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Abstract

It has been suggested that, after being gapped by small symmetry breaking field, the Majorana

quasiparticles localized on the surface of a class DIII topological insulator will exhibit a thermal

Hall effect that arises from a gravitational Chern-Simons term. We critically examine this idea, and

argue that the thermo-gravitational Hall effect is more complicated than its familiar analogue. A

conventional Hall current is generated by a uniform electric field, but computing the flux from the

gravitational Chern-Simons functional shows that gravitational field gradients — i.e. tidal forces —

are needed to induce a energy-momentum flow. We relate the resulting surface energy-momentum

flux to a domain-wall gravitational anomaly via the Callan-Harvey inflow mechanism. We stress

that the gauge invariance of the combined bulk-plus-boundary theory ensures that the current in

the domain wall always experiences a “covariant” rather than “consistent” anomaly. We use this

observation to confirm that the tidally induced energy-momentum current exactly accounts for the

covariant gravitational anomaly in (1 + 1) dimensional domain-wall fermions. The same anomaly

arises whether we write the Chern-Simons functional in terms of the Christoffel symbol or in terms

of the the spin connection.

PACS numbers: 73.43.-f, 11.10.Lm, 04.62+v, 11.15.Yc
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I. INTRODUCTION

One of the key properties of topological insulators is the intimate connection between

the non-trivial bundle structure of the bulk electronic states and the presence of protected

gapless surface modes. The most intuitive way of understanding this connection is that the

twisted bundle gives rise to bulk quantum-Hall-like conductivities, and the gapless surface

modes need to be present to soak up the corresponding conserved currents where they run

into the surface of the sample [1, 2]. In this way the bulk-surface connection is seen to

be a manifestation of the Callan-Harvey “anomaly inflow” mechanism [3]. Most of the

Altland-Zirnbauer classes [4, 5] of topological insulators possess conserved U(1) charge or

SU(2) spin currents, and the necessity of their protected surface modes can be understood

via ordinary gauge-field anomalies. An important exception is the class DIII, which includes

superconductors with spin-orbit interactions, and superfluid 3He-B. Here the only conserved

quantities are energy and (in the translation invariant superfluid) momentum. An anomaly-

inflow understanding of the electrically neutral (Majorana) surface modes in the DIII systems

therefore requires a failure of some edge-mode energy-momentum conservation law — in

other words a gravitational anomaly [6].

Gravitational anomalies originate in the Â-genus contribution to the Dirac index theorem

that is non-zero only in 4k space-time dimensions. They descend via a parity-violating grav-

itational Chern-Simons term in 4k − 1 dimensions to an energy-momentum inflow anomaly

in 4k − 2 space-time dimensions. For physically realizable topological insulators we are

restricted to the k = 1, and therefore to a gravitational Chern-Simons term in a (2 + 1)-

dimensional surface, and a gravitational anomaly in a (1 + 1)-dimensional edge.

Following [7–11] we expect that (after the application of a small symmetry-breaking field

that opens a gap) the (2 + 1)-dimensional Majorana fermion surface modes of the DIII

systems will include a gravitational Chern-Simons term in their low-energy effective action.

It is argued in [12–14] that this term can, in principle, be observed through a thermal Hall (or

Leduc-Righi) effect. A key step in the reasoning in [12–14] requires that, in analogy with the

conventional Hall effect, a uniform gravitational field induces a surface energy-momentum

current. The Leduc-Righi, coefficient is then obtained by means of an Einstein argument.

The idea is that thermal equilibrium in the presence of a gravitational field requires the

local temperature to vary so as to compensate for the gravitational red shift experienced
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by radiation as it moves in the potential. The energy flux induced by a thermal gradient

is then balanced by an equal and opposite energy flux due to the gravitational potential

gradient. The thermal Hall conductance can thus be found from that of the gravitational

Hall conductance.

The purpose of this paper is to argue that, although the arguments in [12–14] are very

appealing, the gravitational “Hall effect” is a little more complicated than its electromagnetic

analogue. While a temperature gradient across a finite (2 + 1)-dimensional surface does

indeed induce a thermal Hall current whose magnitude is related to the gravitational anomaly

[11, 15], the surface-state energy gap exponentially suppress any surface thermal current.

The heat must therefore be carried entirely by the gapless (1 + 1)-dimensional edge modes.

In this respect the thermal current differs from the charge Hall effect, which can flow either

at the (1 + 1)-dimensional edge, or, in the presence of a uniform electric field, within the

(2+1)-dimensional electron gas. Furthermore, the gravitational Chern-Simons term yields an

energy-momentum flux that is proportional to to gradients of the Ricci tensor. Consequently

a uniform bulk gravitational field cannot create an energy-momentum flux within the (2+1)-

dimensional surface. A surface energy flux requires an inhomogeneous field — i.e. tidal

forces. Nonetheless, the tide-induced energy-momentum flow does retain the bulk-boundary

connection because it demands an anomalous (1 + 1)-dimensional gapless mode to absorb

the flux as it runs into an edge or domain wall.

In section II we will describe the thermal Hall effect and show how it can maintain an

equilibrium balance between a temperature gradient and a gravitational potential gradient

even in the absence of a bulk energy flow. In section III we review the Callan-Harvey

anomaly-inflow picture, and stress that this mechanism always leads to the covariant form

of the associated anomaly. In section IV we explain the origin of the gravitational anomaly

in (1+1) dimensional chiral theories. In section V we compute the energy momentum flows

arising from a (2 + 1)-dimensional gravitational Chern-Simons functional and show that

it exactly accounts for the anomaly obtained in section IV. We also show that the same

anomaly is obtained from the Chern-Simons functional whther it is written in terms of the

Christoffel symbols Γ or the spin connection ω. Finally section VI provides a brief summary

of our results.
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II. THERMAL HALL CURRENTS

The edge of a (2 + 1)-dimensional quantum Hall system hosts gapless chiral fermions

[16], and both the edge of a px + ipy superconductor [11] and domain walls on the surface

of a suitably engineered topological insulator [17] host gapless (1 + 1)-dimensional chiral

Majorana fermions. In superfluid He3-B, the presence of a small magnetic field causes the

(2 + 1)-dimensional Majorana modes on the surface of the fluid to acquire a mass-gap m

that can change sign even when the field is uniform [18]. The resulting domains have been

detected by NMR [19], and now the domain walls between regions of ±m host gapless

(1 + 1)-dimensional chiral Majorana fermions.

Consider a collection of such (1+ 1)-dimensional edge modes, and suppose for a moment

that they can be modelled as a set of n independent conformal fields possessing (positive or

negative) propagation velocities vi, i = 1, . . . , n and central charges ci. Then, at temperature

T , each independent edge mode contains an energy density [20]

εi = ci
π

12|vi|
k2B
~
T 2, (1)

where kB is the Boltzmann constant. Thermal energy is therefore being transported along

the edge at a rate [21]

JT =
n∑

i=1

viεi

=
π

12

n∑

i=1

sgn (vi)ci
k2B
~
T 2

=
π

12
(c− c̄)

k2B
~
T 2. (2)

Here c and c̄ are the total conformal charges of the right and left-moving modes respectively.

Although motivated by the model of independent modes, this formula continues to hold

for more complicated conformal theories [15]. If we construct a parallel-sided Hall bar and

maintain a small temperature gradient ∆T across it, then the difference between the contra-

propagating energy fluxes (2) on the two edges gives rise to a net thermal current

JL−R = CL−R∆T (3)

that flows along the bar and perpendicular to the temperature gradient. Here

CL−R = (c− c̄)
π

6

k2B
~
T, (4)
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FIG. 1: Chiral edge modes carry thermal energy clockwise around the boundary of a rectangular

Hall bar. The system is in equilibrium when the temperature difference between the cooler upper

and hotter lower edge is balanced by the gravitational red- and blue-shifts experienced by the

energy quanta as they ascend and descend the vertical sides.

is the Leduc-Righi coefficient.

It is remarkable that the non-universal edge-mode velocities have cancelled, leaving in

CL−R/T only fundamental constants and the numbers c, c̄ that are characteristic of the

quantum Hall phase. It is therefore reasonable to suppose that CL−R/T may be extracted

from topological data, as is the quantum Hall coefficient. It is, however, difficult to provide

a direct derivation of thermal conductivities from linear response theory. There is no term

that can be added to the Hamiltonian to describe the temperature. An ingenious trick

was introduced by Luttinger [22], who instead coupled the system to gravity and proceeded

indirectly by adopting the method used by Einstein to relate diffusion coefficients to viscosity

[23]. Luttinger’s idea is that the de-equilibrating effect of a small temperature gradient will

be precisely compensated for by the red- or blue-shift induced by gravitational potential Φ

when
1

T

∂T

∂x
= − 1

c2light

∂Φ

∂x
. (5)

Consequently, assuming that all currents vanish in equilibrium, and that the effects of the

two driving forces are additive, a linear-response derivation of the current induced by gravity

allows one to deduce the current induced by the thermal gradient.
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Can we use the Luttinger technique to compute the thermal Hall current? — And does it

imply that a uniform gravitational field will cause heat to flow not only at the edges, but also

in the bulk where the system has a gap? To address these questions consider a rectangular

Hall bar (see Figure 1) whose upper, right-propagating, edge at co-ordinate y = y1 is held

at temperature T1 and whose left-propagating lower edge at y = y2 is held at temperature

T2 > T1. If the bar lies in a gravitational field such that the gravitational frequency shift

obeys

ω(y1)

ω(y2)
≡
√
g00(y2)

g00(y1)
=
T1
T2
, (6)

then, as the thermal excitations from the hotter lower edge rise on the left hand vertical side

to the upper edge they will red-shift to the lower temperature. Similarly, as the excitations

from the cooler upper edge descend via the right hand vertical side to the lower edge they

will blue-shift to match the hotter temperature. The system is in equilibrium therefore.

Since for weak gravitational fields we have

√
g00(y) ≈ 1 +

Φ(y)

c2light
, (7)

this situation satisfies (5). Observe, however, that in our Hall bar, the currents are not

zero in equilibrium. Therefore a knowledge of the thermal Hall current at a point does not

allow one to deduce the gravitational Hall current at that point, nor vice versa. We must

distinguish between net transport currents that relocate energy (and to which the Luttinger

argument applies) and the local energy-momentum current that acts as a source for gravity

(and is the current appearing in [12–14]). See [24] for a detailed discussion of the distinction.

Further, the steady-state equilibrium of the Hall bar neither requires nor permits thermal

energy to be flowing within the gapped surface states. This already suggests that a uniform

gravitational field does not induce a surface energy flow.

This suggestion is perhaps not surprising. A mathematical analogy between the con-

ventional Hall effect and gravitation would naturally identify the field strength F with the

Riemann curvature R. A uniform field gravitational field does not, however, require space-

time curvature. The Rindler metric

dτ 2 =

(
1 +

(r − r0)g

c2light

)2

dt2 − 1

c2light
dr2, g = c2light/r0 (8)

of a uniformly accelerated observer provides a gravitational potential Φ(r) = (r − r0)g, but
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is merely a re-parametrization

clightT = r sinh

(
clightt

r0

)
,

X = r cosh

(
clightt

r0

)
,

of a part of Minkowski space with flat metric

dτ 2 = dT 2 − 1

c2light
dX2. (9)

It might, therefore, be more physical to identify the thermal-Hall analogue of the electric

field with the Christoffel symbols Γ which describe the frame-dependent inertial forces that

we perceive as gravity. If this new analogy is to work, the energy-momentum influx into

the edge modes would have to be given by the non-covariant “consistent” gravitational

anomaly, which contains Γ’s, rather that the “covariant” anomaly which contains only R

[25]. In the following sections, however, we will argue that anomaly inflow always give rise

to the covariant anomaly, and not to the consistent anomaly. Moreover, we will see that

gradients of curvature are needed to produce an energy flow into edge states.

To simplify the argument, we will follow the authors of [12] and argue that since we are

interested in topological effects, we can choose non-universal quantities such as propagation

velocities as we like. We will therefore from now on make all modes propagate at clight, and

work with fully relativistic systems. (However, clight does not have to be the actual speed of

light.) We will also use natural units, in which ~ = clight = 1.

III. THE CALLAN-HARVEY MECHANISM AND COVARIANT VERSUS CON-

SISTENT ANOMALIES

Let us recall how the conservation (or non-conservation) of a gauge current is related

to the gauge invariance (or the lack of it) of an action functional. Suppose, for example,

that S[A] is a functional of an su(N) Lie-algebra-valued gauge field Aµ = λaA
a
µ, where

the matrices λa are the generators of su(N). We define the matrix-valued gauge current

Jµ(x) = λaJ
µ,a by setting

δS[A] =

∫
ddx tr {JµδAµ}. (10)

Under a gauge transformation the field changes as Aµ → Ag
µ = g−1Aµg + g−1∂µg, where

g ∈ SU(N). For an infinitesimal transformation g = 1 − ǫ the transformation becomes
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Aµ → Aµ+ δǫAµ, where δǫAµ = −([Aµ, ǫ]+∂µǫ) ≡ −∇µǫ. The corresponding change in S[A]

is

δǫS =

∫
ddx tr {Jµ([ǫ, Aµ]− ∂µǫ)}

=

∫
ddx tr {ǫ(∂µJµ + [Aµ, J

µ])}. (11)

The covariant divergence

∇µJ
µ ≡ ∂µJ

µ + [Aµ, J
µ] (12)

is therefore zero if and only if S[A] is gauge invariant.

We are interested in effective actions S[A] that arise as a result integrating out a collection

of Fermi fields ψ, ψ† in the presence of a classical background gauge field Aµ:

exp{−S[A]} =

∫
d[ψ]d[ψ†] exp

{
−S[ψ, ψ†, A]

}
. (13)

The calculated currents are then the expectation value Jµ = 〈Ĵµ〉 of a quantum operator.

The original S[ψ, ψ†, A] action will be invariant under Aµ → Ag
µ, ψ → g−1ψ, ψ† → ψ†g, but

the invariance may lost during the functional integration. In this case we will have

∇µJ
µ = G(A), (14)

where the anomaly G(A) is a local polynomial in the Aµ and their derivatives. A gauge

anomaly provides an obstruction to a subsequent quantization of the Aµ fields, but when

the Aµ are simply classical probes it provides a useful source of non-perturbative information.

The Callan-Harvey effect links the non-conservation of gauge and other currents to an

inflow of charge from some higher dimensional space in which the anomalous theory is

embedded as modes localized on a domain wall or string defect. In the cases we are interested

in, the inflow is derived from a Chern-Simons term in one-higher space dimension.

As usual we will think of A as a Lie-algebra-valued one-form A = λaA
a
µdx

µ, and define

the field strength as the Lie-algebra-valued two-form

F = dA+ A2 =
1

2
Fµνdx

µdxν . (15)

The Chern-Simons form ω2n−1(A) is then defined as

ω2n−1(A) = n

∫ 1

0

tr {AF n−1
t }, (16)
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where Ft = tF + t(t− 1)A2. It is constructed so that dω2n−1 = tr {F n}. For example,

ω3(A) = tr {AdA+
2

3
A3},

= tr {AF − 1

3
A3}, (17)

and

ω5(A) = tr {A(dA)2 + 3

2
A3dA+

3

5
A5}

= tr {AF 2 − 1

2
FA3 +

1

10
A5}. (18)

The F -free last term ∝ A2n−1 in the second forms of ω2n−1 has coefficient

cn = (−1)n−1n!(n− 1)!

(2n− 1)!
. (19)

It is this last term that governs the change in integrals of ω2n−1 under large gauge transfor-

mations. If A undergoes a finite gauge transformation

A→ Ag = g−1Ag + g−1dg, (20)

then

ω2n−1(A
g) = ω2n−1(A) + cntr {(g−1dg)2n−1}+ dα2n−2(A, g), (21)

where, for example [29]

α2 = −tr {dgg−1A} (22)

and

α4(A, g) = −1

2
tr {(dgg−1)(AdA+ dAA+ A3)− 1

2
(dgg−1)A(dgg−1)A− (dgg−1)3A}. (23)

The Chern-Simons functional C[A] is defined by setting

C[A] = 2π

(
i

2π

)n
1

n!

∫

M

ω2n−1(A), (24)

where M is some 2n − 1 dimensional manifold. The coefficient in front of the integral has

been chosen so that exp{iC[A]} is single-valued when M is the (2n− 1)-sphere. In this case

C[Ag]− C[A] = 2π

(
i

2π

)n
(n− 1)!

(2n− 1)!

∫

S2n−1

tr {(g−1dg)2n−1}, (25)
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and it is shown in [28] that the right-hand side of (25) is 2π times an integer whenever

g ∈ GL(n,C) or any of its compact subgroups such as SU(N). This means that when a

Chern-Simons functional appears in a functional integral

Z =

∫
d[A] exp{ikC[A] + · · ·} (26)

then gauge invariance demands that k be an integer. This constraint on k need not hold

when C[A] appears in an effective action. Indeed k is 1/2 when we integrate out a massive

Dirac fermion in odd dimensional space time.

Given a (2n− 1)-manifold M possessing a 2n− 2-dimensional boundary ∂M , we can use

C[A] to construct an action S[A, g]
def
= C[Ag] that is obviously invariant under A → Ah,

g → h−1g. In this action, the gauge non-invariance of the bulk Chern-Simons term C[A] is

compensated by the complementary gauge non-invariance of the Wess-Zumino action [26]

W [A, g]
def
= C[Ag]− C[A]

= 2π

(
i

2π

)n
1

n!

{∫

∂M

α2n−2(A, g) + cn

∫

M

tr {(g−1dg)2n−1}
}
. (27)

AlthoughW [A, g] requires g to be defined on the 2n−1 dimensional manifoldM , the identity

δtr {(g−1dg)2n−1} = (2n− 1)dtr {(g−1δg)(g−1dg)2n−2} (28)

ensures that variation of W [A, g] depends only on the values that δA and δg take on the

boundary ∂M . It can therefore serve as an anomaly-capturing non-local effective action

for a 2n − 2 dimensional theory [27]. The meaning of the gauge-group element g depends

on the context. In a two dimensional boundary g(x, t) could be the dynamical chiral boson

equivalent to a chiral fermion. In this case we still have to integrate over g in order to obtain

the action S[A] appearing in 10. In two or higher dimensions it might parametrize a Higgs

field that gives a left-handed chiral fermion a mass by coupling it to a right handed chiral

fermion that does not itself couple to A. In this case a vacuum expectation value for g will

explicitly break the gauge symmetry. We will consider only the first of these possibilities.

The gauge anomaly arising from the Wess-Zumino action for a four dimensional theory

may be read off from

∫

∂M

d4x tr {ǫ∇µJ
µ
WZ} = δǫW [A, g]

= −δǫC[A]
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= − 1

24π2

∫

∂M

tr {dǫ(AdA+ dAA+ A3)}

=
1

24π2

∫

∂M

tr {ǫ∂µ(Aν∂σAτ + ∂νAσAτ + AνAσAτ )}εµνστd4x.(29)

So

tr {ǫ∇µJ
µ
WZ} =

1

24π2
tr {ǫ∂µ(Aν∂σAτ + ∂νAσAτ + AνAσAτ )}εµνστ . (30)

Because this anomaly is found as the variation of the functional W [A, g], it satisfies the

Wess-Zumino consistency condition

(δǫδǫ′ − δǫ′δǫ)W = δ[ǫ,ǫ′]W.

It is therefore known as a “consistent” anomaly. The right hand side of the (non) conserva-

tion equation is not gauge covariant, however, and so neither is the left. The gauge current

itself is therefore not covariant, and the physical meaning of the (non) conservation equation

is unclear.

In the full bulk-plus-boundary theory, whose gauge-invariant effective action is C[Ag] the

non-zero divergence of the boundary current is being supplied by the inflow of gauge current

from the higher dimensional bulk. This bulk current is covariant,

tr {λaJλ} =
1

32π2
tr {λaFµνFστ}ελµνστ . (31)

It comes from the variation

δ

∫
ω5 = 3

∫

M

tr {δAF 2}+
∫

∂M

tr {δA(AdA+ dAA +
3

2
A3)}

= 3

∫

M

tr {δAF 2}+
∫

∂M

tr {δA(AF + FA− 1

2
A3)}. (32)

We usually ignore the boundary term when computing a bulk current, but in the total bulk-

plus-boundary theory we must retain it as it provides a contribution to the current in the

boundary of

tr {λaXµ} def
=

1

48π2
tr {λa(AνFστ + FνσAτ −AνAσAτ )}εµνστ . (33)

This quantity is exactly the extra current ([25] equation (2.16)) that has to be added to the

consistent current to obtain the covariant anomaly

tr {λa∇µ(J
µ
WZ +Xµ)} =

1

32π2
tr {λaFµνFστ}ε5µνστ . (34)

11



The new current Jµ
tot = Jµ

WZ + Xµ is now gauge-covariant, and its anomalous divergence

entirely accounted for by the Callan-Havey anomaly inflow [30, 31].

Similarly, in two dimensions we find that

∇µJ
µ
WZ =

1

4π
ǫµν∂µAν (35)

is the consistent anomaly, and

Xµ =
1

4π
ǫµνAν (36)

is the Chern-Simons term’s contribution to the boundary current. Then

∇µ(J
µ
WZ +Xµ) =

1

4π
ǫµν∂µAν +

1

4π
ǫµν(∂µAν + [Aµ, Aν ])

=
1

4π
ǫµν(∂µAν − ∂νAµ + [Aµ, Aν ])

=
1

4π
ǫµνFµν , (37)

is the covariant anomaly.

We have seen that Bardeen-Zumino polynomial Xµ(A) that converts the consistent gauge

current to the covariant gauge current is precisely the contribution to the boundary current

provided by the boundary variation of the bulk Chern-Simons functional. The analogous

conversion of a consistent to a covariant gravitational anomaly requires an extra integration

by parts, and so is more intricate. Indeed some puzzlement was expressed in [3] about what

happened to the inflowing energy-momentum — see the discussion after equation (30) in [3]

— but it was later understood that the anomaly inflow is always leads to a covariant current

[30, 31].

In the above examples, the Chern-Simons term was defined in the bulk and the lower-

dimensional degrees of freedom resided on the boundary. This is, for example, the situation

in the ordinary quantum Hall effect. For (3 + 1)-dimensional topological insulators it is

the Chern-Simons functional that is defined on the boundary, and the lower-dimensional

theory is defined on a domain wall within the boundary. In this case the coefficient of the

Chern-Simons functional is multiplied by sgn(m)/2, where m denotes the mass gap induced

by a small symmetry breaking field that changes sign at the domain wall. The resulting

domain-wall chiral fermions then experience half of the the usual inflow from each side, but

there are two sides, and so the resulting edge-theory anomaly is unchanged.
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IV. TWO-DIMENSIONAL GRAVITATIONAL ANOMALIES

In this section we will review the origin and possible forms of gravitational anomalies. We

start from an effective action S[g] that depends on the space-time metric gµν . The associated

Hilbert energy-momentum tensor T µν is then defined by the variation

δSeff = −1

2

∫
ddx
√

|g|T µν δgµν , (38)

= +
1

2

∫
ddx
√

|g|Tµν δgµν . (39)

Under a change of co-ordinates xµ → x′µ = xµ + ǫµ we have gµν → g′µν = gµν + δgµν , where

δgµν = (Lǫg)µν

= ∇µǫµ +∇νǫµ. (40)

Here Lǫg denotes the Lie derivative of the metric with respect to ǫµ, and ∇µ is the covariant

derivative with respect to the torsion-free Levi-Civita connection. When the effective action

is invariant under this reparametrization we find (taking into account that T µν = T νµ) that

0 = −
∫
ddx
√

|g|T µν ∇µǫν

=

∫
ddx
√

|g|ǫν∇µT
µν . (41)

Thus a gravitational anomaly — i.e. a failure of the covariant conservation law [39]

∇µT
µν = 0 — reflects a failure of reparametrization invariance. While it seems reason-

able that any physical system should be independent of how we choose to describe it, co-

ordinate dependence can creep into S[g] when we tacitly tie a regularization procedure to

the co-ordinate grid rather than to some intrinsic property such as the metric.

An equivalent Lorentz anomaly can also occur in theories when we use a frame field eµa

rather than the metric to encode the geometry. This anomaly manifests itself as a failure of

the energy momentum tensor (now defined in terms of a functional derivative with respect

to eµa) to be symmetric.

We will focus on two-dimensional systems expressed in terms of Euclidean signature

isothermal co-ordinates x, y, in which ds2 = eφ(dx2+ dy2). It is convenient to set z = x+ iy,

z̄ = x − iy so that ds2 = eφdzdz̄. The non-zero component of the metric tensor and its

inverse are then gz̄z = gzz̄ = (1/2)eφ, and gz̄z = gzz̄ = 2e−φ. In these complex isothermal
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co-ordinates the only non-zero entries in the Levi-Civita connection are

Γz
zz = ∂zφ,

Γz̄
z̄z̄ = ∂z̄φ. (42)

The curvature is completely encoded in the Ricci scalar

R = Rµν
µν = Rz̄z

z̄z +Rzz̄
zz̄ = −4e−φ∂2zz̄φ. (43)

In our convention R is twice the Gaussian curvature, and hence positive for a sphere.

The effective action for a left-right symmetric theory with conformal central charge c was

obtained by Polyakov [32] as

SPolyakov[g] = − c

96π

∫
d2x (∂φ)2

= − c

24π

∫
d2x ∂zφ∂z̄φ. (44)

Here d2x denotes dx ∧ dy = dz̄ ∧ dz/2i. To evaluate (44) for a given geometry we must

select a system of isothermal co-ordinates, and this choice is not unique. It is therefore not

immediately obvious that SPolyakov[g] is co-ordinate independent. To verify that it is so, we

must examine the conservation of the energy-momentum tensor.

Now to make use of the Hilbert definition of T µν , we must be free to make an arbitrary

infinitesimal variation in the metric. A general variation, however, will take us away from

the class of isothermal metrics. We therefore make a variation δgµν and follow if with a

change of co-ordinates

z → z′ = z + ǫ(z, z̄)

z̄ → z̄′ = z̄ + ǭ(z, z̄) (45)

so as to return to the isothermal gauge. Now

δ(ds2) = [eφ(ǫ∂zφ+ ǭ∂z̄φ+ ∂zǫ+ ∂z̄ ǭ) + δgz̄z + δgzz̄)]dz̄dz

+(δgzz + eφ∂z ǭ)dzdz + (δgz̄z̄ + eφ∂z̄ǫ)dz̄dz̄. (46)

The required co-ordinate change is obtained by solving

eφ∂z ǭ = −δgzz
eφ∂z̄ǫ = −δgz̄z̄. (47)
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Let us assume for the moment that given δgzz and δgz̄z̄ we can always solve these equations

for ǫ and ǭ. Then, comparing with δ(ds2) = eφδφdz̄dz we find that the metric variation leads

to

δφ = ǫ∂zφ+ ǭ∂ǭφ+ ∂zǫ+ ∂z̄ ǭ+ e−φ(δgz̄z + δgzz̄). (48)

We insert this variation of φ into equation (44), and, assuming that integration by parts is

legitimate, reduce the terms involving ǫ to

− c

12π

∫
d2x ∂z̄ǫ

(
1

2
(∂zφ)

2 − ∂2zzφ

)

= − c

12π

∫
d2x e−φδgz̄z̄

(
∂2zzφ− 1

2
(∂zφ)

2

)
. (49)

On comparing with

δSPolyakov[g] = −1

2

∫
d2x

√
gδgµνT

µν

= −1

2

∫
d2x

√
gδgz̄z̄T

z̄z̄, (50)

where
√
g d2x = eφdxdy, we read off that

c

6π
e−2φ

(
∂2zzφ− 1

2
(∂zφ)

2

)
= T z̄z̄

= gz̄zgz̄zTzz

= 4e−2φTzz. (51)

Thus

Tzz =
c

24π

(
∂2zzφ− 1

2
(∂zφ)

2

)
. (52)

Similarly we find that

Tz̄z̄ =
c

24π

(
∂2z̄z̄φ− 1

2
(∂z̄φ)

2

)
. (53)

Next, examining the effects of δgz̄z + δgzz̄, we have

δSPolyakov[g] = − c

12π

∫
d2xe−φ(δgz̄z + δgzz̄)(−∂2zz̄φ). (54)

From this we read off that

T zz̄ = T z̄z = − c

6π
e−2φ∂2zz̄φ

= − c

24π
e−2φ∂2φ, (55)
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and

Tzz̄ = − c

24π
∂zz̄φ. (56)

We also recover the well-known trace anomaly [33]

T µ
µ = gz̄zT

z̄z + gzz̄T
z̄z = eφT zz̄ =

c

24π
R. (57)

This is a comforting consistency check, as Polyakov derived (44) by working backwards from

(57).

We can now verify that Tµν is covariantly conserved:

1

2
eφ(∇zTzz +∇z̄Tz̄z) = ∇z̄Tzz +∇zTz̄z

= ∂z̄Tzz + ∂zTz̄z − Γz
zzTz̄z

= ∂z̄Tzz + ∂zTz̄z − ∂zφTz̄z

= 0. (58)

This is evidence that SPolyakov[g] is indeed co-ordinate independent. There is a problem how-

ever: if SPolyakov is co-ordinate independent then its functional derivative Tµν must transform

as a tensor. When we make a holomorphic change of variables z = z(ζ), z̄ = z̄(ζ̄), however,

we have ds2 = eχdζdζ̄ = eφdzdz̄ and so

φ = χ+ ln

(
∂ζ

∂z

)
+ ln

(
∂ζ̄

∂z̄

)
. (59)

Consequently

Tzz =
c

24π

(
∂2zzφ− 1

2
(∂zφ)

2

)

=
c

24π

(
∂ζ

∂z

)2(
∂2ζζχ− 1

2
(∂ζχ)

2

)
+

c

24π

(
ζ ′′′

ζ ′
− 3

2

(
ζ ′′

ζ ′

)2
)

=

(
∂ζ

∂z

)2

Tζζ +
c

24π
{ζ, z}, (60)

where Tζζ is the energy-momentum tensor component evaluated in the ζ , ζ̄ co-ordinates and

{ζ, z} is the Schwarzian derivative in whose definition the primes denote differentiation with

respect to z. Our Tµν does not transform as a tensor therefore. The paradox is resolved by

looking back at the first line in equation (49). We see that if we are allowed to integrate by

parts we can take the ∂z̄ derivative off of ǫ and onto Tzz. Thus any holomorphic addition
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to Tzz is invisible to the variation δgz̄z̄. Another way of saying this is that there can be

metric variations δgz̄z̄ that cannot be written in the form the form δgz̄z̄ = −∂z̄ǫ = −2∇z̄ǫz̄.

(The displacements ǫ and ǭ should really be written as ǫz and ǫz̄ as they are the components

of a contravariant vector.) The solvability of (47) depends on the global topology or on

boundary conditions. On a torus, for example, metric variations due to change in the

modular parameter τ are not expressible in this way. On a closed manifold of genus g ≥ 2,

there will be 3(g − 1) linearly independent unobtainable metric variations.

The addition of a purely holomorphic term is indeed required. The full operator energy

momentum tensor is

T̂zz = T̂ (z) +
c

24π

(
∂2zzφ− 1

2
(∂zφ)

2

)
,

T̂z̄z̄ = ˆ̄T (z̄) +
c

24π

(
∂2zzφ− 1

2
(∂zφ)

2

)
,

T̂z̄z = − c

24π
∂2zz̄φ, (61)

where, for a free c = 1 boson field ϕ(z, z̄) = ϕ(z) + ϕ(z̄) for example,

T̂ (z) = : ∂zϕ(z)∂zϕ(z) :

= lim
δ→0

(
∂zϕ(z + δ/2)∂zϕ(z − δ/2) +

1

4πδ2

)
. (62)

(Note that conformal field theory papers often define T̂ (z) to be −2π times (62) so as to

simplify the operator product expansion.) The operator T̂ (z) has been constructed to be

explicitly holomorphic, but at a price of tying its definition to the z, z̄ coordinate system —

both in the mode normal ordering expression in the first line and by the explicit counterterm

in the second. It is not surprising, therefore, that under a holomorphic change of co-ordinates

the operator T̂ (z) does not transform as a tensor. It is well-known that instead

T̂ (z) =

(
∂ζ

∂z

)2

T̂ (ζ)− c

24π
{ζ, z}. (63)

We see that the inhomogeneous Schwarzian derivative terms cancel in the transformation of

the energy momentum tensor T̂µν defined in (61). Thus T̂µν transforms as a tensor and is

still covariantly conserved. It is notable that both the covariant conservation and the trace

anomaly in T̂µν are accounted for by the c-number terms. These properties are therefore

independent of the quantum state in which the expectation is taken. This quantum state

only influences the holomorphic part of 〈T̂zz〉 and an antiholomorphic part of 〈T̂z̄z̄〉.
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In a chiral theory we might constrain both T̂z̄z̄ and T̂z̄z to be zero, while keeping the

covariant form of T̂zz defined in the first line of (61). The term ∇z̄T̂z̄z needed for the

continued mathematical validity of (58) would then be interpreted as

∇z̄Tz̄z → − c

12π
∂ze

−φ∂2zz̄φ

=
c

48π
∂zR, (64)

so that conservation law (58) is reinterpreted as the anomaly equation appearing in [15]

∇zT̂zz = − c

48π
∂zR. (65)

By adding in an identically zero term we can write this as

∇zT̂zz +∇z̄T̂z̄z = − c

48π
∂zR, (66)

which at first glance looks like a covariant tensor equation. It is is not, however, because

replacing the free index z with z̄ leads to

∇zT̂zz̄ +∇z̄Tz̄z̄
?
= − c

48π
∂z̄R (67)

on which the left hand side is identically zero, but the right need not be. Thus (66) is not

the covariant anomaly.

A more symmetric treatment [37] divides the trace anomaly between the left and right

chiral sectors and constrains one of them to zero. Then T̂z̄z̄ remains zero, but

T̂zz̄ → − c

48π
∂2zz̄φ, (68)

so that

T̂ µ
µ =

c

48π
R. (69)

This physical reinterpretation makes the (still mathematically valid) equation (58) read

∇zT̂zz +∇z̄T̂z̄z = − c

96π
∂zR, (70)

∇zT̂zz̄ +∇z̄T̂z̄z̄ = +
c

96π
∂z̄R, (71)

where the second term on the left hand side of the second equation is constrained to be zero.
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In our z, z̄ co-ordinates system we have
√
g =

√−gz̄zgzz̄ = −ieφ/2, and we can write

these last two equations in a covariant manner as

∇zT̂zz +∇z̄T̂z̄z = i
c

96π

√
|g|ǫzz̄∂z̄R, (72)

∇zT̂zz̄ +∇z̄T̂z̄z̄ = i
c

96π

√
|g|ǫz̄z∂zR. (73)

In general euclidean co-ordinates we therefore have [38]

∇µT̂µν = i
c

96π

√
gǫνσ∂

σR. (74)

The factor “i” appears in (75) because it is only the imaginary part of the Euclidean effective

action that can be anomalous [6, 34]. It is absent when we write the equation in Minkowksi

signature space-time, where

∇µT̂
µν =

c

96π

1√
|g|
ǫνσ∂σR. (75)

Note that (75) can be rewritten as ∇µT̃
µν = 0 where

T̃ µν = T̂ µν − c

96π

1√
|g|
ǫνσR. (76)

The new tensor T̃ µν is conserved, but not symmetric. We have therefore exchanged a

reparametrization anomaly for a Lorentz anomaly.

We now show that the manifestly covariant anomaly (75) is that expected from the

anomaly inflow.

V. GRAVITATIONAL CHERN-SIMONS TERMS

In this section we will use both the co-ordinate and frame-field (vielbein) description of

geometric quantities. Thus eµa are the components of the frame field ea = eµa∂µ and e⋆bµ the

components of the co-frame e∗a = e∗aµ dx
µ, with δab = e∗aµ e

µ
b . The frame metric

ηab = gµνe
µ
ae

ν
b (77)

is diag(1, 1, 1) and diag(1,−1,−1) in Euclidean and Minkowski space, respectively.

A gravitational (2 + 1) dimensional Chern-Simons functional can be written either in

terms of the Christoffel-symbol form Γµ
ν = Γµ

νσdx
σas

C[Γ] =
c

96π

∫

M

tr {ΓdΓ +
2

3
Γ3}. (78)
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or in terms of the spin connection ωa
b = ωa

bµdx
µ as

C[ω] =
c

96π

∫

M

tr {ωdω +
2

3
ω3}. (79)

The integrands in these two functionals have the same exterior derivative

d tr {ΓdΓ +
2

3
Γ3} = d tr {ωdω +

2

3
ω3} = tr {R2}, (80)

and so they coincide when M = ∂N is a boundary, but they are no longer equal when M

itself has a boundary. Their normalization is related to the index

Index(DDirac) = DimKer(DDirac)− DimKer(D†
Dirac)

=
1

192π2

∫

N

tr {R2} (81)

of the four dimensional Dirac operator. The Dirac index an even integer for any four-

dimensional manifold possessing a spin structure.

The spin connection is related to the Christoffel form by a GL(3) gauge transformation

ωi
jµ = e∗iν Γ

ν
λµe

λ
j + e∗iν ∂µe

ν
j , (82)

and so

C[ω] = C[Γ]− c

96π

∫

∂M

tr {(dee∗)Γ} − c

288π

∫

M

tr {(e∗de)3}. (83)

Here the matrix-valued one-forms dee∗ and e∗de are defined by (dee∗)µν ≡ (∂σe
µ
a)e

∗a
ν dx

σ and

(e∗de)ab ≡ e∗aµ ∂σe
µ
b dx

σ.

The functional C[Γ] is invariant under reparametrization xµ → Xµ(x) up to boundary

terms. To obtain an energy-momentum conserving theory it has to be attached to a suit-

able boundary theory with compensating transformation properties. We do not have to

write down the corresponding Wess-Zumino action W (Γ, X) to know the boundary theory

anomaly. All we need to do is calculate the out-flowing bulk energy-momentum flux by

computing the response of C[Γ] to a change in the metric.

The variation of the Chern-Simons functional due to a change in Γ is

δC[Γ] =
c

48π

∫

M

tr {δΓR}+ c

96π

∫

∂M

tr {δΓdΓ}. (84)

To compute the contribution to the energy-momentum tensor we also need

δΓµ
νσ =

1

2
gµλ(∇νδgλσ +∇σδgσλ −∇λδgνσ). (85)
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Then, making use of properties of the Riemann tensor that are unique to three dimensions

(See [35, 36] for more details), we find

δC[Γ] =
c

48π

∫

M

d3x
√

|g|Cµνδgµν + boundary terms, (86)

where

Cµν = − 1

2
√

|g|
(ǫρσµ∇ρR

ν
σ + ǫρσν∇ρR

µ
σ) . (87)

is the Cotton tensor . We read-off the bulk energy-momentum tensor to be

T µν = − c

24π
Cµν (88)

In deriving this result we have had to integrate by parts a second time so as to remove the

derivatives from the metric variations. Consequently the boundary terms are more compli-

cated than the usual ones arising from the variation of gauge field Chern-Simons functionals.

We are, however, confident that these boundary terms provide the same conversion of the

consistent anomaly of the boundary theory into the covariant anomaly that we saw with the

gauge anomalies.

We restrict ourselves to product metrics of the form

ds2 = (dx2)2 + gab(x
0, x1)dxadxb, a, b = 0, 1 (89)

with boundary being at x2 = 0. The Ricci tensor apearing in (87) then coincides with the

Ricci tensor of the two-dimensional boundary, and can be written as

Ra
b =

1

2
δabR(x

0, x1), a, b = 0, 1 (90)

The flux of the a = 0, 1 energy-momentum components into the boundary becomes

T 2a =
c

96π

1√
g
ǫρa2∂ρR. (91)

The energy momentum inflow into the boundary therefore precisely accounts for the the

gravitational anomaly (75). The “suitable boundary theory” is thus exactly the chiral theory

whose anomaly we obtained in the previous section.

In contrast to C[Γ], the Chern-Simons functional C[ω] is reparametrization invariant, but

it fails by boundary terms to be invariant under rotations (or Lorentz transformations) of

the frame field:

ea → eOa = ebO
b
a,

ωa
b → (ωO)ab = (O−1)acω

c
dO

d
b + (O−1)acdO

c
b. (92)
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To obtain the energy momentum flow associated with C[ω] we should remember that ω is

linked to the metric through the torsion-free condition

de∗a + ωa
b ∧ e∗b = 0. (93)

and through gµν = ηabe
∗a
µ e

∗b
ν . We therefore define a tensor Tbc and its contravariant version

T da = ηdbηacTbc by varying the vielbein:

δSeff =

∫
dnx

√
g

(
δS

δeµa

)
δeµa

≡
∫
dnx

√
g
(
Tbcη

cae∗bµ
)
δeµa .

=

∫
dnx

√
g T daδeda. (94)

The last line introduces the useful quantity. δeda = ηdbe
∗b
µ δe

µ
a . As defined, there is no

immediate reason for Tbc to be symmetric. However when the functional S is invariant

under an infinitesimal local rotation δeµa = eµb θ
b
a, we have

0 = δSeff

=

∫
dnx

√
g Tbc η

cae∗bµ e
µ
dθ

d
a

=

∫
dnx

√
g Tbc η

caθba

=

∫
dnx

√
g T da θda.

Since θda is an arbitrary skew symmetric matrix, we see that T da = T ad. Accepting this

symmetry, we can now set

δSeff =
1

2

∫
dnx

√
g Tbc

(
ηcae∗bµ δe

µ
a + ηbae∗cµ δe

µ
a

)

=
1

2

∫
dnx

√
g Tαβ

(
eβc η

caδeαa + eαb η
bcδeβc

)

=
1

2

∫
dnx

√
g Tαβ δg

αβ.

Here Tαβ = ebαe
c
βTbc. Thus, for rotation invariant actions, the vielbein variation leads to the

same energy-momentum tensor as Hilbert’s metric variation.

Now we have

δC[ω] =
c

48π

∫

M

tr {δωR}+ c

96π

∫

∂M

tr {δωdω}. (95)
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and we can use

(δωijµ)e
µ
k = −1

2
{(∇jδeik −∇kδeij)

+(∇kδeji −∇iδejk)

−(∇iδekj −∇jδeki)}

to compute Tab. We do not have to perform this rather tedious computation, however. We

know that the variations of C[Γ] and C[ω] differ only by boundary terms. The bulk energy-

momentum tensors for the two actions must therefore coincide. The boundary variations

will differ though. Because C[ω] is reparametrization invariant, the Wess-Zumino term

W [ω,O]
def
= C[ωO]− C[ω] (96)

that together with C[ω] gives the rotation and reparametrization invariant action C[ωO],

must give rise to a conserved boundary-theory energy-momentum tensor T ab
WZ. This tensor

must also be covariant under co-ordinate changes, but will not be symmetric. There is only

one possibility — the frame field version of (76):

T ab
WZ = T̃ ab = T̂ ab − c

96π

1√
g
ǫabR. (97)

The contribution Xab that comes from the boundary part of the variation of C[ω] will then

repair the asymmetry. This contribution is easily computed, and is

Xab =
c

96π

1√
g
ǫabR. (98)

The net effect is that we get the same boundary-theory energy-momentum tensor T̂ µν =

T µν
WZ +Xµν , and the same anomaly equation, independent of whether we write the gravita-

tional Chern-Simons function in terms of Γ or in terms of ω. The only difference between

the two formulations lies in the manner in which the boundary energy-momentum is appor-

tioned between the bulk Chern-Simons contribution Xµν and the boundary Wess-Zumino

part T µν
WZ.

VI. CONCLUSIONS

We have seen that it is most likely that the thermal Hall currents on the surface of

topological insulators are confined to one dimensional domain walls, and cannot flow in
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the two-dimensional surface. To confirm this idea we computed the energy-momentum flux

associated with a gravitational Chern-Simons term in the boundary effective action. We

found that the energy-momentum flux is proportional to gradients of the Ricci curvature,

and therefore needs tidal forces to be non-zero. We related this flux to the gravitational

anomaly experienced by modes localized on one-dimensional domain walls within the surface,

and showed that this anomaly takes the same covariant form independently of whether we

write the gravitational Chern-Simons functional in terms of the Christoffel symbol Γ or the

spin connection ω.

VII. ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation under grant DMR 09-

03291. This work was begun during the TopoMat-11 program at KITP, Santa Barbara,

and was there supported in part by the National Science Foundation under Grant No. NSF

PHY05-51164. I would like to thank Andreas Ludwig, Shinsei Ryu, and Taylor Hughes for

discussions, and also Joel Moore and Shoucheng Zhang for comments and feedback.

[1] D. Boyanovsky, E. Dagotto, E. Fradkin, Nucl. Phys, B285 340-362 (1987).

[2] M. Stone, Ann. Phys. 207 38-52 (1991).

[3] C. G. Callan, J. A. Harvey, Nucl. Phys. B250 427-436 (1985).

[4] M. R. Zirnbauer, J. Math. Phys. 37 (1996), 4986-5018.

[5] A. Altland, M. R. Zirnbauer, Phys Rev B55 (1997) 1142-1161.

[6] L. Alvarez-Gaume, E. Wittem, Nucl. Phys. B234 269-330 (18983).

[7] I. Vurio, Phys. Lett. B175 176-178 ( 1986).
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