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We develop a theory of the tunneling spectroscopy for superconducting topological insulators
(STIs), where the surface Andreev bound states (SABSs) appear as helical Majorana fermions.
Based on the symmetry and topological nature of parent topological insulators, we find that the
SABSs in the STIs have a structural transition in the energy dispersions. The transition results in a
variety of Majorana fermions, by tuning the chemical potential and the effective mass of the energy
band. We clarify that Majorana fermions in the vicinity of the transitions give rise to robust zero
bias peaks in the tunneling conductance between normal metal/STI junctions.

PACS numbers: 74.45.+c, 74.20.Rp, 73.20.At, 03.65.Vf

Topological superconductors (TSCs) are a new state of
matter1–3 characterized by non-zero topological numbers
of the bulk wave functions. They support topologically
protected gapless surface Andreev bound states (SABSs),
and the superconductivity infers that the gapless SABSs
are their own antiparticles, thus Majorana fermions4.
The realization of TSC and Majorana fermions in con-
densed matter physics is of particular interest because
of their novelty as well as the possible application for
quantum devices5–22.

The recent discovered superconductor CuxBi2Se3
23–26

is an intriguing candidate of the TSC because it is associ-
ated with another new state of matter, topological insu-
lator: The parent material Bi2Se3 is originally a topolog-
ical insulator with topologically protected gapless Dirac
fermions on its surface. With intercalating Cu, the super-
conductivity appears. On the theoretical side, it has been
expected that CuxBi2Se3 is a TSC by the Fermi surface
criterion27–29, and possible SABSs specific to this ma-
terial have been studied30–32. Recently, a point contact
spectroscopy experiment on this material has been done,
and reported a zero-bias conductance peak (ZBCP)31.
With analysis excluding other mechanisms, it has been
concluded that the ZBCP is intrinsic and signifies uncon-
ventional superconductivity31. Moreover, similar ZBCPs
have been observed by other groups independently33–35.

Motivated by this finding, we develop in this Rapid
Communication a general theory of Majorana fermions in
superconducting topological insulators (STIs) and their
relation to the tunneling conductance. Up to this time,
the relation between SABSs and the tunneling conduc-
tance has been understood in quasi two-dimensional
superconductors1: (1) If the SABS has a flat band disper-
sion as a function of the momentum parallel to the sur-
face, ky , the resulting line shape of conductance always
has a sharp ZBCP as realized in high-Tc cuprate

1,36. (2)
If the SABS has a linear dispersion as a function of ky, the
resulting line shape of conductance has a broad peak as
observed in Sr2RuO4

37–39. On the other hand, in three-
dimensional superconductors, little is known about the

relation between SABSs and the tunneling conductance.
The only exception is a study on the superconducting
analog of superfluid 3He B phase40. Like CuxBi2Se3,
it is a three dimensional TSC supporting helical Majo-
rana fermions on its surface41–46. However, the result-
ing tunneling conductance always shows a double-peak
structure40. Therefore, in order to pursue the origin of
the observed ZBCPs in STIs, one needs to develop a the-
ory of the tunneling conductance for STIs.
In this Rapid Communication, we study the tunnel-

ing spectroscopy and underlying SABSs in STIs. Based
on symmetry and topological nature of parent topolog-
ical insulators, it is shown that SABSs in STIs have
a structural transition of the energy dispersion (Fig.2).
The transition results in a variety of helical Majorana
fermions in SABSs, which we call cone, caldera, ridge
and valley. We clarify that the transition explains ro-
bustness of the ZBCP in STIs. From explicit calculation,
it is found that the tunneling conductances between nor-
mal metal/STI junctions support ZBCPs near the transi-
tion. These features are proper to STIs and distinct from
a simple three-dimensional TSC mentioned above. Our
findings support that the observed ZBCPs in Refs.31,33–35

are originated from a helical Majorana fermion in STIs,
and they give an evidence of their topological supercon-
ductivity. Our results are summarized in Table I.
First let us briefly review basic properties of parent

topological insulators. For concreteness, we consider the
following k · p Hamiltonian to describe the topological
insulators,

HTI(k) = mσx + vzkzσy + vσz(kxsy − kysx),

m = m0 +m1k
2
z +m2(k

2
x + k2y), (m1m2 > 0), (1)

where sµ and σµ are the Pauli matrices in spin and
orbital spaces, respectively. In addition to the time-
reversal symmetry, we have assumed the mirror symme-

try MiHTIM
†
i = HTI|ki→−ki

with Mi = si, (i = x, y)
and the inversion symmetry. Although HTI in the above
is axial symmetric along the z-axis, even if one adds
higher order terms of ki (i = x, y) like the warping



2

STI BW
gap full nodal iso

SABS cone/caldera ridge/valley cone
conductance DP/ZBP ZBP DP

TABLE I. Momentum-independent odd-parity paring sym-
metries in STI. As a comparison, pairing symmetry in BW
phase of superfluid 3He is shown. The energy spectrum has
full gap, nodal or isotropic (iso) full gap. In cases of low and
intermediate transmissivity of normal metal/STI junctions,
the line shapes of tunneling conductances show double peak
(DP) and zero bias peak (ZBP), respectively. (see Fig.3 and
the corresponding discussions in the text).

terms47, our results do not change qualitatively. The
topological phase of this system is classified by the Z2

invariant, (−1)ν = sgn(m0m1), and when Z2 non-trivial
(m0m1 < 0), the system becomes a topological insulator.
On the surface perpendicular to z-axis, it supports the
topologically protected Dirac fermion.
Now consider the corresponding STIs. The STIs are

described by the Bogoliubov-de Gennes (BdG) Hamilto-

nian in the Nambu representation (ψσ↑, ψσ↓,−ψ
†
σ↓, ψ

†
σ↑),

HSTI(k) = (HTI(k)− µ)τz + ∆̂τx, (2)

where µ is the chemical potential, τµ is the Pauli matrix

in the particle-hole (Nambu) space, and ∆̂ is a 4 × 4
matrix denoting the gap function. σ denotes the in-
dex of orbital. For simplicity, we assume that ∆̂ is a
constant matrix, which is generally realized when the
pairing interaction is short-range and attractive. Be-
cause of the Fermi-Dirac statistics of electrons, ∆̂ satisfies
∆̂ = sy∆̂

T sy, thus there are six independent pairings,
(∆,∆σx,∆σz ,∆σysx,∆σysy,∆σysz) (∆ is independent
of k), which are introduced by Fu and Berg28. For each
independent pairing, we consider SABS on the surface
normal to the z-axis.
In order to solve the SABS, we consider the semi-

infinite STI (z > 0) with a flat surface at z = 0. The
wave function in this system is given by

ψSTI(z > 0) =
∑

I

tIuIe
iqIzeikxxeikyy, (3)

where qI (I = 1, · · · , 8) is a solution of E =
E(kx, ky, qI) with E(k) being an eigenvalue of Eq.(2),
and uI(kx, ky, qI) is the corresponding eigenvector.
Among the eigenvectors, ψSTI(z) consists of those with
E(kx, ky, qI)/∂qI > 0 or ImqI > 0, where the former
denotes up-going states and the latter denotes localized
states in the vicinity of z = 0. Postulating the bound-
ary condition as ψSTI(z = 0) = 0, we can determine the
coefficients tI and obtain the SABS.
Among the six pairings mentioned above, only the

three (∆σysx,∆σysy,∆σysz) support gapless SABSs on
the surface at z = 0. We notice that all of them are
odd-parity pairings, P∆σysµP

† = −∆σysµ, (P = σx),
and the existence of the SABSs is consistent with the
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FIG. 1. (color online) Polar plots of the bulk superconducting
gap Eg for full (a) and nodal (b) gaps, where cone/caldera and
ridge/valley SABSs are realized, respectively. It is not plotted
in a certain region for the cases (b), for visibility.

Fermi surface criterion for odd parity TSCs29. Further-
more, they all are odd under (at least) one of the mirror

symmetries, Mi∆σysµM
†
i = −∆σysµ for i 6= µ. As il-

lustrated in Fig.1, ∆σysx and ∆σysy have point nodes
in the bulk spectrum on the the ky- and kx-axes, re-
spectively, while ∆σysz is full gapped. The point nodes
change a qualitative structure of the SABSs as is shown
below. In the following, we focus on ∆σysz(≡ ∆̂f) and

∆σysy(≡ ∆̂n) because the result of ∆σysx is obtained by
exchanging kx and ky in that of ∆σysy.

The obtained SABSs in the STI are illustrated in Fig.2.
The SABSs appear whenm2

0 < µ2. An important feature
of the SABSs is that there exists a structural transition
of the energy dispersion. Combined with the nodal struc-
ture mentioned above, the transition results in a variety
of Majorana fermions, which we call (a) cone, (b) caldera,
(c) ridge, and (d) valley: For the full gapped pairing

∆̂ = ∆̂f , we find that the cone and the caldera are possi-
ble. For larger values of µ and m1, the energy spectrum
of the SABS is an axial symmetric and monotonic func-
tion of k[≡ (k2x+k

2
y)

1/2], and its shape is a deformed cone
[Fig.2(a)] including higher order terms of k. For smaller
values of µ and m1, however, a second crossing of the
zero energy appears at finite k and a caldera SABS is
realized [Fig.2(b)]. This result is consistent with that of

Refs.30,32. On the other hand, for the nodal pairing ∆̂n,
we obtain the ridge [Fig.2(c)] and the valley [Fig.2(d)],
instead. Although the structural transition occurs on the
same critical line, Majorana fermions in this case have the
flat dispersion due to the existence of bulk point nodes.
As a result, the cone (caldera) is deformed into the ridge
(valley). We can also show that the flat dispersion be-
tween the point nodes has a topological origin, thus is
not accidental48–50.

Now we show that the structural transition is intrinsic
to the STI. Due to an argument based on symmetry given
below, we find that the STI may have a remnant of the
surface Dirac fermion in the parent topological insulator,
and this is the origin of the structural transition. To see
this, consider how the superconductivity of ∆̂g=f,n may
affect on the Dirac fermion. When µ is small and in the
bottom of the bulk band, the surface Dirac fermion near
the Fermi energy is well-separated from the bulk band.
Thus, it can be treated apart, and the problem reduces
to constructing a pairing term of the Dirac fermions that
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FIG. 2. (color online) Evolution of the energy dispersion
of the SABS with the variation of chemical potential and
m0m1. The curve represents the boundary of parameter re-
gions where the structure of the energy dispersion has a (a)
cone [(c) ridge] or (b) caldera [(d) valley] for full (nodal)
gapped pairing. The position of the circle (square) symbol
corresponds to the parameters used in the calculations of tun-
neling conductances with m1 = 20.18 eVÅ (m1 = 5.66 eVÅ),
where a cone (caldera) or ridge (valley)-SABS is realized.

is consistent with symmetry of ∆̂g. In particular, the

induced pairing should have odd mirror parity as ∆̂g,
because the mirror symmetry Mi is a good symmetry on
the surface at z = 0. However, one find that no pair-
ing term is allowed to be consistent with the symmetries.
This means that the Dirac fermion remains to be gapless
near the Fermi energy when adding ∆̂g, in contrast to the
case of conventional s-wave pairing16,51. By hybridizing
with the Majorana cone (ridge) specific to TSCs, the gap-
less Dirac fermion results in a caldera (valley) structure
of the Majorana fermions. Now consider tuning µ deep
into the bulk band. As one increases µ, the surface state
near the Fermi energy merges into the bulk band, and
finally disappears. One now obtains conventional Majo-
rana cone or Majorana ridge because of no hybridization
of the Dirac fermion. Therefore, a structural transition
of the Majorana fermions must occur between these two
limits.
We note that when the transition occurs, the veloc-

ity of the Majorana fermions at (kx, ky) = 0 changes its
sign. The velocity along the x-direction ṽ is given by
ṽ = va∆/m0 with

a =
1−

√

1 + 4m̃1 + 4m̃2
1µ̃

2

2m̃1µ̃2
, (4)

where m̃1 = m0m1/v
2
z and µ̃ = µ/m0. The transition

line determined by a = 0 is given by µ̃2 = 1/(−m̃1),
which is shown in Fig.2. Only for the case with m0m1 <
0, the value of a can become zero, namely, topological
insulator triggers the structural transition of SABS.
Now we calculate the tunneling conductance of

normal metal/STI junction, generalizing theories of

the tunneling spectroscopy of conventional52 and
unconventional36,53 superconductors. We suppose a free
electron in the normal metal with the Hamiltonian
HN (k) = [(k2x + k2y + k2z)/(2me)− µN ]σ0s0τz. The wave
function in the normal metal (z < 0) is given by

ψN (z < 0) = ei(kxx+kyy)
[

χσsee
ikezz

+
∑

σ′s′

(

aσsσ′s′χσ′s′he
ikhzz + bσsσ′s′χσ′s′ee

−ikezz
)

]

, (5)

where χσsτ is the eigenvector of HN (k) with orbital
σ and spin s for electron (τ = e) or hole (τ = h),

and kez =
√

k2e − k2 = ke cos θ, ke =
√

2me(µN + E),

khz =
√

2me(µN − E)− k2, and aσsσ′s′ (bσsσ′s′) is the
Andreev (normal) reflection coefficient. The first term
of the wave function denotes an injected electron, and
the second (third) one denotes a reflected hole (elec-
tron) with reflection coefficient aσsσ′s′ (bσsσ′s′). On the
other hand, the wave function in the STI side (z > 0)
is given by Eq. (3) with the transmission coefficient
tI . These wave functions are connected at the inter-
face (z = 0) by the condition54, ψN(0) = ψSTI(0)
and vNψN(0) = vSTIψSTI(0), with the velocity operator
vN(STI) = ∂HN(STI)/∂kz|kz→−i∂z

. The above equation
determines the coefficients aσsσ′s′ , bσsσ′s′ and tI . Finally,
the normalized charge conductance G is given by

G

GN
=

∑

σs

∫ 2π

0

dφ

∫ π/2

0

dθ sin 2θ Tσs(θ, φ, eV )

∑

σs

∫ 2π

0

dφ

∫ π/2

0

dθ sin 2θ Tσs(θ, φ, 0)|∆=0

, (6)

with the angle resolved transmissivity Tσs(θ, φ, E) =
1 +

∑

σ′s′(|aσsσ′s′ |
2 − |bσsσ′s′ |

2) with kx = k cosφ, ky =
k sinφ, where the energy E of the injected electron is
fixed at the bias voltage eV .
In the following, the band mass of the normal metal

is fixed as mem2 = 1 for simplicity, and we set ∆ =
0.6 meV and m̃1 = −0.59 or m̃1 = −0.17. The other
parameters are the same as those used in Ref.31, i.e.,
m0 = −0.28 eV,m2 = 56.6 eVÅ2, vz = 3.09 eVÅ, v = 4.1
eVÅ and µ̃ = −1.8. We control the transmissivity of the
normal metal/STI interface by changing the value of µN .
The transmissivity becomes maximum in this model for
µN/µ ∼ 0.6 since the magnitude of Fermi momentum
in the normal metal coincides with that in STI. As µN

increases, the magnitude of transmissivity is reduced.
The obtained tunneling conductances G/GN near the

structural transition of SABSs as functions of bias volt-
age eV/∆ are shown in Fig.3. With the decrease of the
magnitude of transmissivity (µN/µ = 60, 1200), the ro-
bust ZBCPs appear stemming from the gapless SABSs
in Fig.2. Only for the low transmissivity case with
µN/µ = 1200 as shown in Fig.3 (a), G/GN has a double-
peak structure. The latter is consistent with the fact that
the corresponding surface local density of states does not
have a zero energy peak but double peak structure31. In
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FIG. 3. (color online) The normalized tunneling conductances
G/GN near the structural transition of SABSs as functions
of bias voltage eV/∆ for the cone, caldera, ridge and valley
SABSs. The values denoted in the panel are of µ/µN for each
line.

junctions with high transmissivity with µN/µ = 0.6, we
obtain G/GN ∼ 2 for |eV | ∼ 0 which is also consistent
with the fact that an injected electron is almost perfectly
reflected as a hole due to Andreev reflection.
We now focus on STI with ∆̂f . It is noted that the

difference of the line shapes of G/GN between Fig.3(a)
and Fig.3(b) can be understood from the different types
of SABSs. In the case of Fig.3(b), a caldera-SABS is re-
alized, as shown in Fig.2(b). From Eq.(4), the slope of
the dispersion of the SABSs at k = 0 becomes gradual
near the structural transition. This enhances the surface
local density of states at E = 0 and makes the ZBCP
for the tunneling conductance in the STIs. Thus the
G/GN at eV = 0 is enhanced in comparison with that
for the cone-shaped SABS. As a result, even in the low
transparent limit µN/µ = 1200, no double-peak struc-
ture of G/GN appears in Fig.3(b). The present feature
is different from preexisting 3D TSCs with spin-triplet p-
wave pairing realized in Balian-Werthamer (BW) phase
of superfluid 3He, where in contrast to Figs. 2(a) and
(b), the energy dispersion of the SABS becomes a con-
ventional Majorana cone41–46. In this case, the angle
resolved transmissivity T (θ, φ, eV ) is given by

T (θ, φ, eV ) =
σN
2

∑

s=±1

1 + σN |Γ|2 + (σN − 1)|Γ|4

|1 + (1− σN )Γ2 exp(−2iθs)|2
,

(7)
with the transmissivity at the interface σN given by
σN = 4 cos2 θ/(4 cos2 θ + Z2)53 and Γ = ∆/(eV +
√

(eV )2 −∆2). Z is a dimensionless constant that con-
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FIG. 4. (color online) The normalized tunneling conductance
G/GN as a function of bias voltage for BW state.

trols σN , and ∆ is the superconducting gap in this sys-
tem. The resulting tunneling conductance never shows a
ZBCP40 as shown in Fig.4. This difference comes from
the absence of the structural transition.

Next, we consider STI with ∆̂n, where the resulting
SABS has a quasi-one dimensional energy dispersion. In
the x-direction, SABS has a flat dispersion as mentioned
before [Fig.2(c)]. The present flat dispersion of the SABS
makes a ZBCP in G/GN for arbitrary lower transmissiv-
ity, as shown in Fig.3(c). When a valley-cone is realized
as the SABS [Fig.2(d)]. G/GN at eV = 0 is enhanced
[Fig.3(d)].

Finally, we compare our results with the experimen-
tally observed tunneling spectroscopy in CuxBi2Se3. The
tunneling conductance in Au/Ag/Cu0.3Bi2Se3 junction
has been observed in Ref.31. From the lattice constants
of Au and Ag (a ∼ 4Å)55, the Fermi momentum of the
normal metal is estimated as kF ∼ π/a ∼ 1Å−1, which
corresponds to µN/µ ∼ 100 in our model. While in the
actual system, a barrier layer suppressing transmissivity
could be formed between normal metal and STI, it can
be taken into account as an effective increase of µN/µ.
Therefore, the experimental result in Ref.31 should be
compared with ours for µN/µ > 100. From Fig.3, we
find that the experimentally observed ZBCP is consistent
with ∆̂f and ∆̂n, both of which support ZBCPs originat-
ing from Majorana fermions on the normal metal/STI
interface.

In conclusion, we have developed a theory of the tun-
neling spectroscopy of STI. We have clarified the struc-
tural transition of the energy dispersion of the SABS, i.e.,
cone-caldera and ridge-valley transitions, which stems
from remaining metallic surface states of parent topo-
logical insulator. In the vicinity of the structural tran-
sition of SABSs, even in the full-gap superconducting
case, the line shapes of tunneling conductance show ro-
bust ZBCPs. On the other hand, a typical 3D topological
superconductor with pair potential realized in BW phase
in superfluid 3He, never shows a ZBCP. Our obtained
results serve as a guide to explore topological supercon-
ductors with Majorana fermions56–58.
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