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We study the interplay between nematic order and superconductivity, motivated by a recent
experiment on FeSe observing strongly distorted vortex shapes (Song et al., Science 332, 1410
(2011)). We show that the nematic order strongly enhances the anisotropy in the superconducting
coherence length, beyond that expected from considerations of the Ginzburg-Landau theory. We
obtain universal functions describing the coupling between the nematic order and superconductivity,
and discuss connections of our results to the experiments.
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I. INTRODUCTION

The presence of multiple order parameters is one of the most interesting features of strongly correlated systems.
For example, a number of order parameters appear in both the copper and iron based high temperature super-
conductors, including superconductivity and spin density wave order (SDW). Among them, the electronic nematic
order parameter, measuring spontaneous symmetry breaking of lattice rotation symmetry via electron correlations,
has been of particular interest in a series of remarkable experiments.2–8 In the cuprates, nematic order is signaled
by the anisotropy of resistivity and bond ordered density2–6. In the pnictides, orthorhombic structure distortion is
ubiquitous, and is confirmed by various tools such as neutron scattering9, STM10, transport11–13, and ARPES14. A
natural question associated with nematic ordering is its interaction with other order parameters. In superconducting
materials, we are interested in whether the SC and nematic orders compete or attract. In the pnictides, and especially
in Ba1[Fe2−xCox]As2 materials, it was shown that the nematic order parameter and SC compete with each other,
by observing the suppression of structural anisotropy along the onset of SC, the so-called “back-bending”7,8,15 of the
phase boundary.

Recently, Song et al.1 reported another interesting experiment in the FeSe pnictides material showing striking
interplay between nematic order and SC. By observing scanning tunneling microscopy (STM) data of the zero bias
resonance peak of the electronic density of states, Song et al. found that shape of vortex cores was strongly distorted.
Even though the material has a orthorhombic structure, its structural anisotropy is much smaller than the anisotropy
of vortices: the reported structural anisotropy is 0.5 percent of the lattice constants, but the vortex shape anisotropy
is order unity. Song et al. suggested other candidates, such as orbital ordering, to explain the large vortex anisotropy.
Also, the experiments showed that the anisotropy is suppressed in strongly SC regions by observing essentially isotropic
gap functions far from vortices. Thus, it is clear that nematic order and SC compete each other. Near the vortex
core, SC order parameter is suppressed, so nematic order is enhanced distorting vortex shapes significantly.

This paper will present a general theory of competition between the SC and nematic orders, as concomitant insta-
bilities of an underlying Fermi liquid. We will not address microscopic questions addressed in other literatures16–23,
for example, role of orbital physics in nematic ordering24, but focus on general results on the interplay between the
two orders that follow from the symmetries of the order parameter and the presence of a Fermi surface. We will
show that the Fermi surface induces strong competition, which is especially important in the vortex core, and which
can greatly enhance the anisotropy in the vortex shape. Non-analyticities associated with the Fermi surface will be
shown to induce a large coupling between the spatial gradients of the SC order and the nematic order parameter. The
influence of such a coupling on the vortex shape was studied recently25 in the context of a Ginzburg-Landau theory,
and our results here offer a rationale for its enhancement.

Before introducing electrons and their Fermi surface, let us consider a simpler version of competing order parameter
theory, so-called Ginzburg-Landau theory.
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Usual phenomenological constants for the GL theory (r, u, d, y, λ, gGL) are introduced.25 The first and second lines are
for the nematic and superconducting order parameters. The third line describes the coupling between the two order
parameters. The coupling constant λ characterizes how the two order parameters interact with each other : positive
(negative) sign means competition (attraction). One of the easiest ways to see the interplay is to observe the shift of
the nematic order quantum critical point (QCP) shift due to the presence of superconductivity:

sc(|∆|) = sc(0)− λ|∆|2. (2)

Here, it is clear that the sign of λ determines properties of interplay physics. Its positive(negative) value indicates
critical point shift toward(away from) the ordered phase, which shows competition(attraction) of the two order
parameters.15,26Let us consider another limit, where the nematic ordering appears with the SC. The SC coherence
length becomes anisotropic between the x and y directions

ξx = |s|−1/2(1− gGLφ/2) ξy = |s|−1/2(1 + gGLφ/2) (3)

So the gGL term describes the anisotropy(ξx − ξy)/(ξx + ξy) of the SC coherence lengths and it is proportial to
magnitude of the nematic order linearly. A small nematic order parameter implies small difference of coherence
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lengths in the GL theory. Thus in this theory the structural orthorhombicity and nematic ordering cannot explain
the strongly distorted vortex shape observed by Song et al.

We will discuss here the modifications of the GL theory described above due to the presence of electrons and a
Fermi surface. We will show below that the theory with electrons determines sign of the phenomenological constant
λ, which turns out to describe the competition between the two order parameters. Also, we show that the coupling
gGL corresponding to anisotropic coherence length is significantly enhanced by the Fermi surface. Quite generally,
such effects can be described by the one-particle irreducible vertex function in momentum space between two SC and
one nematic order,

Γφψ∗ψ = Fφψ∗ψ

( p
∆

) p2
x − p2

y

p2
, (4)

, where px,y, p,∆ are for momentum components of SC order parameter, magnitude of the momentum, and SC gap
magnitude. In the present terms, the GL theory clearly has

FGLφψ∗ψ ∼ p2 , ΓGLφψ∗ψ ∼ p2
x − p2

y, (5)

as follows directly from Eq. (1). Our main result of this paper is that the vertex function of the theory with electrons
has a very different behavior

Fφψ∗ψ → const. , Γφψ∗ψ ∼
p2
x − p2

y

p2
. (6)

in the p/|∆| → ∞ limit, which is relevant the near the vortex core region due to SC suppression. By comparing
the two Fφψ∗ψ functions at small momentum limit, it is manifest that anisotropy is much stronger once we consider
electron degrees of freedom.

The non-analytic term above looks somewhat exotic, but it can be easily understood by extensions of the BCS
theory in the presence of multiple order parameters. One way to understand this is to consider pairing susceptibility
with infinitesimal SC pairing. Then, pairing susceptibility shows the well known “BCS” logarithmic behavior.27,28

χpairing = 〈ψ†(p)ψ(p)〉 ∼ log(p2), (7)

ψ†(x) = c†↑(x)c†↓(x) is the pairing operator of electrons cσ. In the presence of nematic order φ, it is clear that there
can be a correction to the pairing susceptibility of the form

χpairing(φ) = 〈ψ†(p)ψ(p)〉φ ∼ log(p2 + φ(p2
x − p2

y)) (8)

The vertex function is readily obtained by differentiation with the nematic order parameter,

Γφψ∗ψ ∼
p2
x − p2

y

p2
, (9)

which is the result above. Below, we will calculate the full functional dependence of the vertex function with two
parameters, the momentum and gap magnitudes.

The main implication of the above considerations is that the linear dependence of the SC coherence length on
the nematic order obtained in the GL theory is not correct. Even small nematic order parameter can show strong
enhancement due to its non-analytic influence. Thus, we argue that such enhanced competition between SC and
nematic order in the anisotropic coherence length channel contributes to experimentally observed vortex shape.

The structure of this paper is as follows. In Sec. II, we set up our model Hamiltonian with fermions. We describe
how the nematic and the superconducting order parameters couple to fermions and introduce our strategy to study the
competition effect. For completeness, we reproduce the quantum critical point shift of the nematic order parameter
with fermions under superconductivity in Sec. III. It is shown that the shift is not significant, in the sense that
it is of the same order as predicted by the GL theory. Thus, for the QCP shift only, the fermions do not play an
important role, and the GL theory is enough to describe the competition physics. But we show that fermions do play
an important role in the anisotropic coherence length of the SC order parameter in Sec. IV. In Sec. V, we discuss
implication of our results.
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II. MODEL HAMILTONIAN AND STRATEGY

In two spatial dimensions, Ising nematic order on the square lattice breaks the four-fold rotational symmetry down
to two-fold rotation. The Ising nematic order, could be realized microcopically by many routes, such as an orbital
ordering which may be the case in the pnictides. Instead of using orbital ordering however, we focus on a here simpler
way to study the nematic order parameter- anisotropic hopping.

Let us build a model Hamiltonian step by step. A non-interacting Hamiltonian on a square lattice is

H0 =
∑
i,j

−tijc†i cj , (10)

where tij respects the fourfold rotational symmetry. Because a nematic order parameter is coupled to an anisotropic
hopping, the Hamiltonian with the nematic order parameter becomes

H1 =
∑
i,j

−tijc†i cj + φ(c†i ci±x − c
†
i ci±y) +Hnem (11)

The second term describes an anisotropic hopping, and by condensing the nematic order parameter, φ, the four-fold
rotational symmetry(or x, y exchange symmetry) is broken down to two-fold. In momentum space, it is nothing
but order parameter will distort the Fermi surface. The third term, Hnem, represents the nematic order parameter
dynamics.

If we had used an orbital ordering model, the Fermi surface would contain orbital information, so that each
momentum point is tied to the orbital direction. This would modify matrix elements on the nematic order parameter
in a momentum-dependent way, but not crucially modify the Fermi surface physics we are interested in here.

Next, let us consider the superconducting order parameter. In this paper, we mainly focus on the s-wave paired
pnictides materials. It is straightforward to generalize our results to other cases like d-wave pairing. After a Fourier
transform, the total Hamiltonian is

Htot =

∫
k

(ε(k) + φ(cos(kxa)− cos(kya))c(k)

+ (ψ(p)c†(k + p)c†(−k) + h.c.) +Hnem +HSC , (12)

where the spin index is suppressed. The HSC is the effective Hamiltonian for the superconducting order parameter.
Note that, in the continuum limit, the nematic order parameter coupling becomes

φ(cos(kxa)− cos(kya))c†(k)c(k)→ γ(k)φ c†(k)c(k)

γ(k) =
1

2
a2(k2

x − k2
y). (13)

The total action is

Stot =

∫ [
Lφ + Lψ + c†k(∂τ + ε(k))ck + φγ(k)c†kck + (ψpc

†
k+pc

†
−k + h.c.)

]
(14)

The first two terms are for the order parameter dynamics, and one can understand these terms as usual ϕ4 field
theories with one and two components. The remaining terms describe the fermion spectrum and its coupling to the
two order parameters. Here we absorb coupling constants of the Yukawa-type vertices into the order parameters.
As expected, the two order parameters are coupled to each other by mediating electrons. Below, we study the total
Lagrangian and how this theory describes the competition between the nematic order and the superconductivity.

To see this, let us introduce some notations. Schematically, the effective action is expressed as follows.

Z = tr(e−H/T ) =

∫
φ,ψ

e−Γeff

Γeff =

∫
Γψ∗ψψ

∗ψ + Γφ∗φφ
∗φ+ Γφψ∗ψφψ

∗ψ + · · · . (15)

In the previous works15,26, the competition between SC and other order parameters was described by focusing on
terms such as the first two terms in Eqn. 15. There, it was concluded that the SC and nematic order do not compete
significantly, just as in GL theory, compared the competition between SC and spin density wave order (SDW). In this
paper, we focus on the third term(Γφψ∗ψ) of the above equation, which basically describes anisotropy of coherence
lengths.
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In this setup, one might argue that one can forget about the fermions in the low energy theory, expecting that the
SC order parameter induces an energy gap near the Fermi surface. Then it seems the Ginzburg-Landau theory of SC
and nematic order, Eqn. 1, would be enough to describe the system. However, it turns out that such expectation
is too naive because we are focusing on physics at non-zero momentum. So we need to keep the fermions to see the
interplay physics between the order parameters, as shown below.

III. NEMATIC QUANTUM CRITICAL POINT SHIFT

In this section, we consider the nematic QCP shift under the SC. The analysis is almost the same as in the previous
work,15, and the main difference is that we are consider whole Fermi surface, instead of hot-spots.

Let us consider the quantum critical point as that associated with the onset of nematic order, φ, in a metal. This
critical point will appear at a value s0

c of some tuning parameter s. We define s so that s < s0
c is the nematic ordered

phase with φ 6= 0.(see the GL theory above). The value of s0
c depends on material’s microscopic detailes obviously.

Then, let us consider the onset of nematic order within the superconductor characterized by a gap amplitude ∆,
and denote the critical value of s by sc(|∆|). The essence of the picture of competing orders is that the onset of
superconductivity should shrink the region of SDW order, and hence s0

c > sc(|∆|).
Then, we evaluate the critical point shift(s0

c − sc(|∆|)) from coupling to the fermionic degrees of freedoms. It is
determined by fermion susceptibility of the nematic order with and without SC. It is easy to obtain the susceptibility
with SC,

χnem =

∫
k

γ(k)2 |∆|2

(ε(k)2 + |∆|2)3/2
. (16)

This integration looks proportional to magnitude of the SC order parameter, |∆|. However the integral is non-zero as
∆→ 0, because of the finite density of states at the Fermi level.

Here we expand the anisotropy term around the Fermi surface, and take the lowest term, (γ(k) ∼ g
2 cos(2θk)) for

simplicity. Higher term corrections are subdominant, once we take the BCS limit(∆/EF � 1). Then we obtain

χnem =
g2N (0)

2
(1− α2|∆|2) , s0

c − sc(|∆|) =
g2N (0)

2
α2|∆|2 (17)

where N (0) is a density of states at the Fermi energy, and α2 is a cutoff-dependent positive constant. Therefore,
the presence of SC suppresses the nematic order susceptibility, which indicates competition between the two order
parameters. The α2 term corresponds to the λ term in the GL theory in Eqn. 1. This calculation shows that a
non-analytic term does not appear in the nematic order QCP shift , and the competition effect is relatively weak
compared to the linear QCP shift as in spin density wave(SDW).15 In other words, the competition basically follows
the GL theory, so it is not necessary to keep fermions to understand the QCP shift of the nematic order parameter
under SC.

In the next section, we show that a non-trivial coupling appears in a finite momentum coupling corresponding to
anisotropic SC coherence lengths by Fermi surface contributions, and the coupling is much stronger than usual GL
couplings in the low momentum limit.

IV. ENHANCED ANISOTROPY OF SC COHERENCE LENGTHS

To incorporate the fermion contribution to anisotropic SC coherence lengths, we need to evaluate one Feynman
diagram for the vertex term(Γφψ∗ψ) as in Fig. 1. The electron propagator contains anomalous terms from SC pairing.
The uniform SC order parameter is represented by |∆|, and we consider the non-zero momentum component of SC
modes. Also, in this paper, we only consider uniform nematic order parameter. In this case, it is easy to show that
the vertex evaluation is equal to derivatives of the pairing susceptibility.

Without loss of generality, we can assume that SC order parameter can be adjusted as a real number by choosing
a proper gauge. In the SC phase, the pairing susceptibility depends on its direction.

χxx(2p) =

∫
k

1

Ek+p + Ek−p
(1 +

εk+pεk−p −∆2
0

Ek+pEk−p
)

χyy(2p) =

∫
k

1

Ek+p + Ek−p
(1 +

εk+pεk−p + ∆2
0

Ek+pEk−p
) (18)
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FIG. 1. Feynman diagram for the anisotropic coherence length vertex. The wavy line is for the nematic order parameter and
the dashed lines are for the SC. The plain lines of the loop is for electrons’s propagators with pairing. Note that directions of
the fermion propagator is determined by the normal component of propagator.

We define relations χxx = χ0 − δχ and χyy = χ0 + δχ so that

Spairingeff =

∫
χ0|ψ|2 + δχ(ψψ + ψ∗ψ∗) + · · · (19)

If we assume that the band structure ε(k) contains the nematic order parameter contribution, then it is easy to
obtain the SC coherence anisotropy vertex by differentiating the pairing susceptibilies with nematic order parameter.
Assuming ε(k) is isotropic, the nematic order parameter just renormalizes a dispersion relation as follows.

ε(k)→ ε(k) + φγ(k2) cos(2θk), (20)

where γ(k2) is for an isotropic magnitude dependent part. Then,

Spairingeff =

∫
· · ·+ Γφψ∗ψφ|ψ|2 + Γ̃φψ∗ψφ(ψψ + ψ∗ψ∗) + · · · (21)

Full expressions for the vertex functions are

Γφψ∗ψ =
∂χ0

∂φ
(p)|φ=0 = 2

∫
k

−1

(Ek+p + Ek)2
(1 +

εk+pεk
Ek+pEk

)(
εk
Ek

∂εk
∂φ

) +
∆2

0

Ek+p + Ek
(
∂εk
∂φ

εk+p

Ek+pE3
k

)

Γ̃φψ∗ψ =
∂δχ

∂φ
(p)|φ=0 = 2

∫
k

−1

(Ek+p + Ek)2

∆2
0

Ek+pEk
(
εk
Ek

∂εk
∂φ

) +
−∆2

0

Ek+p + Ek
(
∂εk
∂φ

εk
Ek+pE3

k

). (22)

Here, we only focus on the BCS limit(∆0/EF → 0).

So far, our setup is very general. But to extract more information, let us introduce three parameters (C1, C2, C3)
for the electronic density of states, effective mass, and the nematic coupling. With a general band structure, we can
assume that momentum shifted dispersion relation is

εk+p = εk + vF p cos(θk − θp) + C2
p2

EF
, (23)

where C2 is a non-universal number determining the effective mass. In general, the Fermi velocity has angular
dependence with the four-fold rotational symmetry, and nematic order parameter breaks the symmetry down to the
two-fold one. In this paper, we assume the Fermi velocity is vF is isotropic and set to unity. Its angular dependence
only changes numerical factors of the final results, specifically the constants (C1, C2, C3) of Eqn. 29.

Also, we assume that the density of states at the Fermi surface is constant

N (EF ) = C1EF , (24)

where C1 is a band structure related constant.
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FIG. 2. Dimensionless functions of the vertex functions. See Eqns. 29.

Then, the above vertex functions are

Γφψ∗ψ(p) = 2C1EF

∫
dθ

2π

∫
dε

−1

(Ek+p + Ek)2
(1 +

εk+pεk
Ek+pEk

)(
εk
Ek

∂εk
∂φ

) +
∆2

0

Ek+p + Ek
(
∂εk
∂φ

εk+p

Ek+pE3
k

)

Γ̃φψ∗ψ(p) = 2C1EF

∫
dθ

2π

∫
dε

−1

(Ek+p + Ek)2

∆2
0

Ek+pEk
(
εk
Ek

∂εk
∂φ

) +
−∆2

0

Ek+p + Ek
(
∂εk
∂φ

εk
Ek+pE3

k

). (25)

The energy integration requires a cut-off, Λ, and we assume it is much bigger than SC pairing. For the nematic
coupling, we write

∂εk
∂φ

= gγ(k2) cos(2θk), (26)

where our third parameter appears in γ(k2)

γ(k2) = 1 + C3
εk
EF

. (27)

For fermions with a circular Fermi surface (ε(k) = k2/(2m)− EF ), the introduced constants are

C1 =
1

π
C2 =

1

4
C3 = 1. (28)

At the BCS limit, the gap function becomes negligible, but it is dangerous to set it to be zero in the integration
because quasiparticles’ pole structures are affected by the gap magnitude.

Note that we do not place any constraints on p/∆. By evaluating the vertex functions at the first oder in ∆/EF ,
we find that

Γφψ∗ψ(p) = 2C1

p2
x − p2

y

p2
(C2G1(p/∆) + C3G2(p/∆))

Γ̃φψ∗ψ(p) = 2C1

p2
x − p2

y

p2
(C2G3(p/∆) + C3G4(p/∆)). (29)

It is not easy to get analytical forms for the vertex functions, so we illustrate the Gi functions in Fig. 2. By performing
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FIG. 3. total vertex functions for the spherical Fermi surface. F0(p) and F1(p) are defined in Eqn. 32

asymptotic expansions, we obtain two limiting cases. The first limit is a metallic limit, p/∆→∞.

Γφψ∗ψ(p)→ const

Γ̃φψ∗ψ(p)→ 0 (30)

The other limit is a deep SC limit, p/∆→ 0.

Γφψ∗ψ(p) ∼ p2/∆2

Γ̃φψ∗ψ(p) ∼ p2/∆2. (31)

Several remarks are in order. First of all, the Fermi energy scale from density of states in the vertex functions
dropped out as expected. This is because we are considering a non-zero angular momentum channel in the vertex
function, so the zero-momentum channel cancelled out. Next, the introduced three constants depend on microscopic
details significantly. For example, different band structures from different lattices(or hopping parameters) change
Fermi velocity and density of states, but one can absorb such differences into redefinition of the constants. Moreover,
different order parameter structures such as different SC pairings(or different origin of nematicity) will affect the
Γφψ∗ψ function evaluation. However, it is expected that final results will have the same functional behaviors with
the adjusted constants. In other words, the functional behavior does not depend on details of mechanisms; different
pairings like d-wave or s-wave and origin of nematicity only changes the three constants.

In Fig. 3, we illustrate the vertex functions for the spherical Fermi surface case.

Γφψ∗ψ(p) = C1F0(p)
p2
x − p2

y

p2

Γ̃φψ∗ψ(p) = C1F1(p)
p2
x − p2

y

p2
(32)

As we can see, the functional behavior of the anisotropy vertex is almost monotonic. The non-monotomic contribution
comes from g3 function which is much smaller than g1. From that, we understand that decreasing SC indicates
increasing anisotropy effect. It certainly shows competition between the nematic order and SC.

Finally, let us estimate how much the non-analytic term makes the anisotropy enhanced inside the vortex core
compared to the usual GL term contribution. For the sake of simplicity, let us assume SC is completely suppressed
inside the vortex core, and has full gap size outside the vortex core. Of course, its size is determined by the coherence
length (gap size). Inside of the core, the functional behavior is approximated as

Γinside ∼
1

p2
(p2
x − p2

y) (33)

Then, the enhanced anisotropy inside the vortex core, η, is basically

η =

∫ a−1

ξ−1

d2p
1

p2
∼ log(

ξ

a
) (34)

up to some constant factors. We use a lattice length scale for comparison. This simple analysis shows that interplay
between the Fermi surface and nematic order enhances the anisotropy of superconducting coherence lengths.
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V. DISCUSSION AND CONCLUSION

Before closing the paper, let us take one step back and think about the meaning of our calculation. In theoretical
physics, one of the most powerful concept is a low energy effective theory. It is very powerful because higher energy
degrees of freedom are ignored and the theory become significantly simplified. Following the spirit, in a s wave SC, it
is common to forget about fermion excitations in low energy limits because of the pairing gap in fermion spectrum.
So, in our system, it seems reasonable to use a GL theory to describe systems because fermions are gapped.

However, our calculation explicitly shows that such consideration is not enough and it is dangerous to use the naive
GL theory. How can we understand such inconsistency? The answer is hidden in Fermi surface physics especially
when multiple order parameters are considered. Even though the pairing makes fermion spectrum gapped, the SC
order and the nematic order are coupled to each other with a finite momentum transfer. Once the finite momentum
is bigger than the gap magnitude, fermions start to see Fermi surface physics and the energy gap becomes irrelevant.
In terms of our calculation, it exactly corresponds to the metallic case, pξ � 1.

To see importance of Fermi surface physics further, let us consider SC pairing susceptibility with nematic order
parameter in the metallic ground state.

χφ(2p) =

∫
k

1

εφk+p + εφk−p
(θ(−εφk+p)− θ(ε

φ
k−p)), (35)

where the superscript(φ) indicates presence of the nematic order parameter in band structures. The denominator
basically describes particle-particle channel energy difference and the step functions are for allowed phase space
contribution. If we take p→ 0 limit, then the usual BCS logarithmic instability shows up, but the presence of the finite
momentum regularizes the susceptibility. The anisotropy SC coherence length vertex is basically Γφψψ∗ = ∂χφ/∂φ|φ=0,
and it is easy to check it indeed corresponds to the form of the metallic limit.

Based on these considerations, the logic that gapped fermion theory only gives a GL theory is not correct. One
should keep in mind that possibility of Fermi surface effects. especially in the case where a momentum (or frequency)
dependent function is present. Such non GL type term is not universal, and depends on order parameter properties
significantly.

It is interesting to compare our results with recent numerical works on the Hubbard model.29,30 It was reported that
even small anisotropic hopping term with strong interaction induces strong enhancement of anisotropy in some physical
quantities such as conductance. The enhancement basically comes from interplay physics between SC, anisotropic
hopping, and fermion excitations, and it seems the numerical calculations are consistent with our results. It would
be very interesting if one can find a mapping between the current work and reported numerical results.

So far, we mainly focus on a low energy theory to understand general competition effects between the two order
parameters. Let us briefly comment on microscopic mechanisms on origin of nematicity in FeSe. First, it is unlikely
for structural orthorhombicity alone to be an origin of strong vortex shape nematicity because it is too small even with
non-analytic contribution from Fermi surfaces. Thus, electronic nematicity is likely to happen. Possible origins for the
electronic nematicicty were suggested in literatures.1,17,22 Magnetic ordering could be a candidate, but it was reported
that there is no hole pocket and the nesting wave vectors ,(π, 0) or (0, π), are supressed in FeSe.31,32 Alternatively,
orbital ordering does no require any nesting, so it was proposed as another candidate for the nematicity. However, it
is still an open question and remains to be understood in future works. No matter what is the microscopic mechanism
of the nematicity, our main point is that magnitude of the nematic order is not required to be very big to explain the
strongly distorted vortex shape.

In this paper, we study interplay physics between nematic order and superconductivity. We show that competition
between the order parameters is well captured by incorporating Fermi surface excitations coupling to the order
parameters. It is shown that anisotropy of superconducting coherence lengths is descriebd by the non-local term
induced by fermion excitations. We show that the non-local term becomes more important in metallic limit, which
shows (p2

x − p2
y)/p2 behavior in the SC coherence anisotropy vertex function. Therefore, we argue the anisotropy

channel becomes more enhanced near the vortex core, where SC is significantly suppressed.
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