below Tc.

The system that is considered for this analysis is the
graphite intercalated compound CaC6 This material has
the highest superconducting Tc observed so far (11.5 K)
amongst the group of graphitic compounds. Graphite
related materialas have attracted considerable interest in
the last few years, mostly due to the appealing possibil-
ity of tuning their physical properties10. In particular
it is possible to vary the conductivity of graphite from
semi-metallic11 to metallic and to superconducting12–20

by adjusting the level of intercalation. In Ca interca-
lated graphite superconductivity arises from the strong
electron-phonon coupling provided both by C and Ca
phonon modes16,21. This coupling is strongly anisotropic
with C and Ca related phonons acting selectively on
the multiple Fermi Surface (FS) sheets of the system22.
These peculiarities make the system particularly inter-
esting.

The paper is organized as follows: In Sec. I, the main
concepts and physical quantities describing our results
are introduced by reviewing the Eliashberg theory of su-
perconductivity. Sec. II is devoted to a detailed descrip-
tion of the principal computational techniques employed
in this work. In Sec. III, results for CaC6 are discussed.
Sec. IIIA reports on the structure of the electron-phonon
interaction. Sec. IIIB focuses on the numerical solutions
of the Eliashberg equations with a µ∗ determined using
results from Density Functional Theory for Superconduc-
tors (SCDFT) calculations. In Sec. IIIC, the polaronic
features of the excitation spectrum of CaC6 are eluci-
dated, both in the normal state (Sec. IIIC1) and in the
superconducting state (Sec. IIIC2). Finally, conclusions
are drawn in Sec. IV.
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I. METHODS

Central quantity in the Nambu-Gor’kov formalism of
superconductivity is the 2× 2 Green’s function24:

Ḡ(k, iωn) ≡

(

G(k, iωn) −F (k, iωn)
−F ∗(k, iωn) G(k,−iωn)

)

, (1)

where G(k, iωn) and F (k, iωn) are, respectively, the nor-
mal and anomalous electronic Green’s functions in re-
ciprocal space. ωn are the Fermionic Matsubara fre-
quencies given by ωn = π(2n + 1)kBT with T be-
ing the temperature and kB the Boltzmann constant.
Following a well established procedure23, non-interating
Kohn-Sham system with Green’s function Ḡ0(k, iωn) =

[iωnσ0 − ξkσ3]
−1, is used as a starting point. Here

σj (j = 0 ... 3) are the Pauli matrices and ξk are the
Kohn-Sham eigenvalues relative to the Fermi energy. The
interacting Green’s function can then be obtained using
perturbation theory:

[

Ḡ(k, iωn)
]−1

=
[

Ḡ0(k, iωn)
]−1

− Σ̄(k, iωn) . (2)

The following approximation for the electronic self-
energy is used:

Σ̄(k, iωn) = −kBT
∑

k′,n′

σ3Ḡ(k′, iωn′)σ3

×

[

∑

ν

|gk,k′,ν |
2
Dν(k− k′, iωn − iωn′)

+ σ1W (k− k′)] (3)

here D is the phonon propagator (D =
−2ωq,ν/

(

ω2
n + ω2

q,ν

)

), gk,k′,ν are the electron-phonon

matrix elements25 between states with wavevector k and
k′, and due to a phonon mode of index ν and wavevector
q=k−k′ and ωq,ν is the frequency of the mode obtained
via linear response25 of the Kohn-Sham system. This
way of calculating ωq,ν is known to lead to a very good
agreement with the measured phononic branches, at
least for standard metals and insulators25. W in Eq.
3 is the screened static electron-electron interaction,
it accounts for those parts of the interaction which do
not involve any phononic contribution. The σ1 factor
in front of W accounts for the fact that exchange and
correlation effects are already included in Ḡ0(k, iωn)

26.
Then only off-diagonal contributions of W are retained
in Σ̄.
The treatment of the Coulomb term needs particular

care. Within Eliashberg theory, an arbitrary cut-off in
k space is needed in order to avoid serious convergency
problems in the Matsubara summation5,27. A conven-
tional way to deal with this problem is to choose an en-
ergy cut-off of the order of the Fermi energy, and to as-
sume that the product of W with the density of states
(DOS) is constant: µ = WN , N being the DOS per spin
at the Fermi energy. It is then possible to restrict the

Matsubara integration to a low energy ( a fraction of eV
) by a renormalization procedure µ → µ∗ introduced by
Morel and Anderson5,27,31. µ∗ can be calculated within
the random phase approximation22,28,29 (RPA) and the
resulting Tc are usually in reasonable agreement with ex-
periments23,30. However, usually µ∗ is adjusted to obtain
the experimental Tc.
The self-energy in Eq. (3) is k-dependent and leads to

anisotropic Eliashberg equations which are computation-
ally very demanding. A simplification can be introduced
retaining a minimal anisotropic structure needed for the
properties of interest. The FS may be divided into por-
tions (FS sheets), with each sheet identifying a corre-
sponding intersecting energy band. These FS sheets and
energy bands can be labeled using the same index (say,
J). We shall refer to such a division as to a multi-band

decomposition (details of our procedure are given in Sec.
III A).
The electron-phonon coupling can be averaged over a

prescribed multi-band divisions (see below, Eq.s (10) and
(11)). Corresponding, multi-band resolved self-energy,
ΣJ , expanded in the basis of Pauli matrices has a form:

ΣJ(n) = iωn [1− ZJ(n)]σ0 +∆J (n)ZJ(n)σ1 , (4)

(terms which only result in a rigid shift of the Fermi level
are neglected). The multi-band resolved Green’s function
reads:

ḠJ(k, iωn) =

−

(

iωnZJ(n) + ξJk ∆J (n)ZJ(n)
∆J (n)ZJ(n) iωnZJ(n)− ξJk

)

[ZJ(n)ωn]
2
+ ξ2Jk + [∆J (n)ZJ(n)]

2
,

(5)
where ξJk are the Kohn-Sham eigenvalues in the J-th
band. Using Eqs. (4) and (5) in the Dyson equation,
we arrive at the following set of coupled self-consistent
equations4,5,23,30:

ZJ(n) = 1 +
πkBT

iωn

∑

m,J′

λJJ′(n,m)
iωmZJ′(m)

RJ′(m)
, (6)

∆ph
J (n) = πkBT

∑

m,J′

λJJ′ (n,m)
∆J′(m)ZJ′(m)

RJ′(m)
,(7)

∆C
J (n) = −πkBT

∑

m,J′

µ∗

JJ′

∆J′(m)ZJ′(m)

RJ′(m)
, (8)

RJ (n) =
√

(ω2
n +∆2

J (n))Z
2
J(n) , (9)

λJJ′ (n,m) =

∫

dω
2ωα2FJJ′(ω)

(ωn − ωm)2 + ω2
. (10)

Here ∆J (n) = ∆ph
J (n)+∆C

J (n) is the total superconduct-
ing gap accounting for phononic and Coulombic contri-
butions on the J-th FS sheet at frequency iωn. ZJ(n) is
the (phononic) mass renormalization function. This term
enters in the diagonal part of the electronic self-energy
and contributes both to the superconducting state and
the normal state. Due to the assumption that all the
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diagonal contributions stemming from W are already ac-
counted at the level of the normal state Kohn-Sham sys-
tem, ZJ(n) has a purely phononic character.
The off-diagonal Coulombic contributions are ac-

counted by the FS-dependent µ∗

JJ′ . In this work, we
choose µ∗

JJ′ in such a way to reproduce the gap struc-
ture obtained within SCDFT22,29 (we shall come back to
this point in Sec. III B). Since ∆ph(n) goes to zero for fre-
quencies much larger than the phononic scale, the cut off
ωc in the Matsubara frequency introduced for Coulom-
bic terms can be uniformly applied to all the terms of the
Eliashberg equations.
α2FJJ′(ω) in Eq. (10) is the band-resolved Eliashberg

function. This quantity results from the averaging of the
electron-phonon interaction over FS sheets:

α2FJJ′(ω) =
1

NJ

∑

k∈J
k′

∈J′

ν

δ(ξk)δ(ξk′)δ(ω − ωq,ν)
∣

∣gνk,k′

∣

∣

2
,

(11)
where NJ is the density of states per spin at the J-th FS
portion.
Once the gap function ∆J(n) and the mass renormal-

ization function ZJ(n) have been obtained on the imag-
inary axis solving the Eliashberg equations (Eqs. (6)–
(10)), they can be efficiently continued to the real axis
via Padé approximant technique38–40, allowing the com-
putation of the real-axis retarded Green’s function. In
particular, we will deal with G := Ḡ11 which is given by:

GJ (k, ω) =
ωZJ(ω) + ξJk

[ωZJ(ω)]
2 − ξ2Jk − [∆J(ω)ZJ (ω)]

2
, (12)

with the corresponding spectral function defined as:

AJ(k, ω) = −
1

π
ImGJ (k, ω). (13)

The energy and life time of a quasi-particle are given
by the real part and (the absolute value of the) imagi-
nary part of the pole positions, respectively. The spectral
function may have broader structures and, thus, the con-
cept of quasi-particle may not apply rigorously. In order
to extract the main features, we look for the zero, zp, of
the denominator of G, i.e. we look for solutions of the
equation:

zp =

√

ξ2Jk + [∆J (zp)ZJ(zp)]
2

ZJ(zp)
(14)

in the complex plane.

II. COMPUTATIONAL DETAILS

Electronic eigenvalues, phononinc frequencies, and
electron-phonon matrix elements are calculated using the
ESPRESSO pseudopotential based package41,42. All cal-
culations are done using the GGA (Generalized-Gradient

Approximation) with the Perdew-Wang43 parameteriza-
tion for the exchange-correlation functional. Ultrasoft
pseudopotentials44 are employed. A 30 Ry cut-off is fixed
for the planewave expansion of the wavefunctions and 300
Ry for the electronic charge. The Brillouin zone is sam-
pled with a 6 × 6 × 6 k-point grid, and electron-phonon
matrix elements are obtained on a 10×10×10 grid. More
details can be found in Ref. 22.
The double Brillouin zone integration appearing in

the definition of the band-resolved Eliashberg functions
in Eq. (11) is evaluated with a Metropolis integration
scheme. Random k-points are generated on the Brillouin
zone, then each k-point is accepted or rejected with a
probability depending on ξk, and its weight is set in-
versely proportional to the acceptance probability. We
use a set of about 2 · 104 accepted k-points per band.
Then electron-phonon matrix elements on this random
mesh are obtained via interpolation from those calculated
on the regular grid.
Eliashberg equations are solved using a 2500 meV cut-

off of the Matsubara frequencies, with the cut-off ωc for
the Coulombic interaction equal to 500 meV. Both pa-
rameters are much larger than the maximum phonon fre-
quency of CaC6, which is about 200 meV. The number
of Matsubara frequencies at each temperature is fixed
by the energy cut-offs, and the M Matsubara frequen-
cies on the positive imaginary axis are used to construct
(M,M) Padé approximants which are used for the ana-
lytic continuations45 to the real axis.

III. RESULTS AND DISCUSSION

A. Properties of the electron-phonon coupling

We calculate the Eliashberg function defined by
Eq. (11) in three different ways:

• Averaging the electron-phonon coupling over the
full surface: referred to as 1-band FS or isotropic
approximation.

• Splitting the FS into three parts: this is shown with
three different colors in the FS (see Table I). The
division of the Fermi surface leads to a division in
the electronic bands shown in the band structure
plot of Fig. 5; an electronic band and a portion of
the FS have same color if they intersect. The first
portion FS 1 is the external FS sheet (shown in
green), which comes from π states. FS 2 (shown
in blue) is the spherical Ca Fermi surface. FS 3
(shown in red) is the π-prism, a two-dimensional
FS having the shape of a hexagonal prism which
crosses the spherical Ca Fermi surface (the corre-
sponding electronic band is the band 3). This divi-
sion is referred to as the 3-band FS approximation.

• Splitting the FS into six parts: each of the three
portions in the 3-band FS approximation is further
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split into two parts. The above π (external) FS has
been divided into a less coupled22 outer part with
|kxy| > 0.4 a.u., and the rest; these two portions
are referred to as 1a and 1b portion, respectively.
The Ca spherical Fermi surface is cut into 2a por-
tion (with |kz| < 0.18 a.u.) and the 2b portion
(the rest). 3a and 3b portions for the π-prism are
defined in a similar manner. The same boundaries
are used to further split the corresponding energy
bands. This overall division is called the 6-band FS
approximation.

In Table I is presented the DOS at the Fermi level, the
intra- and the inter-band electron-phonon couplings:

λJJ′ = 2

∫

α2FJJ′(ω)

ω
dω . (15)

In the 3-band FS approximation the interaction is
dominated by the off-diagonal coupling terms, especially
by the inter-band scattering from states on the spherical
Ca Fermi surface to states on the π-bands. The main rea-
son for this is a strong electron-phonon coupling in the
former (from 2 to 1) and large DOS in the latter (from
2 to 3). The full 3-band α2FJJ′(ω) matrix (see Fig. 1)
shows the distribution of the coupling among the various
phonon modes– band 2 couples strongly with Ca modes
(giving a low frequency peak around 10 meV) while, band
1 couples mainly with the high-frequency stretching C
modes (at 170 meV). Band 3 shows the most homo-
geneous coupling (its intra-band spectral function looks
similar in shape to the total Eliashberg function).
The further decomposition into the 6-band FS approx-

imation doesn’t introduce qualitative differences with
respect to the 3-band decomposition but, as we shall
show, it results in a better quantitative description of
the anisotropy of the superconducting properties.

B. Solution of Eliashberg equations

The Eliashberg equations are solved in three different
ways corresponding to three ways in which the Eliash-
berg function defined in section III. The solution to the
Eliashberg equations lead to a strong anisotropy in the
gap (see Fig. 2); the smallest gap corresponds to the ex-
ternal FS (FS 1), while the highest value of the gap is
related to the 2a structure which forms the central part
of the Ca spherical Fermi surface. We note that at the
phononic level, the anisotropic structure obtained here
agrees very well with the one obtained within SCDFT
in Ref. 22 (see panels (e) and (f) in Fig. 2). If the Tc

is determined from this gap function, without including
the Coulomb interaction, it is not strongly affected by the
multi-band character (i.e. the anisotropy of the gap func-
tion); the isotropic Tc is about 33.5 K and only slightly
higher in the 6-band case with a value of 34 K.
In order to include the Coulomb interactions the

matrix µ∗

JJ′ is needed. Typically µ∗

JJ′ is determined

1 2 3

1 0.301 0.136 0.257

2 0.546 0.239 0.479

3 0.427 0.198 0.367

DOS 0.412 0.104 0.249

0

0.4

FS
 1

to  FS 1
to  FS 2
to  FS 3

0

0.4

FS
 2

0 50 100 150 200
Energy (meV)

0

0.4

FS
 3

1a 1b 2a 2b 3a 3b

1a 0.163 0.126 0.099 0.033 0.201 0.046

1b 0.179 0.140 0.105 0.035 0.221 0.050

2a 0.331 0.245 0.151 0.084 0.384 0.096

2b 0.271 0.202 0.206 0.047 0.400 0.080

3a 0.252 0.194 0.145 0.061 0.309 0.073

3b 0.206 0.157 0.128 0.044 0.259 0.060

DOS 0.250 0.176 0.075 0.031 0.200 0.056

TABLE I: Electron-phonon coupling λJJ′ and DOS for the
3-band FS (top) and 6-band FS (bottom) divisions. DOS is
given in states/eV/spin.The first index runs over the columns.
Isotropic DOS and λ are 0.787 and 0.870, respectively. The
picture on the top represents the FS of CaC6: the external
portion in green; the internal sphere in blue; and the hexagon
that cuts the sphere in red. The labels “a” and “b” correspond
to the additional splitting defining the 6-band division.

FIG. 1: (color online) 3-band FS resolved α2FJJ′(ω) of CaC6.
The three panels refer to the incoming FS, from which the
electron is scattered, while the three lines in each panel refer
to the outgoing FS.

by fitting to the experimental data. However, for
CaC6 the SCDFT gap well reproduces the experimen-
tal measurements32–37. Therefore, in this work, we de-
termine µ∗

JJ′ fitting to the gap structure obtained from
SCDFT.
Interestingly, the simple semi-isotropic approximation:

µ∗

JJ′ = µ∗NJ/N , turns out to be sufficient to reproduce
the SCDFT gap. In the 6-band FS approximation the ex-
perimental Tc = 11.5 K is reproduced for µ∗ ≃ 0.21 [see
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FIG. 2: (color online) (a) Anisotropy of the superconducting
gap, in the 3-band FS approximation; and (b) 6-band FS ap-
proximation. In (a), the dark green thick line is used for the
gap computed over FS 1; the blue thin line for the gap com-
puted over FS 2; and the red dashed line for gap computed over
FS 3. In (b), dark green thick and dotted thin lines are used
for 1a and 1b FS, respectively; blue thin and dash-dotted thick
lines for 2a and 2b FS, respectively; and red dashed thick and
dashed thin lines for 3a and 3b FS, respectively. (a) and (b)
refer to phonon only calculations Inset (c) shows the effect of
the inclusion of the Coulombic interaction: the Eliashberg Tc is
given as a function of µ∗ (see text for details). Inset (d) reports
the low-temperature multi-gap structure for µ∗ = 0.21. Panels
(e) and (f) report the gap distribution functions (phonon only
calculations) in the 6-band FS approximation in SCDFT22 and
Eliashberg theory (with a gaussian broadening applied), respec-
tively.

inset (c) in Fig. 2]. With this choice of µ∗

JJ′ the inclusion
of Coulombic effects reduces the Tc without significantly
affecting the anisotropic structure of the superconducting
gap. The only difference is that by including the Coulom-
bic interaction the gap corresponding to the 2b portion
of the FS becomes slightly larger than the 3a portion
(see Fig. 2(d)). This choice of a semi-isotropic Coulom-
bic pairing which is often done in Eliashberg theory can
be validated by the present analysis. However, this can-
not be applied as a general rule; it has been shown, in
cases like in MgB2

46,47, that a more detailed Coulombic
structure is necessary to get the correct gap anisotropy.

Both ∆(n) and Z(n) are purely real-valued on the Mat-
subara frequencies. For the isotropic case the frequency
dependence of ∆(n) and Z(n) is shown in Fig. 3(a). It
is clear that Z(n) has a value of 1 + λ for small |n| and
then monotonically decreases to 1 at energies much larger
than the available phonons. This behavior is almost inde-
pendent of the values of µ∗ and temperature. The ∆(n)
function also monotonically decreases as a function of in-
creasing energy. The low-energy value is the fundamen-
tal superconducting gap, while in the high-energy limit
approaches ∆C(n). For an isotropic and static Coulomb
interaction, ∆C(n) is both independent of k and the Mat-
subara frequencies. More physical features emerge from
the analytic continuation to the real axis. In particular,

FIG. 3: (color online) Eliashberg functions. (a) Supercon-
ducting gap and mass renormalization function calculated
solving the isotropic Eliashberg equations on the imaginary
axis (b) Analytically continued gap function on the real axis.
(c) Analytically continued mass renormalization function on
the real axis. Full lines are used for the real part and dashed
lines for the imaginary part of these complex functions. On
the imaginary axis the functions are purely real.

we see a three-peak structure in both the real and imag-
inary parts of Z(n) that correlates with the peaks in the
α2FJJ′ (ω).

C. Analysis of self-energy effects

1. Normal state: isotropic approximation

We discuss in this section the simplest case in which
the Eliashberg equations are solved above Tc. Since Tc is
quite low with respect to the phonon energies, solution
above Tc is almost equivalent to imposing the solution
at ∆ = 0 when T = 0. In this section, we use only
the isotropic solutions of the Eliashberg equations and a
parabolic band dispersion.
The solution of the Eliashberg equations give Z(ω)

which is shown in Fig. 3(c) (black line). Using Z(ω) as
input, Eq. (14) is solved in order to obtain the quasi-
particle dispersion curves reported in Fig. 4(a). This
figure shows how the unperturbed electronic band, by
getting dressed with the phononic self energy, develop
branches in correspondence with the three main phononic
peaks in the Eliashberg function. These electronic quasi-
particles dressed by the electron-phonon interaction, so
called polarons, are nearly dispersionless. Only one dis-
persive branch, that goes to zero from about 50 meV,
is observed. This structure also has a very short life-
time (∼ 100 meV). All the other polaronic modes have
instead a longer lifetime (between 1 and 10 meV) and
thus appear as sharp quasi-particles. However, the po-
laronic branches, carry very little of the total spectral
weight. Most of the spectral weight is still localized near
the bare electron dispersion line. This can also be seen
in Fig. 4(b), where the spectral function is shown in the
same energy/momentum window as the quasi-particle
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plot. In this case, we see how the main electron band
acquires a finite lifetime and instead of branchings only
kinks appear. These kinks correspond to the three main
peaks in the α2F (ω).
To move from a qualitative description to a more quan-

titative one, the spectral function A(ω) is examined (see
Fig. 4(c)). At k = kF more than 50% of spectral weight
is accounted for by a single peak of infinite lifetime at the
Fermi energy. This peak (single green line in Fig. 4(c))
moves to higher energies with increasing k-vector (slowly
growing in width) up to an energy of about 10 meV,
where it merges with the polaronic branch generated
by the low-frequency Ca modes (blue long-dashed line).
Above 10 meV the peak is broader (blue thick line) be-
cause the electrons can relax through the generation of
Ca phonons. This broad peak then behaves in a similar
way as the narrow peak below 10 meV; i.e., it increases in
energy with k up until it merges with another polaronic
band which originates from the low-frequency C modes
(red dot-dashed line) and has an energy ∼ 50 meV. It
becomes very broad (yellow short-dashed line) and is dif-
ficult to follow as it merges with the high-frequency C
mode. This behavior is very similar to the case of the
Einstein phonons discussed by Engelsberg and Schrief-
fer in Ref. 1. In our case, this is due to the three-peak
structure of the α2F (ω) i.e. due to the combined effect of
the two-dimensionality of graphite along with the pres-
ence of weakly bound Ca ions. Therefore, at the isotropic
level the self-energy effects in CaC6 (type described by
Eq. (3) ) are particularly simple.

2. Normal and superconducting states: anisotropic features

The degree of complexity of our analysis is increased by
making use of the real KS band dispersions of CaC6

16,22.
Multiple FSs that couple with different phonon branches
are accounted for by adopting the 6-band decomposition.
As shown in Fig. 5(c), (d), (e), and (f), the Ca band
couples mostly with low-frequency modes, therefore it
shows polaronic structures only up to 50 meV. One single
kink can be observed in the spectral function at 50 meV.
The kink at 10 meV is not visible simply because below
this frequency the spectral function itself is just a sharp
peak.
The band that has most structures is the one that pro-

duces the π-prism FS (Fig. 5(g), (h), and (i)), due to
the coupling of all three sets of modes. The external
FS, which couples mostly with high-frequency C modes,
shows only a weak kink around 160 meV. The pola-
ronic branchings (Fig. 5(b’), (c’), (d’), (h’), and (i’))
have similar structures as observed in the isotropic limit.
Anisotropic features are less marked than in the spec-
tral function, because Eq. (14) used to determine these
features does not retain information about the spectral
weight in the branches.
The spectral function in the superconducting phase is

gapped and the multi-gap features can be clearly seen in

the lower panels of Fig. 5(b∗), (c∗), (f∗), and (g∗). The
gap ranges from 1.5 meV around the point b in the band
structure (Fig. 5(b∗)) to about 2.2 meV around point c
(Fig. 5(c∗)). The spectral function shows a (textbook-
like) hyperbolic dispersion– this is the signature of Bo-
goljubov excitations24, as compared to the normal elec-
tronic excitations which have a linear band dispersion
(see Fig. 5(c∗) and (c#)). The distance between the ver-
tices of the hyperbola is equal to 2∆(0). As the temper-
ature rises to approach Tc, ∆(0) → 0 and the hyperbola
tends to its asymptotes. At the same time the spec-
tral weight of the two reflected components (right part
of the upper branch and left part of the lower branch in
Fig. 5(c∗)) also goes to zero and the excitation spectrum
becomes normal (Fig. 5(c#)).
One of the two arms of this hyperbolic dispersion cor-

responds to the normal electronic dispersion line, and it
behaves in a similar way as in the non superconducting
state. The other arm that is a unique feature of the Bo-
goljubov excitations loses spectral weight as the distance
from the FS increases. However as it reaches the energy
of the Ca in-plane modes (from 10 to 15 meV) it deviates
from the hyperbolic arm and follows a polaronic (disper-
sionless) behavior. One can appreciate the formation of
this dispersionless Bogoljubov polaron in the upper-right
and lower-left corners of panel (b∗) in Fig. 5.

IV. CONCLUSIONS

Superconductivity in the graphite intercalated com-
pound CaC6 is studied using Eliashberg theory and su-
perconducting density functional theory. Within a multi-
band description and assuming a structureless Coulomb
interaction, we performed a detailed analysis of the
influence of strongly anisotropic electron-phonon cou-
pling on the k-dependence of the superconducting gap.
Anisotropies computed with Eliashberg theory and su-
perconducting density functional theory were found to
be in very good agreement with each other and with ex-
periments33 .
In this context, from the solution of the Eliashberg

equations, we have shown how anisotropic polaronic
bands emerge over different Fermi surface sheets. The
interplay between superconducting (Bogoljubov) excita-
tions and polarons has also been studied. We reported,
for the first time, how Engelsberg-Schrieffer polarons
evolve from the normal state to the superconducting state
in CaC6.
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FIG. 4: (color online) Polaronic bands and spectral function for the normal state in the isotropic approximation.
On panel (a), the polaronic quasi-particle dispersion curves are shown. This is obtained from the real and imaginary
part of the solution of Eq. (14). The inverse lifetime of the state is given by |Im(zp)| and it is reported for some
points as “error-bar”. Panel (b) shows the spectral function A(k, ω). The abscissa represent the |k| axis, and the
point in which A(k, ω) crosses is kF . In ordinate, the frequency axis is reported. The color-scale goes from zero to
about 15 eV−1 (note that, we cut it off to enhance the structures of A(k, ω)). Panel (c) shows A(k, ω) for different
values of the momentum. A few values are highlighted and correspond to k-values indicated in panel (b). Panel
(d) shows α2F (ω) computed in the the isotropic 1-band approximation.
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FIG. 5: (color online) Polaronic bands and spectral function for the anisotropic and superconducting states of CaC6

determined within the 6-band approximation. Central panel shows the band structure of CaC6: the continuous
green line is the Cπ band corresponding to FS 1; the blue dot-dashed line is the Ca inter-layer band corresponding
to FS 2; and the red dashed line is the second Cπ band corresponding to FS 3 (see Table I for plots of the several
FS portions). Further subdivisions are not reported explicitly. Panels from (a) to (i) show the spectral function
near the Fermi energy in a wide energy window of 300 meV. The letters correspond to the labeling of the crossing
points in the central panel. The color-scale goes from zero (black) to 15 eV−1 (white). Higher peaks in the spectral
function have been cut off. Panels with a primed index show the quasi-particle spectrum (see text for details).
These also show the polaronic branches together with the main electronic band. Colors are proportional to the
line-width of the quasi-particle state: black corresponds to zero and yellow/white correspond to about 0.1 eV.
Panels (b∗), (c∗), (f∗), and (h∗) – focusing on the superconducting gap (a logarithmic color-scale is used) – show
a zoom of the spectral function near the Fermi energy in a narrow energy window of 20 meV. Panel (c#) is the
same as (c∗) but evaluated in the non-superconducting state.
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