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Abstract 

 

We systematically investigate magnetic reversal of permalloy islands in a square spin-ice 

geometry with in-situ Lorentz microscopy. Differential phase imaging reveals, for the first time, 

the presence of flux channel similar to Dirac string between the magnetic charge monopoles 

during the reversal.  Analysis of phase images shows that positively and negatively charged 

monopoles always move together with the flux channel. Statistical analysis of monopole 

populations and system correlations shows the emergence of a highly frustrated state for low 

magnetizations.  This state is explained by a strong influence of charge ordering, which limits 

monopole densities. 
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Spin ices have received a great deal of attention in recent years due to many interesting 

effects that arise from their intrinsic magnetic frustration, such as the emergence of magnetic 

charges, or monopole-like quasiparticles [1, 2].  These are coupled in pairs via a Dirac string, 

which act as flux channels for the charges, preserving Maxwell’s equations.  In spin ices, the 

magnetic moments within a lattice obey “ice” rules analogous to the ice rule for solid water.  In 

traditional spin-ice materials, this effect occurs in three dimensional crystal lattices [1-3].  

Recently, two dimensional, macroscopic analogs have been studied using thin films of 

lithographically patterned rectangular magnetic islands [4-15].  Due to shape anisotropy, the 

magnetic moment of each island lies predominantly along the long axis, allowing for each island 

to be approximated as an Ising spin.  The new size scale and simple fabrication methods of these 

two dimensional analogs allow for experimentally controllable geometries, along with direct 

imaging of local moment configurations, and opens a new regime in which frustration physics 

can be directly studied.   

Great interest has recently been focused on the study of the various ordering processes in 

which frustration arises in these systems, whether by application of a standard AC-

demagnetization cycle [4, 6, 7, 9-11, 13, 14, 16], or more recently, in as fabricated states that are 

thermally ordered	
  [11].  Additionally, the Kagome lattice has been used to study the motion of 

monopoles within the lattice, which, due to the lattice topology, exhibit a dimensional reduction 

in their propagation, leading to 1D avalanches of monopoles, leading to the trapping of 

monopole charges within the lattice.  These studies have used a DC magnetic field in order to 

excite the monopoles from an initially polarized state [7, 10].  In current work using Lorentz 

microscopy and phase retrieval methods we examine in-situ both nucleation and propagation of 
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magnetic charges, or monopoles by DC magnetization method in the magnetic square lattice 

geometry. The lattice diagonal direction, hereafter referred as the [11] direction, was chosen in 

order to exploit the asymmetric coupling between all neighboring elements, in order to coerce a 

quasi-ground, low magnetization state.   

Electron beam lithography using a spin coated ZEP resist followed by electron beam 

evaporation was used to fabricate 14x14 vertex “square ice” arrays (a total of 420 elements) of 

100 nm wide, 300 nm long, and 30 nm thick permalloy elements with a lattice constant of 450 

nm, and an “open” edge boundary (Fig. 1a).  A field-emission 300 kV transmission electron 

microscope (JEM3000F) was used for in-situ magnetization experiments of the square spin-ice 

lattice. For analysis of magnetic domains and spin configurations we used Fresnel imaging mode 

followed by phase retrieval methods based on the transport-of-intensity approach (TIE) [17-19]. 

The magnetic field of the microscope perpendicular to specimen plane was carefully calibrated 

and its magnitude was controlled by varying the objective lens current [20].  Field reversal cycles 

were completed by tilting the sample in the residual out-of-plane magnetic field.  The sample 

was initially polarized along the [11] direction, then switched to opposite [-1-1] direction, and 

finally returned to the original state.  An AC demagnetization alternatingly switches elements 

along the [01] and [10] axis, coercing the system towards its ground state, until it is jammed in a 

highly frustrated state which strongly obeys local ice rules, as observed in recent work by 

Phatak, et. al[14] in which the ordering appears to be moderated by the propagation of monopole 

type defect pairs.  These pairs are connected by chains of switched elements reminiscent of Dirac 

strings.  The [11] reversal differs by allowing switching along both axis simultaneously, and 

exploits the asymmetric coupling between elements at a vertex.  Our experimental set-up and 

Lorentz phase imaging allowed for direct observations of local moment configurations (Fig. 
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1a,b) and fringing field of the elements at different field strengths during the reversal, and 

through image sequences various system parameters commonly used to characterize these 

systems, such as correlation functions, vertex populations (Fig. 1c), as well as the reversal 

fraction of elements were determined (Fig. 1d).  Such a thorough analysis has been lacking in 

previous works, and is essential to understanding the details of the ordering process within these 

systems. Through these statistical measurements and real space observations, we were able to 

determine how the coupling acts to locally enforce the ice-rules in the systems during reversal 

cycles. 

Additionally, we performed numerical simulations in which the individual moments are 

treated as point dipoles with an assigned critical switching field [4]. The large size of arrays 

studied in the system means that full-scale micromagnetic calculations cannot feasibly be carried 

out. Meanwhile, the point dipole approximation method provides a computationally effective 

verification of the observed results along with dynamical evolution details of the system not 

easily accessed experimentally. In these simulations the magnetization of each dipole was 

determined using the standard properties of permalloy and magnetic island geometry.  Critical 

fields were obtained experimentally (Fig. 1d) and modeled by the Gaussian distribution, centered 

at 320 Oe with a 60 Oe variation (along the element’s long axis).  In the computational model we 

assumed that the critical switching field (𝐻𝑐,𝑖   ) of the i-th element follows from the condition 

𝐻𝑒𝑥𝑡+  𝐻𝑖𝑗>𝐻𝑐,𝑖, where 𝐻𝐸𝑥𝑡 is the external magnetic field component along the (x,y) axes of 

the i-th element. The summation is performed over dipolar fields from all j-th elements relative 

to i-th element of interest, assuming that i ≠ j.    In order to account for field misalignment, we 

determined an offset of 2 degrees from the [11] axis. 
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From a geometric point of view we can group sets of islands shown by static Lorentz images 

in Fig.1a into four possible vertex types labeled from type-I (T-I) through the type-IV (T-IV) in 

order of increasing vertex energies[4, 5, 16]. Only T-I and T-II vertices (Fig. 1c) have formal 

zero balance of magnetic charges (+2q/-2q) for two pairs of magnetic elements pointed 

in(+)/out(-) or  at single vertex, obeying the “two-in/two-out” ice rule  leading to lowest vertex 

energy. Other vertices T-III and T-IV, with formal magnetic charges +3q/-1q and +4q/0q created 

by vectors pointing in/out, apparently violate the “ice rule” and therefore will have a higher 

vertex energy with excessive magnetic charges +2q and +4q. We expect them to behave as 

magnetic “monopoles,” and are termed monopole charges. In particular, our TEM data show the 

systematic absence of T-IV vertices in agreement with highest energy for such vertex 

configuration. Therefore, we shall discuss further only population statistics for T-I, T-II and T-III 

vertices during the reversal process.  

To reveal the intriguing frustration physics of magnetic switching in the spin-ice lattice, the 

sample was magnetized and demagnetized in-situ and examined using Lorentz microscopy. We 

focused on the interaction and correlations of the neighboring elements by observing their in-

plane fringing field using Lorentz phase microscopy based on differential phase imaging (DTIE) 

[see Supplementary Materials]. The ability to see the in-plane distribution of magnetic flux and 

fringing field that connect the neighboring elements, which was impossible using MFM imaging, 

is crucial to our advancement in understanding the reversal processes in frustrated spin-ice 

systems.  Figure 2 gives an example of DTIE showing the change of magnetic flux distribution, 

after electrostatic potential subtraction, during the partial demagnetization (363 Oe) along the 

[11] direction from the initial polarized state.  Complementary Lorentz microscopy was also used 

for dynamic observation and statistical analysis of the reversal process of several hundreds of 
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magnetic elements (Figs.1) to estimate the net magnetization of the system and correlation 

statistics for 16 possible moment configurations on each vertex formed by four adjacent elements 

(Fig. 1c).  We note that the reversal begins with the switching of single elements creating pairs of 

oppositely charged T-III type monopoles labeled in Fig.2c as S and N poles, and corresponds to 

the initial rise in T-III populations in Fig. 3a.  As the field increases, both S and N poles move 

away from each other by leaving behind a string of magnetically switched elements (Fig. 2 b, c).  

Similar to Dirac’s flux strings [21],  these strings, or channels, carry conservative magnetic flux 

between the stretched S and N poles, existing exclusively as T-III vertices (Fig. 2a,b).  While 

hypothesized to exist in this system in ref [14], the identification of chains of switched elements 

as Dirac strings was impossible due to the presence of background magnetic flux.  This is a result 

of the charges and associated strings being excitations on top of a polarized state, which is 

subtracted in DTIE, but not in conventional techniques.   

With the increase of the applied field, the density of these poles in the lattice grows (Fig. 3a), 

along with populations of T-I vertices, corresponding to local ground state ordering, at the 

expense of T-II vertex populations.  As larger fields are applied, both T-III and T-I vertex 

populations fall, and T-II populations grow.  The largest relative populations of T-I vertices and 

highest degree of ground state ordering appear at low net magnetizations, near the middle of the 

reversal cycle (Fig. 3 b,c).  The degree of ground state ordering is quantified using the 

correlations introduced in Ref. [6] and Ref. [16], and is given for the three types of nearest 

neighboring interactions, defined in the inset of Fig. 3c.  The significant growth in short range 

correlations (Fig 3c) along with T-I vertex populations (Fig 3a,b) indicates a high degree of local 

ordering. It should be noted that all higher-order correlations are approximately 0 at small values 

of M/Ms, indicating that long range frustration also plays a significant role in the system 
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dynamics.  Simulated results are in good agreement with experimental observations outside of a 

small excess of T-III populations for low net magnetizations.  This is most likely due to 

deficiencies in the point dipole model described in ref [11]. 

The high degree of ordering is a result of the asymmetric coupling between neighboring 

elements, and leads to a preferential motion of a monopole along the alternating axis and the 

field direction, indicative of low energy T-I vertex growth (Figs. 2,4).  We observe that T-I 

vertices exceed the random switching case (see Supplementary Materials) by almost 30% at the 

midpoint of the reversal (Fig. 3a).   More interestingly, T-III vertex populations also show a 

deficit of nearly 30%, and appear to saturate below net magnetizations of 0.5 (Fig. 3c).  This 

saturation can be largely understood by the interactions of neighboring monopoles.  For example, 

when oppositely charged monopoles occupy neighboring lattice sites, there is a large attractive 

interaction between the two.  If the monopoles subsequently move to the same lattice site, they 

annihilate.  This annihilation process results in the merging of the two corresponding flux 

channels.  By looking at what happens to adjacent charges in sequential Lorentz images, we 

observe this annihilation process occurs 74% of the time that this transition is topologically 

allowable.  This represents a large increase from what would be expected in a non-interacting 

system.  Similar observations of attractive and repulsive interactions were recently seen in 

thermally ordered samples, which imposed limitations on monopole densities within domains 

and along excitations [11].  Further evidence of these interactions is demonstrated by the lack of 

T-IV vertices at any step during the reversal.  Simulations indicate that they do not exist even as 

transient states, which would indicate two monopoles of similar sign occupying the same lattice 

site.  These observations suggest a strong influence of charge ordering during the reversal, in 

which interactions are responsible for imposing a maximal limit of monopole densities and act to 
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locally enforce the ice rules.  Evidence of weak charge ordering was also seen in recent work on 

a similar system in ref. [5].  This ordering process is in sharp contrast to that observed in the 

Kagome lattice.  In the Kagome lattice, dimensional reduction is observed, which causes the 

monopoles to move in 1D “cascades.”  The dimensional reduction prevents monopoles from 

crossing other Dirac strings, as well as ensures that at the end of the reversal every lattice site is 

populated by an emergent monopole, in which case no saturation occurs. 

In summary, we show that magnetic reversal process of an artificial spin-ice lattice is 

associated with nucleation, propagation, and annihilation of magnetic charges, or monopoles.  

The utility in Lorentz microscopy and phase imaging in these systems allows for the subtraction 

of extraneous electrostatic and background magnetic potentials that preclude direct imaging, and 

hence identification, of Dirac strings which couple individual magnetic excitations.  All 

monopoles unexceptionally were nucleating and annihilating in pairs of S/N poles and coupled 

with magnetic flux channels, or Dirac strings.  They remain conservative, in accordance with 

Maxwell’s equations, during propagation for the reversal process via flux channels with opposite 

signs. We also demonstrate that these magnetic charges behave as individual monopole/anti-

monopole (S/N) pairs with distinct signs of interactions that govern the evolution of vertex 

populations and ordering under application of fields. Specifically, a saturation of monopole 

density within the lattice results from the repulsive and attractive interaction between these 

individual charges which locally enforces the ice rules.  Furthermore, statistical analysis reveals 

the growth of ground state ordering that is blocked at larger length scales, indicating a highly 

frustrated intermediate state.  This state of order resulting by field application along this 

symmetry axis was recently suggested [5] but it has not been experimentally shown until now.  
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Figures and Figure Captions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 (a) Lorentz image of a typical section of the 420-permalloy-element artificial square spin-
ice-array. Small insert shows in color code the enhanced inverse contrast.  For clarity local 
moment directions of the elements are marked by arrows, and ice rule violating configurations 
are denoted by crosses. (b) Local line profile across two parallel elements A-A’ in (a) showing 
opposite moment configurations as follows from the asymmetry in the intensity profile (marked 
by the circles). (c) The four possible topological vertex types.  Only T-I and T-II types satisfy the 
ice rules (“two-in/two-out”) while T-III and T-IV do not. (d) Fraction of the elements in the 
entire array switched along the basal axis as a function of applied field.   
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Fig. 2.  (a) Difference map of magnetic flux distribution between the partial demagnetized state 
under 363Oe applied field and the initial polarized state, showing individual chains of switched 
elements using the differential phase imaging method. Here the cosine of the magnetic phase 
map representing flux density changes is overlaid with magnetization induction map shown by 
the color vector-wheel. (b.) A magnified area of image (a) showing single chain of switched 
elements and the associated leakage flux distribution. The switched elements behave as flux 
channels, or Dirac strings, between the magnetic charges at the two ends of the chain.  The 
terminating points are T-III charged vertices. (c.) Schematic of magnetic switching shown in (b), 
illustrating the propagation of Dirac strings (the chain of color arrows) joining two moving away 
S/N monopoles and a local defect (indicated by two neighboring green arrows). Initial non-
switching elements are shown by grey arrows in (c,d) and as dark background in (a,b), 
respectively. (d.) The ideal AFM-ordered structure of zero net magnetization expected for 
regular propagation of step-like Dirac strings.  This ordering is blocked by frustration and 
disorder within the lattice. Apparently, such an ideal AFM-ordered ground state is not always 
easy to achieve in a demagnetized state of the spin-ice lattice.      
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Fig. 3. (a)  Vertex populations as a function of applied field.   (b) Vertex populations as a 
function of normalized net magnetization (M/Ms).  Data points are shown for four different 
samples during a reversal cycle.  In both experimental and numerical results, T-III populations 
saturate below a net magnetization of about 0.5. (c) Correlation effects as a function of applied 
field. In all plots experimental data are shown by discrete symbols, while theoretical calculations 
are shown by solid lines of the appropriate color.  
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Fig. 4.  Diagram of the switching process in the square spin-ice lattice. The field was applied 
along the [11] direction.  The switching was reconstructed from consecutive Lorentz images 
recorded for applied magnetic field of 337 (a), 363 (b), 388 (c), and 413 Oe (d), respectively. 
Switched elements are shown in black, while unswitched elements are removed for clarity. 
Positive (negative) charges are denoted by red (blue) circles.  The growth of density and chain 
length is clearly visible from (a) to (d). The step-like pattern that emerges is a result of the 
asymmetric coupling by flux channels between paired vertices or monopoles, and indicates large 
T-I vertex populations.  All chains terminate at the lattice edges. 
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