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The dynamics of a magnetic vortex are influenced profoundly by non-linear effects at large and
small amplitudes. For example, a strongly driven magnetic vortex is unstable with respect to
internal deformation, leading to reversal of its core magnetization. At small amplitudes, a non-
linear response is associated with pinning of the vortex core. Given these phenomena, there is an
acute need for a global picture of vortex dynamics over a wide range of excitation amplitudes and
frequencies. We have constructed a phase diagram of vortex dynamics in permalloy (Ni80Fe20) disks
by probing the response spectrum over four orders of magnitude in excitation power. We identify the
boundary separating pinned and unpinned dynamics in a phase space of amplitude and frequency.
Our approach allows for a highly quantitative analysis of the pinning potential for localized defects
and can be used to trace the dynamics of a single vortex from deep in the pinning regime to the
onset of core reversal.

PACS numbers: 75.78.-n,75.78.Fg,75.75.-c

A magnetic vortex represents the simplest possible domain structure. Although the magnetization circulates in the
bulk of the disk, the most significant feature of a vortex is a core of diameter ∼ 10 nm, within which the magnetization
rotates out of the disk plane, as shown schematically in Fig. 1(a). The lowest frequency excitation of a vortex is
the gyrotropic mode, in which the vortex core circulates around its equilibrium position.1–3 The gyrotropic mode in
the linear regime is well-understood, with experiment, analytical theory, and micromagnetic simulation all showing
that its frequency is determined by the geometric aspect ratio (thickness/diameter) of the disk.2,4–6 Beyond the linear
regime, two classes of non-linear dynamics have been reported. First, as the amplitude of vortex motion increases,
higher order terms in the magnetostatic potential must be considered.7,8 As the core velocity increases further, the
vortex core deforms9,10 and eventually the core polarity (direction of the perpendicular magnetization) reverses.11–14

Alongside these two classes of non-linear effects, vortex dynamics are profoundly affected by inhomogeneities in real
materials. Previous studies have shown that when a vortex is pinned by a defect, the gyrotropic frequency increases
as the amplitude approaches zero.15–20 This implies the existence of a depinning threshold well below the onset of
core reversal. The understanding of the depinning transition and the subsequent dynamics has been inhibited by
the absence of an experimental probe with suitable sensitivity and dynamic range. The ideal probe would address
the response of single vortex as a function of amplitude and frequency, with an amplitude range extending from the
pinned regime up through the threshold for core reversal.
We present here a set of measurements on a single magnetic vortex over a large dynamic range, allowing us to

construct a complete phase diagram of vortex dynamics. We identify three distinct regimes: the pinned vortex, a
linear response regime corresponding to ordinary gyrotropic motion, and finally large amplitude dynamics accompanied
by core reversal. In addition to core reversal at high amplitudes, a second class of non-linear dynamics is associated
with the depinning transition, in which the response amplitude changes hysteretically as a function of the excitation
amplitude. We show that the spectrum of the vortex oscillations near the depinning threshold can be used to measure
the pinning energy. We also show that the pinning transition can be observed in the time domain as the amplitude of
gyrotropic motion decreases. A simple model captures the physics of the depinning transition, including the existence
of two metastable gyrotropic orbits (pinned and unpinned). The sensitivity and dynamic range of this approach in
both the time and frequency domains make it suitable for testing models of magnetization dynamics in other systems,
such as domain walls in nanowires.21–23

Time-resolved Kerr microscopy24 is used to measure vortex dynamics in a single permalloy Ni80Fe20 disk.2 The
disks discussed in this paper are 2 µm in diameter and 50 nm in thickness, patterned from sputtered films either
on commercially polished single-crystal sapphire (Al2O3) (0001) substrates with a 30 nm Cu buffer layer, or on Si
substrates with a SiN buffer layer. The phase diagram presented in this paper is for the case of sapphire substrates
with a Cu buffer layer, and similar phase diagrams were observed for the case of Si substrates with a SiN buffer
layer. The sample substrate is polished to a thickness of 50 µm and positioned above the center conductor of a
coplanar waveguide (CPWG) as shown in Fig. 1(b). The detailed experimental setup is described in Ref. 18. The
important feature is the use of a continuous wave (CW) radio-frequency (RF) (0.001 - 1 GHz) source that is phase-
locked to a sub-harmonic of the 76 MHz repetition rate of a pulsed Ti:sapphire laser. To obtain a polar Kerr signal,
the linearly polarized laser pulse train is focused through an oil immersion objective to a spot with a full width at
half maximum ∼ 400 nm. In this mode, the polar Kerr signal is acquired stroboscopically in a manner similar to a
sampling oscilloscope, and purely stochastic effects are therefore averaged out. The CW signal can also be gated on
and off, with the gating signal phase-locked to the laser, so that we can measure the response of the vortex core as it
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FIG. 1: (Color online) (a) Representation of a magnetic vortex. (b) Schematic diagram of the experiment. (c) Time scans of
the polar Kerr signal excited by gated-CW excitation of a 2 µm disk with an amplitude of 0.2 Oe and a frequency of 0.19 GHz.
The excitation field is switched on at 0 nsec and is turned off at 190 nsec.
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FIG. 2: (Color online) (a) Observed gyrotropic spectra of a 2 µm disk excited by a CW magnetic field for amplitudes from
0.2 Oe to 5.1 Oe and frequencies up to 0.60 GHz. The position of the core is determined by the static external field of -50
Oe. Data at drive amplitudes below 0.8 Oe are multiplied by 100 for better visibility. (b) Gyrotropic spectra below 0.8 Oe
from experiment (points) and numerical calculations (solid lines). Inset: Schematic of the potential energy described by Eq. 3,
including a parabolic magnetostatic potential (dashed curve) and a Gaussian pinning potential.

either starts from rest or rings down after the excitation is turned off. A typical time scan obtained with gated-CW
excitation is shown in Fig. 1(c), in which the polar Kerr signal θKerr shown is proportional to displacement of the
vortex core. By switching the excitation field on and off, we can measure the gyrotropic motion during build-up,
steady state motion, and ring-down.
As CW excitation is applied, the y-component of the motion of the vortex core is measured as a function of

excitation frequency and amplitude, as shown in Fig. 2(a). For excitation fields between 1 and 2 Oe, the spectra
show a single symmetric peak at 0.20 GHz. This is the ordinary gyrotropic mode, and both the lineshape and peak
position indicate that the vortex dynamics are linear over this range.2,4–6 The equation of motion for a vortex in this
case can be derived from the Thiele equation4,6,25 by making the assumption that the core moves as a rigid body:

G×
dr

dt
−D

dr

dt
−

∂W (r)

∂r
= F(t), (1)
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where r is the displacement of the vortex core from its equilibrium position, G = −2πpLMs/γẑ is the gyrovector,

D = απMsL(2 + ln R
Rc

)/γ is the damping constant with Rc = 0.68Le
2/3L1/3, W is the potential energy, and F(t) =

(2
3
πMsLR)h(t) × ẑ is the time dependent excitation force. The parameter p = ±1 is the vortex core polarization,

L is the disk thickness, Ms is the saturation magnetization, γ is the gyromagnetic ratio, α is the Gilbert damping
parameter, R is the disk radius, Le =

√

2A/M2
s is the exchange length, A is the exchange constant, and h(t) is the

excitation field. The magnetostatic potential energy is approximated by a quadratic function W = kr2/2 near the
center of the disk, and the vortex gyrotropic frequency is fG = ωG/2π = k/2πG. The exact form of k depends on
the boundary conditions, which previous measurements have shown to be closest to the “pole-free” (or “two-vortex”)

model of Guslienko.4 In this case, k = (2
3
Ms)

2
πL/χ0, and χ0 = R/10L is the vortex susceptibility.

For CW excitation fields above 2 Oe, the spectra become irregular and the measured amplitude saturates. As
originally observed by Vansteenkiste et al.,10 the assumption of a rigid core breaks down in this regime, and at the
highest core velocities deformation of the vortex leads to the nucleation and subsequent annihilation of a vortex-
antivortex pair, switching the core polarity.11 The apparent splitting of gyrotropic mode spectra in this range seen
in Fig. 2(a) results from the suppression of the average gyrotropic signal by successive core annihilation events.8,18

In the high-amplitude regime, the time-dependent evolution of the signal after the rf excitation is turned on becomes
non-monotonic, and suppression of the amplitude as well as phase modulation due to core reversal are observed.18

Because of stochastic variations in the core-reversal process, however, only one or two reversal events can be observed
directly. We can verify that core switching has occurred by comparing the phases of the gyrotropic motion before
and after increasing the amplitude into the strongly non-linear regime and then decreasing it. We find that the final
phase is opposite to the initial one in half of these cases. When the amplitude is maintained below the core reversal
threshold, the phase (and hence the core polarity) never changes.
We now consider excitation fields below 1 Oe. At the lowest excitation amplitude (0.2 Oe), the spectrum of Fig. 2(a)

shows a resonant peak at about 0.50 GHz, which is much higher than the gyrotropic mode frequency observed at
higher amplitudes. As shown previously using pulsed excitation,15,17 this enhancement of the gyrotropic frequency is
due to pinning, and the limiting frequency at low amplitudes can be used to provide a map of pinning sites in the
disk. The measured frequency reflects the local curvature of the effective potential W (r). As the amplitude increases,
the peak shifts to lower frequencies, but the weight at higher frequencies is preserved, and so the lineshape becomes
triangular. Over a narrow range of driving amplitudes (0.8 to 1.0 Oe), the response amplitude increases by a factor
of 10, and a narrow peak emerges at the gyrotropic frequency. We now consider how this behavior emerges from the
dynamics of a driven vortex in the presence of a pinning site.
To model the spectrum in the presence of pinning, we assume a total potential

W (r) =
1

2
kr2 +Wp(r). (2)

The pinning potential Wp must have a local minimum (below that of the background magnetostatic potential) and
must vanish for large r. This condition is satisfied by a Gaussian

Wp = −a · exp(
−r2

2c2
), (3)

which captures both required features with only two parameters, a depth a and a width c, or full-width at half-
maximum FWHM = c

√
2 ln 2. Due to the form of Wp, the equation of motion [Eq. (1)] becomes a two-dimensional

non-linear system with explicit time-dependence. We solve this system numerically using typical material constants
for Ni80Fe20, including Ms = 800 emu/cm3, A = 1.05×10−6 ergs/cm, and the damping constant α = 0.01. For a given
choice of pinning center depth a and width c, we can solve for the spectrum at each driving amplitude. The results
of this fit are shown in Fig. 2(b) as solid curves, which were obtained for a = 0.17 eV and the FWHM c

√
2 ln 2 = 7

nm. The same approach can be applied to other pinning defects in the same disk. We find an average pinning energy
0.7 ± 0.2 eV and pinning range 16 ± 3 nm from six random pinning defects measured in this sample.
This model also provides a realistic picture of the depinning process and the dynamics above the depinning transi-

tion. The solutions of Eq. (1) with W of the form of Eq. (2) are orbits. At small amplitudes, the frequency of an orbit
depends on r. For r > c, the frequency rapidly approaches the gyrotropic value 0.20 GHz. There is a well-defined
boundary separating these two regimes. To obtain a global picture, it is instructive to represent the orbital amplitude
as a contour plot in a parameter space of drive amplitude and frequency, as shown in Fig. 3(a) for the experiment
and Fig. 3(b) for the numerical results. Note that the contours are shown for increasing amplitude, obtained by
exciting the vortex starting from rest at each step of frequency and amplitude. The unpinned and pinned gyrotropic
frequencies are indicated by vertical dashed lines. The sharp boundary separating the pinned and unpinned regimes
as the drive amplitude increases is particularly evident for frequencies near the unpinned gyrotropic frequency. As
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FIG. 3: (Color online) Gyrotropic response as a function of excitation amplitude and frequency for (a) experiment and (b)
numerical calculations. The experimental parameter space is above the horizontal dashed line in (b). The color scale is
logarithmic. The contours are shown for increasing amplitude. The dashed curve in (b) shows the lower boundary of the region
in which two gyrotropic orbits exist.
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FIG. 4: (Color online)(a) Gyrotropic response versus excitation amplitude measured at 0.17 GHz (fG of this disk), 0.08 GHz,
and 0.27 GHz. Data taken on the increasing (decreasing) branch are shown using solid (dashed) lines and solid (open) symbols.
(b) Numerical results for the same conditions as the experiment. The two branches correspond to two different vortex core
orbits. Note that the error in the Kerr signal is approximately 2-3 µdeg. The step-like decrease in the 0.17 GHz experimental
data at the highest amplitudes is due to core reversal.

discussed below, there are two metastable orbits in the depinning region, and either an external perturbation or ther-
mal activation can allow the experimental system to jump to the outer (higher amplitude) orbit inside the metastable
region, the lower boundary of which is shown as a dashed curve in Fig. 3(b).
To demonstrate this metastability, we carry out a monotonic sweep of the drive amplitude in both directions using a

double modulation technique.26 Experimental data are presented as solid (increasing) and dashed (decreasing) curves
in Fig. 4(a), which shows the orbital amplitude measured as a function of excitation amplitude at three fixed excitation
frequencies. The corresponding numerical results at these frequencies are shown in Fig. 4(b). The depinning with
increasing excitation amplitude is easily observed. At the gyrotropic frequency (0.17 GHz for this slightly larger disk),
both the experimental and the numerical results clearly show hysteresis in the depinning region, demonstrating the
existence of two distinct orbits. At 0.08 GHz, no hysteresis is observed as expected. At 0.27 GHz, however, hysteresis
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FIG. 5: (Color online) Frequency of the gyrotropic motion measured as a function of time when the equilibrium position is
at a pinning site (filled symbols) or not at a pinning site (open symbols). The error bar represents an upper bound on the
uncertainty in the frequency measurement, which is determined by the sampling rate of the time-domain signal.

is seen in the numerical results but not in the experiment, where the experimental resolution in Kerr signal is about
2-3 µdeg. This discrepancy is due to the presence of thermal activation in the experiment. In order to observe
hysteresis, there must be a negligible probability for the core to jump from the pinned to the unpinned orbit on the
time scale of the experiment, which is ∼ 1 sec. The energy difference ∆E between the two orbits, calculated at the
upper and lower boundaries of the coexistence region, is ∼ 100 eV at 0.17 GHz, but is only ∼ 0.5 eV at 0.27 GHz.
The characteristic rate for thermally activated jumps to occur is f0 exp(−∆E/kBT ), where f0 is the orbital frequency
(the drive frequency). The calculated rate is insignificant at 0.17 GHz, but it is ∼ 1 sec−1 at 0.27 GHz, which is why
hysteresis cannot be observed. As the depinning transition is approached from below, thermal activation becomes
significant even at the gyrotropic frequency, which is why the depinning transition at the resonance in Fig. 3(a) dips
slightly below the boundary seen in Fig. 3(b).
We now turn to the study of the pinning process in the time domain. We first excite a vortex in the linear regime,

below the onset of core reversal. After the excitation field is switched off, the core spirals towards its equilibrium
position, which may or may not be a pinning site. Both of these cases are shown in Fig. 5. The gyrotropic frequency
f , determined from the time to complete each orbital cycle, is shown as a function of time in Fig. 5, with t = 0
nsec corresponding to the time at which the excitation is turned off. In the unpinned case, the gyrotropic frequency
remains fixed as expected. When, however, the equilibrium position is at a pinning site, the frequency is constant
only up to a certain time, beyond which the frequency increases. For the case shown in Fig. 5, the core starts to
interact with the pinning site after approximately 30 nsec.
The amplitude of the vortex motion versus time (data not shown) reveals the value of decay time τ , which along

with f can be used to determine the Gilbert damping parameter α, given that f · τ = [π(2 + ln R
Rc

)α]−1.4 For the

unpinned data in Fig. 5, we find α = 0.007, which is typical for Ni80Fe20. For the core that becomes pinned (Fig. 5),
α is essentially the same for t < 30 nsec, but the apparent damping increases as the core becomes pinned. This is
unlikely, however, to reflect a true increase in the damping rate. The simulations of Min et al.

27 suggest that the
effect of pinning on the damping rate should be small. It is more likely that fluctuations in the phase of the core
motion relative to the optical probe pulse become larger as the core orbit encloses fewer pinning sites, leading to the
apparent increase in the damping rate. In the absence of a single-shot measurement, it is impossible to rule out such
a mechanism.
In summary, linear and non-linear regimes of vortex dynamics are identified in a single magnetic disk over a large

dynamic range in drive amplitude. The spectra reveal transitions between different dynamical regimes. Data in both
the frequency and time domains are used to develop a quantitative model of the pinning potential, an approach that
can be generalized to other simple domain structures. The observation of hysteresis while sweeping the rf field provides
a demonstration of metastable gyrotropic orbits in a phase space of drive amplitude and frequency. This complete
picture of vortex dynamics in the presence of pinning will facilitate further development of spintronic devices that
contain vortices or vortex domain walls.
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