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We present a detailed study of the destruction of SU(N ) magnetic order in square lattice bilayer anti-
ferromagnets using unbiased quantum Monte Carlo numerical simulations and field theoretic techniques. We
study phase transitions from an SU(N ) Néel state into two distinct quantum disordered “valence-bond” phases:
a valence-bond liquid (VBL) with no broken symmetries and a lattice-symmetry breaking valence-bond solid
(VBS) state. For finite inter-layer coupling, the cancellation of Berry phases between the layers has dramatic
consequences on the two phase transitions: the Néel-VBS transition is first order for all N ≥ 5 accesible in our
model, whereas the Néel-VBL transition is continuous for N = 2 and first order for N ≥ 4; for N = 3 the
Néel-VBL transition show no signs of first-order behavior.

The study of quantum phase transitions is an exciting field
at the forefront of theoretical condensed matter physics [1].
The nature of a particular quantum phase transition is gov-
erned by properties that affect long distance physics such as
broken symmetries, topological order, the presence of Berry
phases and is generally insensitive to microscopic details.
Quantum magnets provide the richest examples of quantum
phase transitions because they possess internal symmetries in
addition to the usual lattice and time reversal symmetries and
because they often have non-trivial Berry phases in their long
wavelength descriptions [2]. The most popular internal sym-
metry group in condensed matter is the SU(N ) group. Initial
interest was focussed on SU(2) and the case of N > 2 was in-
troduced purely as a theoretical tool to access the analytically
solvable N → ∞ limit [3, 4]. However, in the ensuing years
it has come to be recognized that SU(N ) systems with N > 2
but finite are interesting in their own right, since they serve to
model a number of physical systems ranging from spin-orbit
coupled solid-state materials [5] to ultra-cold atoms in optical
lattice potentials [6]. While the ground states of SU(N ) spin
models in one-dimensional chains are relatively well under-
stood [7, 8], two-dimensional phases [9–11] and their associ-
ated phase transitions are only poorly understood.

In this work we address the destruction of the SU(N ) sym-
metry breaking Néel order in the two-dimensional bilayer sys-
tem shown in Fig 1(a). In the bilayer geometry the Berry
phases cancel between the two layers in the continuum limit
allowing access to the phase transitions of interest without the
additional complication of quantum interference effects. We
have studied the properties of the phase transitions from Néel
order to two different types of paramagnetic states, the va-
lence bond liquid (VBL) and the valence bond solid (VBS)
[see Fig. 1(b,c)]. The Néel-VBL transition for N = 2 has
been studied extensively [12–15] and is well known to be con-
tinuous in the O(3) universality class. Here we address for the
first time the fate of this transition when N > 2. We find that
a simple Landau mean-field theory predicts a discontinuous
Néel-VBL transition for N > 2 and a continuous transitions
for N = 2. Using unbiased quantum Monte Carlo simula-
tions we confirm the expectations of the Landau theory, ex-
cept for N = 3, where we find no evidence for a first-order
transition. We show that if this transition is continuous, its
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FIG. 1. (a) Bilayer geometry: The white (black) sites are the A(B)
sub-lattice on which spins transform as the fundamental (conjugate)
representation of SU(N ). J1 connects nearest neighbors in the plane,
J2 connect next nearest neighbors in the plane and J⊥ connect sites
on different layers. (b,c) shows cartoon product wavefunctions of
local singlets for the VBL and VBS states. In reality, the ground state
is a strongly interacting superposition of all valence-bond coverings.
The ground state nevertheless (b) preserves all symmetries for the
VBL, but (c) breaks lattice-symmetry (as shown) for the VBS. In this
paper we provide a detailed study of the Néel-VBL and Néel-VBS
quantum phase transitions.

universality class should be identified with a critical point in
the compact CP2 model [16, 17]. The Néel-VBS transition
in the single-layer model has been predicted [18] and numer-
ically found to be continuous and in the universality class of
the non-compact CPN−1 model for all N [19–21]. We show
that remarkably the Néel-VBS transition characterized by the
same broken symmetries becomes first-order in the bilayer ge-
ometry for all N studied here (our model gives us access to
N ≥ 5), a striking consequence of the cancellation of Berry
phases between layers.

Bilayer Model.– Our SU(N ) symmetric model is defined
with a local Hilbert space of N states on each site of the bi-
layer square lattice illustrated in Fig. 1(a). We label these
states as |α〉 with 1 ≤ α ≤ N . We adopt the representa-
tion used previously in both analytic [3, 4, 22] and numerical
[21, 23, 24] works on bipartite lattices, where the sublattice-A
states transform under rotations with the fundamental repre-
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sentation of SU(N ) [generated by the N2 − 1 matrices T a],
and the B sublattice states transform with the conjugate of
this representation. We consider two different SU(N ) invari-
ant interaction: between sites i and j on the same sub-lattice
Πij ≡

∑
a T

a
i ·T aj , and between sites on opposite sub-lattices

Pij ≡
∑
a T

a
i · T ∗aj . Using these interactions, we define a

model SU(N ) symmetric bilayer system as follows,

Hbil = −J1
N

∑
〈ij〉

Pij −
J2
N

∑
〈〈ij〉〉

Πij −
J⊥
N

∑
[ij]

Pij , (1)

where 〈ij〉 denotes nearest neighbors in the square lattice lay-
ers, 〈〈ij〉〉 denotes next-nearest neighbors in the square lat-
tice layers and [ij] denotes inter-layer bonds, as illustrated in
Fig. 1(a). The J1 term by itself gives the familiar single layer
SU(N ) anti-ferromagnet, which is Néel ordered for N ≤ 4
and VBS ordered for N ≥ 5. Adding a J2 term to the J1-
model favors the Néel state, causing the Néel-VBS transition
to move to arbitrary large N as J2 is increased [21]. Finally,
when the J⊥ term is made large enough it always favors the
formation of a VBL, by forcing the formation of local singlets
[see Fig. 1(b)]. The model bilayer anti-ferromagnet, Eq. (1),
reduces to the familiar SU(2) bilayer model for N = 2 and
J2 = 0.

Since Hbil satisfies Marshall’s sign criteria, it can be simu-
lated using unbiased quantum Monte Carlo methods on large
lattices of linear dimension Lwith 2×L×L sites and at finite-
temperature T using the stochastic series expansion method
with loop updates [25–27]. Néel order is detected by the exis-
tence of a non-zero spin stiffness ρs = T 〈W 2〉 in the limit of
L→∞, where W is the spatial winding number of the world
lines [27]. Likewise, long-range order in the correlation func-
tion N2CV (r, τ) = 〈P0,0+x(0)Pr,r+x(τ)〉 − 〈P0,0+x(0)〉2
signals spontaneous translational symmetry breaking, i.e., the
onset of VBS order. All the VBS ordering studied in our bi-
layer system is of the columnar type (at momentum (π, 0))
and is in phase between the layers (see Fig. 1(c)). We de-
fine O2

VBS in the usual way as the long distance limit of the
VBS correlation function. Finally, an absence of both long-
range Néel and VBS orders indicates the formation of a VBL
state. Using these tests for the three phases, Néel, VBS and
VBL, we have computed the T = 0 phase diagram in the
g⊥ − g2 plane (g⊥ ≡ J⊥/J1, g2 ≡ J2/J1) for each N ≤ 10.
For N ≤ 4, the model Eq. (1) has only two phases: Néel
and VBL [Fig. 1(b)]. For N ≥ 5, the model admits in addi-
tion a VBS phase [Fig. 1(c)]. Phase diagrams for the bilayer
model, Eq. (1), for SU(2), SU(4), SU(6) and SU(8) symme-
try are shown in Fig. 2. These four cases, contain all the
types of phase diagrams we have encountered in our study
with N ≤ 10. We now turn to the main focus of our paper,
a detailed analysis of the nature of the Néel-VBL and Néel-
VBS phase transitions that appear in these phase diagrams for
each N .

Néel-VBL.– First, we analyze the transition between the
Néel state and the featureless fully symmetric valence bond
liquid [a cartoon of the VBL state is illustrated in Fig. 1(b)].
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Néel

SU(2)

SU(4)

SU(6)

SU(8)

FIG. 2. Phase diagram of the modelHbil defined in Eq. (1) for SU(2),
SU(4), SU(6) and SU(8) symmetry in the plane of g2 ≡ J2/J1
and g⊥ ≡ J⊥/J1. The unfilled symbols are locations of first or-
der phase transitions, Néel-VBL (diamonds), Néel-VBS (circles) and
VBS-VBL (squares). The solid black circles mark continuous tran-
sitions. For SU(2), the line of Néel-VBL critical points shown are
in the universality class of the O(3) non-linear σ−model. For SU(6)
and SU(8) the Néel-VBS transitions shown are in the universality
class of the non-compact CPN−1 models (with N = 6, 8 respec-
tively). Solid lines and shaded regions are guides to the eye.

The Néel-VBL transition in the bilayer model for N = 2 and
J2 = 0 has been studied extensively [12–15]. In the special
case of N = 2 the order parameter describing the SU(2) sym-
metry breaking can be written as an O(3) vector. The absence
of Berry phases in the bilayer geometry then allows for the de-
scription of the critical point in terms of the well known O(3)
non-linear σ−model [2]. This simple mapping has no known
generalization for N > 2. For general N , the simplest de-
scription of the Néel-VBL phase transition is found by writing
a Landau theory for the order parameter of the SU(N ) anti-
ferromagnet. Such a description contains both the Néel and
VBL phases, since the VBL is featureless and can be thought
of simply as a phase in which the SU(N ) order parameter is
quantum disordered. The appropriate order parameter is an
N ×N traceless Hermitian matrix, Qαβ , which transforms as
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FIG. 3. Néel-VBL: The spin stiffness ρs close to the Néel-VBL
transition for SU(2), SU(4) and SU(6). The SU(2) transition is con-
tinuous and in the O(3) universality class. The quantity ρs for SU(4)
and SU(6) show signs of step-like behavior. Close to the step we find
double peaked histograms (see Fig. 4) characteristic of a first-order
transition. The Néel-VBL transition shows such first order behav-
ior for all N ≥ 4. The parameters used are g2 = 0.8 for SU(2),
g2 = 0.4 for SU(4) and g2 = 0.6 for SU(6). The legend shows the
value of L, we have set J1β = L everywhere.

Q → UQU† under SU(N ) rotation. In our model, Eq. (1),
such a matrix can be constructed microscopically from a local
operator defined as, Q̂αβ(i) ≡ |α〉i〈β|i − 1/N on the A sub-
lattice and Q̂αβ(i) ≡ |β〉i〈α|i−1/N on the B sub-lattice. We
can now coarse grain this local operator to obtain the order
parameter, Q, and write down a Landau theory action, which
being SU(N ) invariant must consist of traces of powers of Q.

SL = αLTr(Q2) + βLTr(Q3) + γLTr(Q4) (2)

Once the order parameter acquires an expectation value we
can do an SU(N) rotation to obtain a diagonal form forQαβ =
m(δα1δβ1−δαβ/N) which is the analog of a “collinear” mag-
net and the quantity m is the condensate. If we now substitute
the diagonal form for Q in SL we can see that generally cubic
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FIG. 4. Néel-VBL: Hysteresis and double peaked histograms at a
first order Néel-VBL transition in the SU(6) bilayer. In the main
frame we show a sample MC history of the binned squared spatial
winding number, W 2, which shows clear evidence for metastability
The inset shows a histogram for the same quantity, with clear dou-
ble peaked structure. This behavior is found only very close to the
transition and for sufficiently large volumes, providing unambigu-
ous evidence for a first order transition. Here shown for L = 32,
gs = 0.6 and g⊥ = 1.36.

terms in m are present in the action for N > 2. In mean-field
approach for N > 2 such terms will render the phase transi-
tion first order, very much like the first order nematic-isotropic
transition in liquid crystals [28]. WhenN = 2, it is easy to see
that Tr(Q3) evaluates to zero and does not give rise to a cu-
bic m term, making a continuous transition possible. Indeed
by identifying, nx = (Q12 +Q21)/2, ny = (Q12 −Q21)/2i,
nz = Q11 and including gradient terms in the action we arrive
at the well known O(3) σ−model for the ~n = (nx, ny, nz) or-
der parameter.

Consistent with the above Landau theory we confirm from
our numerical simulations (see Figs. 3, 4 and 5) that the Néel-
VBL phase transition is continuous for N = 2 (and in the
O(3) universality class) and first order for N ≥ 4. The first
order transitions get progressively weaker as N is lowered.
Indeed for N = 3 we find no evidence for a discontinuous
transition up to L ≤ 128 [17] (see Fig. 5). If the SU(3) Néel-
VBL transition is continuous, what is the continuum field the-
oretic description? Does the field theory admit a critical fixed
point? The continuum description of the Néel-VBL phase
transition in our SU(N ) bilayer Hamiltonian is a CPN−1 field
theory with a compact U(1) gauge field. In order to make
this connection, we introduce N complex numbers zα with
the constraint

∑
α |zα|2 = 1 [22] and use them to rewrite

Qαβ = z∗αzβ − δαβ/N . This representation has a well known
U(1) gauge redundancy which can be made explicit with the
introduction of a gauge field aµ in the long wavelength effec-
tive action, the famous CPN−1 model description,

S =

∫
d2xdτ

[
1

g
|(∂µ − iaµ)zα|2 + FαβFαβ

]
(3)

where Fαβ = ∂αaβ − ∂βaα is the EM tensor. Following pre-
vious work on quantum anti-ferromagnets [29, 30], it is clear
that in order for the above field theory to possess the VBL
state of the bilayer system when J⊥ � J1, J2, the gauge field
aµ must be compact. The Higgs phase with zα condensed cor-
responds to a phase with SU(N ) symmetry breaking and we
identify this phase with the Néel phase. On the other hand, in
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FIG. 5. Néel-VBL: Crossings of the fluctuations of the spatial wind-
ing number at the Néel-VBL transition for SU(2) and SU(3). In both
cases up to sizes of L = 128 we see good evidence for a nice cross-
ing indicating a continuous transition. No evidence for first-order
behavior was found in these two cases.
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FIG. 6. Néel-VBS: First order nature of the Néel-VBS transition in
the two dimensional square lattice bilayer. Both O2

VBS and ρs show
evidence for step like behavior at the same g⊥. Close to the jump we
find the same kind of double peaked behavior in ρs that is illustrated
in Fig. 4. Here we have shown sample data for N = 8 and j2 = 0.8.
Similar behavior is found for all N studied here.

the phase where zα is massive, the photon mode gets confined
because of the compactness of the gauge field and Polyakov’s
mechanism of monopole proliferation, resulting in a simple
fully gapped paramagnet, which we identify with the VBL
phase, Fig. 1(b). Thus the SU(N ) Néel-VBL transition in our
bilayer can be described in the continuum limit by the Higgs-
“confined phase” transition in the compact CPN−1 theory. Re-
cent work [16] has found that a lattice discretization of the
compact CPN−1 field theory has a continuous transition for
N = 2, 3 and a first order transition for N ≥ 4. Remarkably,
this is in full agreement with our findings here for the SU(N )
bilayer, strengthening the evidence for our identification of a
continuous transition between Néel and VBL for N = 3. A
detailed study of critical singularities of the SU(3) Néel-VBL
fixed point will be presented elsewhere.

Néel-VBS.– We now turn to the transition between the Néel
and translational symmetry breaking valence-bond solid state
[the VBS state is illustrated in Fig. 1(c)]. For a single layer
the Néel-VBS transition in the model defined by Eq. (1) was
found to be continuous [21] as predicted by the “deconfined”
field theoretic arguments [18]. While it is clear that the Néel
and VBS phases are individually stable to a small but finite
g⊥, the interlayer coupling is expected to be strongly relevant
at the fixed point of decoupled deconfined quantum critical
points. What is the fate of the Néel-VBS transition in the bi-
layer geometry? From a theoretical point of view, in the bi-
layer geometry the cancellation of Berry phases negates the
quantum interference effects that are crucial to the deconfined
quantum criticality scenario [18]. In the absence of such ef-
fects one expects the restoration of the conventional Landau
paradigm, where the direct transition between two symmetry
breaking states is necessarily first-order independent of the
value of N . Indeed as illustrated in Fig. 6 from our QMC
simulations we find that the Néel-VBS phase transition is al-

ways first-order in the bilayer geometry. In our model we
only have access to this transition for N ≥ 5 and in these
cases we always find a first-order transition. This is a remark-
able effect since the phase transition in the single layer and
in the bilayer is in both cases between the same two phases,
i.e. characterized by exactly the same sets of broken sym-
metries and in the same spatial dimension. The difference in
the long-distance physics between the bilayer and single layer,
much like the Haldane gap in one-dimension, is purely due to
the presence/cancellation of the Berry phases in the single/bi-
layer systems.

In conclusion we have presented a detailed analysis of two
sets of quantum phase transitions in bilayer SU(N ) spin sys-
tens: First, we have studied the fate of the popular [12–15]
bilayer SU(N = 2) Néel-VBL transition for the case N > 2,
and second, we have studied the fate of the SU(N ) Néel-VBS
deconfined critical point [18, 21] for a single layer in the bi-
layer geometry. We have found that the N = 2 continuous
Néel-VBL phase transition remains continuous for N = 3 (in
the universality class of the compact CP2 model [16]), becom-
ing first order for N ≥ 4, and that the cancellation of Berry
phases in the bilayer geometry restores Landau’s paradigm for
the Néel-VBS transition, resulting in a first order phase tran-
sition between two phases with distinct broken symmetries.
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