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We study the effect of superconducting fluctuations on the longitudinal and the transverse (Hall)
conductivity in homogeneously disordered films. Our calculation is based on the Usadel equation in
the real-time formulation. We adjust this approach to derive analytic expressions for the fluctuation
corrections in the entire metallic part of the temperature-magnetic field phase diagram, including
the effects of both classical and quantum fluctuations. This method allows to obtain fluctuation cor-
rections in a compact and effective way, establishing a direct connection between phenomenological
and microscopic calculations.
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I. INTRODUCTION

Theoretical studies of fluctuation conductivity in su-
perconductors found their origin in the discovery of para-
conductivity by Aslamazov and Larkin (AL) in 19681.
These authors analyzed the conductivity of supercon-
ductors in the metallic phase above the transition tem-
perature Tc in the framework of diagrammatic linear re-
sponse theory. Paraconductivity can be understood as
the direct contribution of fluctuating Cooper pairs to the
electric current. Indeed, the formation of Cooper pairs
opens a new channel for charge transport in the metallic
phase. Above the transition temperature, these Cooper
pairs do not form a condensate yet and their contribu-
tion to conductivity is positive but still bounded due to
their finite lifetime. Other effects of superconducting
fluctuations are Andreev scattering of electrons off the
fluctuating order parameter described by the so-called
Maki-Thompson (MT) term2,3, and the suppression of
the quasiparticle density of states (DOS) near the Fermi-
level.

These classical results were obtained for temperatures
close to Tc and later extended for larger temperatures
and for weak magnetic fields. More recently, the vicinity
of the magnetic field-tuned quantum phase transition in
disordered superconducting films was studied in a paper
by Galitski and Larkin4. These authors have shown that
close to the quantum transition, contrary to the previ-
ously studied regime of weak magnetic fields, different
processes are of equal importance. This has the remark-
able consequence that the sign of the total correction to
conductivity becomes negative for sufficiently low tem-
peratures near the quantum critical point, resulting in a
non-monotonic magnetoresistance in this regime.

In spite of the substantial amount of existing theoreti-
cal work on superconducting fluctuations, summarized in
the book by Larkin and Varlamov5, the subject continues
to be an active field of research. This activity is stimu-
lated by recent accurate experimental studies of different

superconducting systems6–11, that call for refined theo-
retical studies. For example, when fitting experimental
data on disordered superconducting films by theoretical
results, one commonly uses several fitting parameters,
including the critical temperature Tc, the upper critical
field Bc and the dephasing time τφ. In doing so, it would
be useful to work with theoretical results which are valid
in the entire (B, T ) phase diagram, instead of address-
ing different asymptotic regions separately. This is the
motivation for the detailed calculations presented in this
paper.

In deriving the results for the fluctuation conductivity,
we deviate from the traditional route that employs the di-
agrammatic linear response theory in the imaginary time
technique12 as described in detail, for example, in Ref. 5.
Instead, we develop a formalism based on the Keldysh
(real-time) representation of the Usadel equation. In this
approach, disorder averaging is performed at the earliest
stages, thereby avoiding the use of the impurity-diagram
technique. As an additional advantage, no analytic con-
tinuation is required. The Usadel equation13 is an indis-
pensable tool in the theory of mesoscopic superconduc-
tors and hybrid structures14,15. This equation describes
low-energy (diffusive) physics on spatial q−1 and tem-
poral ω−1 scales, satisfying (ql, ωτ) � 1, where τ is
the impurity scattering time and l the mean free path.
The first calculation of superconducting fluctuation cor-
rections in this framework was performed by Volkov et
al.16, who calculated fluctuation conductivity in hybrid
superconducting-normal structures in the vicinity of Tc
in the absence of a magnetic field.

In this paper, we use the Usadel equation to calculate
longitudinal and transverse (Hall) conductivity in disor-
dered superconducting films at arbitrary temperatures
and magnetic fields. Our approach parallels to some
extent the non-linear sigma-model formalism for disor-
dered superconductors introduced by Feigelman et al.17,
and the subsequent work by Kamenev and Levchenko18.
The latter work includes a calculation of fluctuation con-
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ductivity close to Tc. The intimate relation between
the sigma-model formalism and the Usadel equation ap-
proach is based on the fact that the Usadel equation is the
saddle point equation of the nonlinear sigma-model. For
the sake of simplicity, we decided not to use the more
technical apparatus of the nonlinear sigma-model, but
formulate the derivation in terms of the Usadel equa-
tion. This route leads us to a description in terms of a
coupled set of kinetic equations for quasiparticles moving
on the background of superconducting fluctuations. This
method appears to be a very convenient tool for studying
fluctuation transport.

Whenever possible, we compare our results to those
previously obtained with the diagrammatic technique.
Let us mention here the comparison to recent works. It
can be seen19 that the zero magnetic field limit of the gen-
eral formulas derived in this manuscript (Eqs. (79), (80),
and (81) below) can be presented in a form that exactly
coincides with the corresponding diagrammatic results of
Lopatin et al. in Refs. 20,21. On the other hand, Glatz
et al. more recently presented a diagrammatic analysis
of the longitudinal fluctuation conductivity in the entire
phase diagram22,23. However, their results are inconsis-
tent with previous diagrammatic calculations as well as
with ours (we comment on this work below at the end
of Sec. IV B). For the Hall effect, our results agree with
those of a work24 in which an independent calculation has
been performed. These results were successfully applied
for the description of a recent measurement in amorphous
Tantalum Nitride films.25

This paper is organized as follows. In Sec. II we present
the basic formalism. We show how the Usadel equa-
tion, initially formulated for a given order parameter
configuration13, can be applied to the calculation of fluc-
tuation conductivity. As a next step, in Sec. III we find
a solution of the Usadel equation which allows to de-
termine the order parameter correlation function in the
Gaussian approximation. Both ingredients are required
for the calculation of the electric current presented in
Sec. IV A. Next, we derive expressions for the longitu-
dinal conductivity that are valid in the entire metallic
phase outside the regime of strong fluctuations. Eval-
uation of the obtained expressions still requires a sum-
mation over the Landau levels as well as an integration
over slow (bosonic) frequencies, which can be performed
analytically only in certain limiting cases. Several such
limiting cases are analyzed in detail in Sec. IV B, includ-
ing the region close to Tc and the vicinity of the quantum
critical point. By means of a numerical evaluation, we
locate the line of the sign change for magnetoresistance
∂σ/∂B and the line ∂σ/∂T = 0. We also discuss the exis-
tence of a crossing point of the magnetoresistance curves.
In Sec. IV C we calculate Hall conductivity, generalizing
previous calculations26–28 to the case of arbitrary tem-
peratures and magnetic fields above the transition.

II. BASIC EQUATIONS

In this section we present the equations that form the
basis for our calculation of the fluctuation conductiv-
ity. After stating the microscopic model, we introduce
the Usadel equation that allows to find the quasiclassical
Green’s function in the dirty limit, i.e., if the condition
Tcτ � 1 is fulfilled. Calculation of the conductivity re-
quires knowledge of both the quasiclassical Green’s func-
tion in the presence of the fluctuating order parameter
field and the correlation function of the order parame-
ter field. In the fluctuation regime, which we study in
this paper, the order parameter correlation function is
governed by the Ginzburg-Landau (GL) action. Fortu-
nately, the GL action can be found from the quasiclassical
Green’s function itself, i.e., from the solution of the Us-
adel equation. This procedure will also be described in
this section.

We start with the Keldysh action for electrons with
short-range BCS-type interaction. After decoupling the
interaction with the help of a Hubbard-Stratonovich
transformation, the resulting action is split into two parts
S[Ψ, ∆̌] = S1[Ψ, ∆̌] + S2[∆̌], where

S1[Ψ, ∆̌] = (1)∫
dx Ψ†(x)

[
iτ̂3∂t − Ȟ(x) + µ+ ∆̌ (x)

]
Ψ(x),

S2[∆̌] = −2ν

λ

∫
dx tr

[
∆̌+σ̂1∆̌

]
. (2)

Here, ν is the density of states per one spin projection
at the Fermi level and µ is the chemical potential. The
dimensionless coupling constant in the Cooper channel
λ is positive for an attractive interaction. Hereafter, we
use the hat symbol as in τ̂3 to denote 2 × 2 matrices
in Keldysh (K, retarded/advanced) or Gor’kov-Nambu
(N , particle/hole) spaces. By σ̂i and τ̂i we denote the
Pauli matrices in K and N space, correspondingly. The
check symbol as in Ȟ denotes 4×4 matrices in the direct
product space K ⊗N . The trace operation tr in Eq. (2)
comprises both K and N spaces. The short notation
x = (r, t) is used, and the time integration covers the
interval (−∞,∞). The single-particle Hamiltonian Ȟ is
defined as

Ȟ = − 1

2m
(∇− ieA(r)τ̂3)

2
+ U (r) + eϕ(r), (3)

with a static disorder potential U , scalar ϕ and vector
potentials A, and electron mass m and charge e. In the
action, Ψ is a four component vector of Grassmann fields
with the following structure:

Ψ =

(
ψ1

ψ2

)
K

, ψi =

(
χi↑
χ∗i↓

)
N

(4)

Ψ† =
(
ψ†1, ψ

†
2

)
K
, ψ†i = (χ∗i↑,−χi↓)N . (5)
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All terms in the electronic action S1 are diagonal in K-
space except the order parameter field ∆̌ = ∆̂0σ̂0+∆̂1σ̂1,
where ∆̂0 and ∆̂1 will be referred as classical (cl) and
quantum (q) components of the order parameter. These

components are non-diagonal in N space: ∆̂i = ∆iτ̂+ −
∆∗i τ̂−, where τ̂± = 1

2 (τ̂x ± iτ̂y). We arrange the classical

and quantum order parameter fields into the vector ~∆ =
(∆cl,∆q)

T .
The electronic Green’s function for the system reads:

Ǧ (x, x′) = −i
∫
DΨD∆̌ Ψ (x) Ψ+ (x′) eiS[Ψ,∆̌]. (6)

This expression can be cast in the form

Ǧ(x, x′) =

∫
D∆̌ Ǧ∆(x, x′) eiSGL[~∆], (7)

where the Ginzburg-Landau action is determined by

SGL[~∆] = −i ln

∫
DΨ eiS[Ψ,∆̌], (8)

while

Ǧ∆(x, x′) = −i
∫
DΨ Ψ(x)Ψ†(x′) eiS1[Ψ,∆̌]∫

DΨ eiS1[Ψ,∆̌]
. (9)

This Green’s function depends on the specific configura-
tion of the order parameter field ∆̌.

Physical quantities can be obtained in terms of the
disorder-averaged

〈
Ǧ(x, x′)

〉
dis

, which can be found as

〈
Ǧ(x, x′)

〉
dis

=

∫
D~∆

〈
Ǧ∆(x, x′)

〉
dis

ei〈SGL[~∆]〉
dis .

(10)
Here, we average the electronic Green’s function sepa-
rately from the bosonic action. This is a valid approxi-
mation for films with dimensionless conductance g � 1;
taking into account cross-correlations between the two
terms would give corrections to the Drude conductivity
of the order of 1/g2, while we are only interested in cor-
rections of the order of 1/g.

The electric current is related to the Keldysh compo-
nent of

〈
Ǧ(x, x′)

〉
dis

:

j = − e

2m
(∇r −∇r′)

〈
GK (x, x′)

〉
dis x→x′−

ne2

m
A, (11)

where n stays for the density of electrons.
In the following, it will be convenient to use the quasi-

classical approximation29–31. The quasiclassical Green’s
function can be introduced as follows. First, one per-
forms the Wigner transform of the disorder-averaged
Green’s function as〈

Ǧ∆(p, r, t1, t2)
〉
dis

=

∫
dρ e−ipρ

〈
Ǧ∆(x1, x2)

〉
dis
,

(12)
where r = 1

2 (r1 + r2), ρ = (r1− r2). Next, the quasiclas-
sical Green’s function is obtained by integration over the

energy variable ξ = p2

2m − µ which describes the distance
from the Fermi surface:

ǧn(r, t1, t2) =

i

π

∫ ∞
−∞

dξ
〈
Ǧ∆ (n (pF + ξ/vF ) , r, t1, t2)

〉
dis
.(13)

In this equation, vF denotes the Fermi velocity.
In the diffusive limit higher angular harmonics are

suppressed and a formulation in terms of the angular-
averaged Green’s function is possible:

ǧ(r, t1, t2) =

∫
dn ǧn(r, t1, t2). (14)

The function ǧ satisfies the nonlinear Usadel
equation13,15:

D∇̂
(
ǧ · ∇̂ǧ

)
− {τ̂3∂t, ǧ}+ i

[
∆̌− eϕ̌, ǧ

]
= 0, (15)

where the symbol · is used to denote a convolution in
time, i.e., integration in the intermediate time variable.
The spatial derivative has the following structure: ∇̂ǧ =
∇ǧ−ie [τ̂3A, ǧ] . An important constraint imposed on the
quasiclassical Green’s function is that it has to satisfy the
normalization condition

(ǧ · ǧ)(t, t′) = 1̌δ (t− t′) . (16)

In what follows we are interested in Gaussian fluctua-
tions. This means, that the film is considered to be not
too close to the superconducting transition. The width of
the non-Gaussian region is determined by the Ginzburg
number Gi; in the case of disordered films Gi ∼ g−1.
The precise criterion for the range of validity of this ap-
proximation depends on the quantity in question. Con-
cerning transport phenomena, the non-Gaussian region
is wider than for thermodynamics and has been esti-
mated to be of the order of

√
Gi for the thermal phase

transition32, i.e. it covers the temperature regime for
which |T − Tc| .

√
GiTc. To the best of our knowledge,

there is no such calculation for the quantum transition
(a study of the effect of fluctuations on the critical mag-
netic field exists33). In this paper, we assume that we are
always outside the region of non-Gaussian fluctuations.

Let us now turn to the discussion of the Ginzburg-
Landau action. As long as we are interested in Gaussian

fluctuations, we need to know SGL[~∆] only up to the

second order in ~∆. Noting the relation

δ
〈
SGL[~∆]

〉
dis

δ∆∗i (x1)
= itr

[
σ̂iτ̂−

〈
Ǧ∆(x1, x1)

〉
dis

]
−2ν

λ
(σ̂1

~∆(x1))i, (17)

we can obtain〈
SGL[~∆]

〉
dis

=

∫
dx1dx2

~∆†(x1) (18)

×
[
−2ν

λ
σ̂1δx1,x2 + Π̂(x1, x2)

]
~∆(x2),
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where

Π̂ij(x1, x2) = i
δtr
[
σ̂iτ̂−

〈
Ǧ∆(x1, x1)

〉
dis

]
δ∆j(x2)

∣∣∣∣∣
~∆=0

. (19)

Importantly, the appearing Green’s function at coincid-
ing times and space points is related to the quasiclassical
Green’s function, and we can write

Π̂ij(x1, x2) = πν
δtr
[
σiτ̂−ĝ(r1, t1, t1)

]
δ∆j(x2)

∣∣∣∣∣
~∆=0

. (20)

This result shows that knowledge of the quasiclassical
Green’s function, i.e., the solution of the Usadel equa-
tion, also allows finding the GL action. This observation
considerably simplifies the scheme of calculation of the
Gaussian corrections. With the help of the GL action,
in turn, one can obtain the order parameter correlation
function, which is needed for the calculation of the cur-
rent.

The charge density and electric current are expressed
in terms of the angular-averaged Green’s function ǧ in
the following way15:

ρ (r, t) = −eν
(

2eφ+
π

2
tr 〈σ̂1ĝ (r, t, t)〉

)
(21)

and

j (r, t) =
eπνD

2
tr
〈
τ̂3σ̂1̌j (r, t, t)

〉
, (22)

with ǰ = ǧ · ∇̂ǧ. The angular brackets in this equa-
tions symbolize averaging with the action SGL. Relation
(22) follows from Eq. (11) in the diffusion approxima-
tion. Aiming for the needed accuracy (the leading order
approximation in g−1), it is sufficient to determine ǰ up
to the second order in the fluctuating field ∆ before the
expansion in the electric field is performed.

III. SOLUTION OF THE USADEL EQUATION
AND THE ORDER PARAMETER

CORRELATION FUNCTION

For practical calculations, one needs to resolve the nor-
malization condition (16) for the quasiclassical Green’s
function explicitly. In the framework of a mean-field
treatment, one works with the classical order parameter
field ∆cl only. In this case (∆q = 0) the Green’s function
can be parameterized as

ǧ =

(
ĝR ĝK

0 ĝA

)
, (23)

with ĝK = ĝR · ĥ− ĥ · ĝA and (ĝR · ĝR)t,t′ = (ĝA · ĝA)t,t′ =

1̂δt−t′ . However, in the presence of the quantum order
parameter fluctuation (i.e., for finite ∆q) this structure
is broken and a more general parametrization needs to

be considered. In that case, one can generalize (23) to
take into account fluctuations up to the second order in
∆:

ǧ =

(
ĝR − ĥ · ĝZ ĝR · ĥ− ĥ · ĝA − ĥ · ĝZ · ĥ− ĝW

ĝZ ĝA + ĝZ · ĥ

)
.

(24)
In particular, the lower left corner of this matrix is not
equal to zero34,35. This parametrization has the following
property: (

ĝR
)2

=
(
ĝA
)2

= 1̂δt−t′ +O
(
∆4
)

(25)

The matrix

ĥ =

(
he 0
0 hh

)
(26)

is called generalized distribution function31. Matrices
ĝZ,W are diagonal and appear only in the second order

in ∆. This holds provided the distribution function ĥ
satisfies the following normal metal diffusion equation:

D∇2ĥ−
[
∂t + ieφτ̂3, ĥ

]
= 0. (27)

For the purpose of our calculation, we may assume
ĝZ = ĝW = 0. In the case of ĝZ the reason is the fol-
lowing. For the calculation of the current, the Green’s
function needs to be inserted into the corresponding ex-
pression (22) and subsequently averaged over order pa-
rameter configurations. There can be two kinds of con-
tributions to the current originating from ĝZ . First, if
it is not combined with any other term arising due to
fluctuations, it should be averaged by itself. Since the
lower-left corner of the averaged Green’s function must
equal zero in the Keldysh formalism

〈
ĝZ
〉

= 0, contribu-
tions of this first type vanish automatically. The second
kind of contribution appears when combining ĝZ with
other terms arising due to fluctuations in formula (22).
Since ĝZ itself is already quadratic in ∆, this procedure
generates contributions to the current which are at least
of the fourth order in ∆. These terms are beyond the ac-
curacy of our calculation. The same argument applies to
contributions originating from ĝW , only in this case the
average

〈
ĝW
〉

does not vanish identically, but is O(E2),
as discussed in Appendix A. Therefore, there is no need
to keep ĝW when studying linear response in the elec-
tric field. To conclude, for the purpose of our calculation
we may work with the simple parametrization given in
Eq. 23.

In what follows, we consider static and homogeneous
electric E and magnetic B fields and find it conve-
nient to work in a gauge with time-independent elec-
tromagnetic potentials: E = −∇φ and B = curlA with
φ = −Er, A = (0, Bx, 0) . Under these conditions and
in the absence of superconducting fluctuations, the re-
tarded and advanced sectors of the quasiclassical Green’s
function are diagonal in N-space and take a particularly
simple form

ĝR(t1, t2) = −ĝA(t1, t2) = τ̂3δt1−t2 . (28)
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For a closed system, i.e. in the absence of a connection

to an external bath, the distribution function ĥ is not
yet fixed. Indeed, equation (27) has infinitely many solu-
tions. In the presence of interactions, it is convenient to
work with the distribution function corresponding to the
state of local thermal equilibrium with spatially varying
chemical potential:

ĥ =

(
he 0
0 hh

)
, he,h = H(ε∓ eφ (x)) (29)

where

H(ε) = tanh
ε

2T
. (30)

This particular choice is especially convenient for linear
response studies, because deviations of

〈
ĝW
〉

from zero
which arise due to interactions are pushed to the second
order in the electric field. This considerably simplifies
perturbation theory. Note that temperature is still arbi-
trary and is determined by the heat balance with a sub-
strate or with contacts. Meanwhile, by neglecting

〈
ĝW
〉

we dismiss the heating effect of the electric field.
In the presence of superconducting fluctuations, the

quasiclassical Green’s function acquires off-diagonal com-
ponents in N -space. For the analysis of the Gaussian
fluctuation regime, the deviations from the simple form
given in Eq. 28 are small and may be treated as a per-
turbation. With this in mind, we resolve the remaining
constraints (25) as:

ĝR =

(
1− 1

2f · f∗ f
f∗ −1 + 1

2f
∗ · f

)
, (31)

ĝA =

(
−1 + 1

2 f̄ · f̄∗ −f̄
−f̄∗ 1− 1

2 f̄
∗ · f̄

)
, (32)

From the solution of the Usadel equation it will follow
that f , f̄ etc. are O(∆). The functions f and f∗ as
well as f̄ and f̄∗ are considered as independent: they
become complex conjugates of each other only when ∆q

is neglected.
We introduce parametrization (24) into Eq. (15) and

neglect terms of the third order in ∆. As a result, we
find for f the equation C−1f = V , where the operator
C−1 is given by

C−1 = D∇̂2 − ∂t1 + ∂t2 (33)

and the gauge invariant derivative is: ∇̂f =
(∇− 2ieA) f . As one may notice, this equation describes
the response of the field f to the order parameter ∆,
which enters this equation in the following combination:

Vt1,t2(r) = 2i [∆cl (r, t1) δt1−t2 + he (r, t1 − t2) ∆q (r, t2)] .
(34)

Similar equations arise for f∗, f , and f
∗

with appropri-
ately modified differential operators and functions V ∗, V

and V
∗
. Taking into account the explicit form of he,h

one may conclude that f̄t1,t2 = −ft2,t1 (the same prop-
erty holds for f∗). Note that a static electric potential
does not enter the equation for f . This is one of the
advantages of the gauge in which the electric field is ex-
pressed through the scalar potential.

The equation for f can easily be solved after a Fourier
transformation to the frequency domain according to

f (t1, t2) =

∫
f (ε1, ε2) e−i(ε1t1−ε2t2) (dε1) (dε2) . (35)

Here we used notation (dε) = dε/2π. To proceed further,
we pass to the Landau level (LL) basis with eigenfunc-
tions ψnp (r) of the kinetic energy operator

−D(∇− 2ieA)2ψnp (r) = εnψnp (r) . (36)

This equation describes a ”particle” with a mass equal to
1/2D. We choose to work in the Landau gauge, for which
the eigenfunctions ψnp are numbered by the momentum
p and LL number n:

ψnp (r) = eipyχn
(
x− pl2B

)
(37)

with magnetic length lB = 1/
√

2|e|B (for a ”particle”
with charge 2|e|) and

χn (x) =
1√
lB

e−x
2/2l2B

π1/4
√

2nn!
Hn (x/lB) . (38)

Note that a description based on the Usadel equation is
valid as long as we consider the regime of classically weak

magnetic fields, for which ωc = |e|B
m satisfies ωcτ � 1.

This means that the quantization of the orbital motion of
the quasiparticles can be neglected. In contrast, the LL
quantization of the collective modes and Cooperons εn =
Ωc
(

1
2 + n

)
with Ωc = 4|e|DB may still be important in

the region of magnetic fields and temperatures we are
interested in.

The solution for f is conveniently written in terms of
the Cooperon propagator, which is diagonal in the chosen
basis: 〈n, p| C |m, p〉 = δmnCn(ε1 + ε2) with

Cn (ε) =
(
iε− εn − τ−1

φ

)−1

. (39)

Here, we introduced the dephasing time τφ. The role of τφ
is to provide the long-time decay of the Cooperon, which
is necessary to render corrections due to single-particle
interference processes finite. These processes include
weak localization and the anomalous Maki-Thompson
correction (an analog of weak antilocalization) that di-
verge in the absence of a magnetic field for τ−1

φ = 0. De-
phasing can be provided by magnetic impurities or inelas-
tic processes, i.e. electron-electron or electron-phonon
collisions. For low temperatures, electron-electron colli-
sions dominate. Outside the region of strong fluctuations
(i.e., in the Gaussian regime), one can consider the de-
phasing rate as energy independent and equal to the sum
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of rates due to the Coulomb36 and Cooper channels37,38.
In our study, we do not specify the dominant dephasing
mechanism relevant for τφ and consider it as an indepen-
dent parameter.

The solution of the equation C−1f = V for f reads:

fnp (ε1, ε2) = Cn (2ε)

∫
Vε1,ε2(r′)ψ∗np (r′) dr′, (40)

where

Vε1,ε2(r) = 2i [∆cl (r, ω) + he (r, ε+ ω/2) ∆q (r, ω)]
(41)

with shorthand notation ε = (ε1 + ε2) /2 and ω = ε1−ε2.
Analogous equations hold for f∗, f̄ and f̄∗.

Having found approximate solutions for ĝR and ĝA, we
turn to the GL action SGL. As follows from Eq. 18 in
combination with Eq. 20, it is sufficient to know ĝR(A)

at the first order in ∆ to determine SGL in the Gaussian
approximation. We write the GL action in the form:

SGL[~∆] =

∫
tr
(

2ν ~∆+(−ω, r)L−1(ω, r, r′)~∆(ω, r′)
)

(42)
with

L−1 =

(
0 L−1

12

L−1
21 L−1

22

)
. (43)

Arguments (ω, r, r′) of L−1 are omitted in what follows.
A straightforward calculation according to Eq. (18)

gives:

L−1
21 =

∑
np

ψnp (r)ψ∗np (r′)

[∫ Hε−ω/2+eφ(r)dε

2ε+ i(εn + τ−1
φ )
− 1

λ

]
.

(44)
The rest of the elements of L−1 are related to this one
according to L−1

12 =
(
L−1

21

)+
and

L−1
22 = B (ω − eφ (r)− eφ (r′))

[
L−1

21 − L−1
12

]
, (45)

where the bosonic distribution function is defined as

B (ω) = coth(ω/2T ). (46)

One can see, that the components of L−1 are not inde-
pendent. Just as the components of L, they are related
by the generalized fluctuation-dissipation theorem, see
Eq. (45), valid in the quasi-equilibrium state. Thus, only
L−1

21 needs to be calculated explicitly. The evaluation of
the ε integral in Eq. (44) is straightforward and yields:

L−1
21 =

∑
np

ψnp(r)ψ∗np(r
′)En(ω − 2eφ(r)), (47)

where

En(ω) = ln
Tc
T

+ ψ

(
1

2

)
− ψR(n, ω) (48)

and

ψR(A)(n, ω) = ψ

(
1

2
+
εn + τ−1

φ ∓ iω
4πT

)
. (49)

We have introduced the BCS transition temperature
Tc = 2γωD

π exp
(
− 1
λ

)
, where ωD is the Debye frequency

and γ ≈ 1.78. The symbol ψ stands for the Digamma
function39. In deriving asymptotic expressions, we will
use the following properties of this function: ψ′(1/2) =
π2/2 and ψ(x) ≈ lnx for x� 1.

The line of the superconducting transition on the mean
field level is determined by the equation En=0(ω = 0) = 0.
In the absence of dephasing τφ = ∞ this gives for the
upper critical field

Bc(T = 0) =
πTc
2γD

. (50)

Let us discuss the effect of dephasing on the transition
line. Since the fluctuation propagator depends on the de-
phasing rate, the transition temperature is shifted due to
τφ. Furthermore, since τφ depends on the magnetic field
as well as on the temperature, the presence of τφ in the
fluctuation propagator changes the shape of the transi-
tion line as a whole. Dephasing also affects the magne-
toconductivity. This effect has been taken into account
in the analysis of the experimental data on magnetocon-
ductivity of thin superconducting InO films40.

As can be seen from the right-hand side of Eq. (47),
L−1

21 is not translation invariant. However, by splitting
off a gauge-dependent factor it can be rewritten in the
following form:

L−1
21 (t, r, r′) = e−iSg(t,r,r′)L̄−1

21 (t, r− r′) , (51)

where Sg is defined as

Sg(t, r, r
′) = e(φ(r) + φ(r′))t

−e(A(r) + A(r′)) (r− r′) (52)

and L̄−1
21 is translational and gauge invariant. We never-

theless prefer to work with the operator L−1 in its origi-
nal form.

In order to find the order parameter correlation func-
tions, one has to invert the operator L−1 given by
Eq. (43) with the following result:

L =

(
LK LR
LA 0

)
, (53)

where

LR =
(
L−1

21

)−1
, LA =

(
L−1

12

)−1
, LK = −LRL−1

22 LA.
(54)

The order parameter correlation functions are given by:

〈∆cl (ω) ∆∗c (−ω)〉 =
i

2ν
LK , (55)〈

∆cl (ω) ∆∗q (−ω)
〉

=
i

2ν
LR,

〈∆q (ω) ∆∗cl (−ω)〉 =
i

2ν
LA,〈

∆q (ω) ∆∗q (−ω)
〉

= 0.
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In equilibrium, LR(A)
E→0 (ω) ≡ LR(A) (ω) is diagonal in the

LL basis, and reads as follows

LRn (ω) = E−1
n (ω). (56)

For the Keldysh propagator this gives, according to
Eq. (54):

LKE→0 (ω) = B (ω)
(
LR (ω)− LA (ω)

)
≡ LK (ω) . (57)

While we have already neglected the heating induced
by the electric field, we still keep other nonlinear effects.
For example, one may consider the decay of fluctuat-
ing Cooper pairs due to the acceleration of the paired
electrons caused by the electric field. It was considered
before on the basis of the phenomenological theory41–44

(with only AL process included). At T ∼ Tc this ef-
fect becomes essential at electric fields of the order of
E ∼ Tc/eξGL that can be rather small due to the diver-
gence of the coherence length ξGL at the transition.

In the following calculations all nonlinear effects will
be neglected. In the linear response regime, we need to
find propagators at first order in the electric field. Con-
cerning the dependence of L on spatial arguments, we
will consider it as an operator in the basis of the LLs,
the same is assumed regarding the position operator r.
Hence, in the equations below these two operators do
not commute. We linearize L−1

21 , looking for the first or-
der correction to its equilibrium value. In the equations
below we do not indicate the frequency dependence of
propagators, having in mind that all functions have the
argument ω. Taking into account first-order corrections
in the electric field we write

L−1
21 = (1 + 2eEr∂ω) E . (58)

For LR this gives:

LR = LR + δLR, (59)

δLR = −2eELRr∂ωELR (60)

and LA can be found by hermitian conjugation. Let us
turn to LK . In order to find it, we need L−1

22 given by
Eq. (45):

L−1
22 = B

(
L−1

21 − L−1
12

)
+ eE∂ωB {(E − E∗), r} , (61)

where curly brackets denote an anticommutator. Plug-
ging this expression into Eq. (54), we obtain

LK = LK + δLK (62)

δLK = B
(
δLR − δLA

)
(63)

−eE∂ωBLR {(E − E∗), r}LA. (64)

Now, the order parameter correlation functions given by
Eqs. (55) are fully specified, and we can proceed to the
calculation of the electric current.

To summarize, we have collected the basic elements
of the formalism used for the calculation of the fluctu-
ation conductivity in this paper. Once the quasiclassi-
cal Green’s function is found as a solution of the Usadel

equation (15), the current can be obtained from Eq. (22).
Since the quasiclassical Green’s function is a functional
of the order parameter configuration, formula (22) for
the current includes an average with respect to the GL
action. This action, in turn, can be found from the
quasiclassical Green’s function via Eqs. (18) and (20)
and thus a closed scheme is established. As we have
already argued, it will be sufficient for our purposes to
work with ĝ given by Eq. (23) where ĝR(A) are defined in

Eqs. (31), (32), and the distribution function ĥ presented
in Eq. (29).

IV. CALCULATION OF THE ELECTRIC
CURRENT

A. Fluctuation corrections: derivation

Before studying the fluctuation corrections, we first
show how to obtain Drude conductivity from the formal-
ism. Input are the normal-metal solution of the Usadel
equation: ĝR = −ĝA = τ̂3 and the distribution function
in the presence of the electric field, Eq. (29). This gives,
according to Eq. (22), the electric current:

j(n) = eπνDtrτ̂3∇ĥ = 2νe2DE. (65)

This results in the Drude formula σD = 2νe2D.
Now we turn to the calculation of the electric current.

Starting with expression (22), we substitute for ĝ the
parametrization (23) and obtain the following contribu-
tions to the current

j = j(n) + j(dos) + j(an) + j(sc). (66)

Here, all terms besides j(n) depend on the realization of
the superconducting order parameter ∆ and have to be
averaged using the order parameter correlation functions
(55). The fluctuation contributions can be written in the
following form (hereafter the derivative is with respect to
the energy argument):

j(dos) = 2πe2DE

∫
H′ (ε) δν (ε) (dε) , (67)

j(an) = 2πe2DE

∫
H′ (ε)ϑ (ε) (dε) , (68)

j(sc) = 2πeD

∫
H (ε) j(s) (ε) (dε) . (69)

The quantities which appear in these expressions are de-
fined as follows

δν (ε) = −ν
8

〈
f · f∗ + f∗ · f +

(
f ↔ f̄

)〉
ε,ε
, (70)

ϑ (ε) = −ν
4

〈
f̄ · f∗ + f̄∗ · f

〉
ε,ε
, (71)

and

j(s)
α (ε) =

ν

8

〈
f · ∇̂αf∗ − ∇̂αf · f∗ (72)

−
(
f ↔ f̄

)
− (f ↔ f∗)

〉
ε,ε
. (73)
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LR(K)j ∇h

CR

CA

FIG. 1: Anomalous Maki-Thompson diagram.

The rationale behind this decomposition is the follow-
ing: (i) The function δν(ε) describes the correction to the
electronic density of states, see δν (ε) in Eq. (74) below.
(ii) The ϑ(ε)-term has a peculiar analytic structure. In-
deed, it contains a convolution of f∗ and f̄ , which upon
averaging gives rise to a product of two Cooperons of dif-
ferent analytical structure, CR and CA, and the imaginary
part of the fluctuation propagator, ImLR. This allows to
identify this term with the anomalous Maki-Thompson
contribution. For an illustration of this point, we refer

to Fig. 1. (iii) The j
(s)
α -term can be interpreted as the

fluctuating supercurrent density. This term is the result
of the expansion in the electric field of the fermionic dis-
tribution function he entering either the combination V
(see Eq. (34)) or the order parameter correlation func-
tion L (see Eqs. (60) and (63)). The former contribution
is purely quantum, while the latter comprises both quan-
tum and classical parts, which are of different importance
in the different regions of the phase diagram.

We note that the decomposition (i) - (iii) is very dif-
ferent from the conventional classification based on the
diagrams in the Matsubara technique. The difference is
related to two main points: a) in the traditional tech-
nique a response to a time-dependent vector potential is
calculated and b) in the present method there is no need
for an analytic continuation.

It is obvious from Eqs. (67) and (68) that j(dos) and
j(an) contribute only to the longitudinal current, while
j(sc) contributes to the transverse current as well. In
this context it should be kept in mind that in the Us-
adel equation, which was used as a starting point for our
calculation, the Lorentz force acting on the quasiparticle
was neglected.

To proceed further, we substitute the expressions for

f , f∗, f and f
∗

in the LL basis (cf. Eq. (40)) into the
expressions above and average them with respect to or-
der parameter fluctuations. The quantities δν(ε) and ϑ(ε)
are equilibrium properties of the system and are indepen-
dent of the electric field, and that is why their calculation
is relatively simple. Let us start with the DOS correc-
tion which can be understood as a renormalization of the
quasiparticle density-of-states:

δν (ε) = υ
∑
n

Im

∫
(dω) C2

n (2ε− ω)

×
[
LKn (ω) + LRn (ω)H (ε− ω)

]
. (74)

Here, υ = 1/2πl2B is the number of states per unit area
of a LL. This factor appears with each summation over
LLs. In the continuous limit υ

∑
n →

∑
q and the above

expression becomes identical to the one in Eq. (372) in
the review by Kamenev and Levchenko35. Note that∫
δν (ε) dε = 0. This is because the interaction cannot

change the total number of single-particle states, but just
redistributes them.

Turning to the anomalous MT correction, we find that
it is due to a real process. Indeed, ϑ(ε) can be presented
in the following form:

ϑ(ε) = υ
∑
n

τ−1
out,n(ε)

εn + τ−1
φ

, (75)

where τ−1
out,n is the partial (n) out-scattering rate for

quasiparticles arising due to the decay of superconduct-
ing fluctuations45:

τ−1
out,n(ε) = 2

∫
(dω) ReCn (2ε− ω)

×ImLRn (ω) [B (ω) +H (ε− ω)] .(76)

The discussed correction disappears at zero temperature.
This makes it essentially different from the DOS correc-
tion which exists down to zero temperature. The sign
of the anomalous MT correction is always positive. It is
closely related to weak antilocalization, and can be in-
terpreted as an interference effect in the singlet Cooper
channel, enhanced by coherent scattering on the fluctu-
ating order parameter.

Next, we turn to the calculation of the supercurrent
j(s), which is more complicated because non-equilibrium
terms in the fluctuation propagators have to be taken
into account. The calculation gives:

j(s)
x (ε) =

eEx
8
υ
∑
n

∫
(dω)(n+ 1) {An,n+1(ω, ε)}−(77)

j(s)
y (ε) =

eEx
8
υ
∑
n

∫
(dω)i(n+ 1)

×{An,n+1(ω, ε)−An,n(ω, ε)}+ . (78)

In these equations, the notation {X}± = X± X̃ is intro-

duced, where X̃ is obtained from X by the substitution
n ↔ n + 1. The functions Amn(ε, ω) are defined in the
Appendix B.

The next step is to substitute δν (ε) , ϑ (ε) and j
(s)
α (ε)

into the expressions (67)-(69) and to perform the inte-
gration in ε. The results of these integrations can be
expressed in terms of En:
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δσ
(dos)
‖ = −2e2Dυ

∑
n

∫
(dω)

[
BIm

E ′′n
En

+ B′ ImEnReE ′n
|En|2

]
, (79)

δσ
(an)
‖ = −4e2Dυ

∑
n

∫
(dω)B′ Im

2En
|En|2

1

τ−1
φ + εn

, (80)

δσ
(sc)
i = −2e2DΩ−1

c υ
∑
n

∫
(dω) (n+ 1) (Bui + B′vi) , (81)

where i =‖,⊥. For the longitudinal (‖) conductivity,

u‖ = Re
[
KnK

′
nL

R
nL

R
n+1

]
, (82)

v‖ = 2ReKnIm [En + En+1] ImLRnL
A
n+1

+ImKnIm
[
LRn+1 − LRn

]
(83)

with Kn(ω) = ψRn+1(ω)−ψRn (ω). For the transversal (⊥)
conductivity (assuming negatively charged carriers e < 0
for the rest of the paper; otherwise, the sign of the Hall
conductivity should be reversed), we obtain:

u⊥ = 2Im
[
KnL

R
nL

R
n+1

(
E ′n + E ′n+1

)]
− 2ΩcRe

{(
LRn
)2 E ′nψR′n }

+
− Im

[
K ′n
(
LRn+1 + LRn

)]
+ ΩcRe

{
ψR′′n LRn

}
+
, (84)

v⊥ = −2Im(ψRn +ψRn+1)ReKnRe
[
LRnL

A
n+1

]
−2Ωc

{
ImψRn ImψR′n L

R
nL

A
n

}
+
−ImKnRe

(
LRn+1 + LRn

)
+ΩcRe

{
LRnReψR′n

}
+
.

(85)

To conclude, we have derived fluctuation conductivity
due to electron-electron interactions in the Cooper chan-
nel in the Gaussian approximation. Equations (79)-(81)
describe the contribution of superconducting fluctuations
to the conductivity everywhere in the (B, T ) phase dia-
gram (outside the regime of strong fluctuations close to
the transition). In the rest of the paper we discuss differ-
ent limiting cases and elaborate on asymptotics of these
general formulas.

B. Discussion: Longitudinal conductivity

At the end of the previous section, we provided general
formulas for the fluctuation corrections to conductivity.
In certain asymptotic regions of the phase diagram they
are amenable to an analytic treatment. Following this
route, we are able to compare our results to the previous
studies. The derived formulas can also be subjected to a
numerical analysis, which allows to find the corrections
in the entire normal part of the phase diagram.

We will discuss the following asymptotic regions in the
phase diagram: The vicinities of the classical (I) and
quantum (II) transition points, the region of high tem-
peratures and small magnetic fields (III) and the region
of high magnetic fields and low temperatures (IV). The
corresponding regions are indicated on the phase diagram
displayed in Fig. 2. By means of a numerical evaluation,
we locate the line which describes the transition from

positive to negative magnetoresistance (∂Bσ = 0), and
the line which characterizes the change of the tempera-
ture dependence of the total correction ∂Tσ = 0.

1. GL region (I)

In this region, δσ
(sc)
‖ and δσ

(an)
‖ are the most impor-

tant. Since the leading contribution comes from small
bosonic momenta and frequencies (ω,Dq2 . T − Tc), in
order to extract the result, one should expand the equi-
librium propagator in ω/T and εn/T :[

LR(A)
n (ω)

]−1

≈ π

8T

[
−τ−1

GL − εn ± iω
]
, (86)

where

τGL =
π

8T lnT/Tc
. (87)

In this section we assume τφ � τGL and neglect τφ in
the fluctuation propagator. Substituting the expression

for the propagators L
R(A)
n to Eqs. (80) and (81), inte-

grating in frequency (only the term proportional to B′
contributes), and performing the summation over the LL
index, we obtain:

δσ
(an)
‖ =

e2

π
TτGL

[
ψ

(
1

2
+ s

)
− ψ

(
1

2
+ s

τGL
τφ

)]
(88)
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II: Eq. 96

III: Eqs. 105, 108, 112

I: Eqs. 88, 89

IV: Eq. 114

∂Tσ < 0

∂
B σ

<
0

0.5 1 1.5

0
.5

1
1
.5

B/Bc

T
/T

c

FIG. 2: Phase Diagram for the correction to the longitudinal
conductivity δσxx. The corresponding equations are written
in the text.

and

δσ
(sc)
‖ =

2e2

π
(TτGL)s

[
−1− 2sψ (s) + 2sψ

(
1

2
+ s

)]
,

(89)
with

s = (ΩcτGL)
−1
. (90)

These results are in agreement with existing calculations.

In particular, δσ
(sc)
‖ was obtained phenomenologically by

Abrahams et al.46, and the Maki-Thompson contribution
was discussed for finite magnetic fields in Ref. 47. Note,
that the parameter s divides the region (I) into two parts
with a distinct behavior. The zero-field limit is recovered
for s� 1:

δσ
(an)
‖ =

e2

π
TτGL ln(τφ/τGL), δσ

(sc)
‖ =

e2

2π
TτGL. (91)

In the absence of a magnetic field, the importance of the

anomalous MT correction, δσ
(an)
‖ , in comparison with

δσ
(sc)
‖ is determined by the ratio τφ/τGL. Indeed, the

MT term diverges in the absence of dephasing, τφ →
∞, and becomes comparable to the AL correction when
τφ ∼ τGL. As the ratio decreases further, the relative
importance of the MT correction diminishes.

For completeness, let us discuss the DOS correction
in region (I). In the vicinity of the critical temperature,

δσ
(dos)
‖ is weakly (only logarithmically) singular. The

reason is that interactions preserve the total density of

states, and the integration with H′ in Eq. (67) is (com-
paratively) wide: ε . T ≈ Tc. For zero magnetic field
one gets:

δσ
(dos)
‖ = −7ζ(3)e2

π4
lnTτGL. (92)

A contribution of the same form originates also from
the anomalous MT correction as a subleading term, with
a numerical coefficient −14 instead of −7. It is instruc-
tive to perform a comparison with the previously known
result in this region. For that, one should sum all terms

of the kind δσ = c ζ(3)
π4 lnTτGL. In the diagrammatic

calculation,48 one obtains the coefficient c = −14 as the
combined contribution of all diagrams with a horizontal
interaction line. Those diagrams taken together are of-
ten referred to as the DOS-type corrections. In addition,
regular MT, AL and anomalous MT diagrams come with
the coefficients c = −7, c = 14 and c = −14, corre-
spondingly. One can see that only after summation of all
logarithmic terms of this kind, the results of the two ap-
proaches coincide, and one obtains in both cases a total
numerical coefficient ctot = −21.

We would like to stress that according to Eq. (67) it is

the contribution δσ
(dos)
‖ rather than the sum of all hori-

zontal diagrams that should be associated with the sup-
pression of the single-particle density of states.

2. Quantum critical point (II)

In the vicinity of the transition line, for

h = (B −Bc(T ))/Bc � 1, (93)

the most singular contribution comes from the lowest LL,
n = 0. For small temperatures in the vicinity of the
Quantum Critical Point (QCP), when

t = T/Tc � 1, (94)

we can simplify the inverse fluctuation propagator using
the asymptotic formula for the Digamma function:

En(ω) = −h− ln (2n+ 1)− ln

(
1− iω

εn

)
. (95)

In this region, the role of τφ in the fluctuation propa-
gator is mostly to shift the critical magnetic field. We
will assume that this shift has already been performed.
Besides, it is natural to neglect τφ in the Cooperon, be-
cause in the vicinity of the critical point the Cooperon is
not singular and 1/τφ has to compete with Ωc. Substi-
tuting the expression for En(ω) into Eqs. (79)-(81) and
expanding the propagators in ω/Ωc, the contributions of
all three terms can be written in the form

δσ
(i)
‖ =

e2

π2

[
α(i)Iα (t, h) + β(i)Iβ (t, h)

]
(96)
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with the numerical coefficients

α(dos) = −1, α(an) = 0, α(sc) =
1

3
, (97)

β(dos) = −1, β(an) = 2, β(sc) =
5

3
. (98)

Here

Iα =

∫ Ωc

0

ωB(ω)dω

ω2 + (hΩc/2)2
, Iβ = −

∫ ∞
0

ω2B′(ω)dω

ω2 + (hΩc/2)2
.

Evaluating these integrals, we obtain:

Iα (t, h) = ln
r

h
− 1

2r
− ψ (r) , (99)

Iβ (t, h) = rψ′ (r)− 1

2r
− 1 (100)

with

r =
1

2γ

h

t
. (101)

Note that when all the contributions are summed up, we
get α = − 2

3 , β = 8
3 , and our result reproduces the one

obtained by Galitski and Larkin4.
The region of the phase diagram in the vicinity of the

QCP can further be subdivided into classical and quan-
tum regions, depending on the ratio of the parameters h
and t. The superconducting fluctuations contribute ei-
ther as classically populated modes or through virtual
transitions. In the quantum region t� h the occupation
number of the lowest LL of the collective mode is small,
and we obtain

δσ‖ = − 2e2

3π2
ln

1

h
, (t� h). (102)

In the classical region t � h, the occupation number
is large and the correction changes its character. As a
result, it becomes positive:

δσ‖ =
2e2γ

π2

t

h
, (t� h). (103)

3. High temperatures (III) and high magnetic fields (IV)

In these regions the dominant contributions come from
high LLs and, hence, the summation in the LL index can
be replaced by an integration. At the same time, the full
dependence of the fluctuation propagators on the bosonic
frequency should be kept, because the leading contribu-
tion comes from a long double logarithmic integration.

Let us first discuss the region (III). We will perform
the calculation in the limit of ln(T/Tc) � 1. We start

with the analysis of δσ
(dos)
‖ . It has a very slow temper-

ature dependence due to the long integration in energy,
which has to be cut off at ω, ε ∼ τ−1, where the diffusive
approximation breaks down. In view of this fact, only the

term proportional to B (rather then B′) gives the leading
contribution, and we can write

δσ
(dos)
‖ =

e2

4π2

∫
B (ω) Im

[
LR (ω)ψR′′(ω)

]
dωdε

= − e2

4π2
Im

∫ B (ω) ∂2
ωψ
(

1
2 + ε−iω

4πT

)
dωdε

lnT/Tc + ψ
(

1
2 + ε−iω

4πT

)
− ψ

(
1
2

) .
(104)

This integral is logarithmically divergent. As a result, we
obtain:

δσdos‖ = − e2

2π2
ln

ln 1/Tcτ

lnT/Tc
. (105)

This correction is similar to the Altshuler-Aronov cor-
rections, but with a scale-dependent coupling constant.
This result was first derived by Altshuler et al.49. At
very large temperatures (lnT/Tc � 1) this term dom-
inates the total correction. In the case of a repulsive

interaction, it becomes50 e2

2π2 ln ln 1
Tτ .

Let us turn to δσ
(sc)
‖ . The term proportional to B′

is again small, O
(
ln−2(T/Tc)

)
. Another term, which is

proportional to B, is more important:

δσ
(sc)
‖ = e2

∫ ∞
0

izdz

256π5

∫ ∞
−∞

dy coth y
2ψ
′ (ε)ψ′′ (ε)

[lnT/Tc + ψ (ε)]
2

(106)

where ε = 1
2 + z−iy

4π . We first calculate the y integral
neglecting y in the denominator. Since only y & 1 con-
tribute to the leading term, we can substitute coth y

2 →
sign y. This leads to

δσ
(sc)
‖ =

e2

64π4

∫ ∞
0

zdz
[
ψ′
(

1
2 + z

4π

)]2[
lnT/Tc + ψ

(
1
2 + z

4π

)]2 . (107)

The remaining integral comes from 1 . z and can be
calculated to give:

δσ
(sc)
‖ =

e2

4π2

1

lnT/Tc
. (108)

We note, however, that the same term originates from the

subleading contribution to δσ
(dos)
‖ , but with a different

numerical coefficient ln 2−1
2π2 . Thus, different contributions

of the kind O(ln−1 T/Tc) do not cancel each other.

Let us now turn to δσ
(an)
‖ . In the continuous limit,

υ
∑
n →

∑
q, Eq. (80) reproduces the known result51.

In the limit of lnT/Tc � 1, it can be further simplified
to:

δσ
(an)
‖ = − e2

16π2

1

ln2 T/Tc

∫ ∞
0

M(z)dz

z + 1/ (Tτφ)
(109)

with

M(z) =

∫ ∞
−∞

dy
[
ψ
(

1
2 + z−iy

4π

)
− ψ

(
1
2 + z+iy

4π

)]2
sinh2 (y/2)

.

(110)
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Although this term is formally O(ln−2 T/Tc), it can still
be essential due to the logarithmic divergence at small
momenta as it can be seen from Eq. (109). With loga-
rithmic accuracy, we can calculate it as follows:

δσ
(an)
‖ = − e2

16π2

1

ln2 T/Tc

∫ 1

0

M(0)dz

z + 1/ (Tτφ)
. (111)

As a result, we get:

δσ
(an)
‖ =

e2

12

lnTτφ

ln2 T/Tc
. (112)

One should keep in mind, however, that τφ itself depends
on T . In this region, the anomalous Maki-Thompson
correction was considered by several authors, who all ob-
tained the same functional form but with different nu-
merical coefficients23,45,49. We believe this discrepancy
is due to different approximations used for the calcula-
tion of M(0).

For high magnetic fields (region (IV)), the situation is
to some extent analogous to region (III) with the main
difference that the anomalous MT term does not con-
tribute as it is suppressed at small temperature. The
dominant corrections originate from δσ(sc) and δσ(dos),
and the leading contributions are those which are pro-
portional to B ≈ signω. To proceed, we write the equi-
librium propagator in its zero-temperature form:

LR(A) = ln−1

(
Ωc/2h

εn ∓ iω

)
, (T → 0). (113)

After the frequency integration, we find that δσ
(dos)
‖ takes

the following form:

δσ
(dos)
‖ =

e2

π2
h
∑
n

li

(
1

h(2n+ 1)

)
(114)

with the logarithmic integral function li(z) =
∫ z

0
dt/ ln t.

This sum is logarithmically divergent at the upper limit
and has to be cut off when the diffusion approximation
breaks down, that is at n ∼ Nmax � 1 with Nmax =

1
hTcτ

. Under these conditions, the sum is dominated by
large n and can be found to equal

δσ
(dos)
‖ = − e2

2π2
ln

ln 1/τTc
lnB/Bc

. (115)

This concludes our discussion of the regions (I-IV) in
the phase diagram; the corresponding asymptotic expres-
sions are referenced in Fig. 2.

The results we obtained differ from those given in
Ref. 23. This follows from a comparison of the asymp-
totic behavior in several regions. The most drastic differ-
ence, however, concerns the temperature dependence of
the resistance for magnetic fields B > Bc. The authors
of Ref. 23 claimed that for small temperatures T � Tc
the resistance first increases with increasing T and starts
to diminish at T/Tc & (B − Bc)/Bc. As follows from

0.50.25 0.75

3
.5

5
6
.5

T/Tc

R
,
k
Ω

FIG. 3: Resistance as a function of temperature for magnetic
fields B/Bc = 0.9, 1.05, 1.1, 1.3. The sample parameters are
RD = 5kΩ and Tcτ = 10−2.

our asymptotic expressions presented in Eqs. (96) and
from the result of the numerical calculation shown in
Figs. 2 and 3, the situation is opposite. At a fixed mag-
netic field, the resistance decreases as the temperature
increases from zero until the line ∂Tσ = 0 is crossed.
Then the resistance starts to grow.

C. Discussion: Hall conductivity

We proceed with the discussion of the results for the
transverse conductivity presented in Eq. (81). These
expressions represent only those contributions to δσ⊥,
which describe a deflection of the supercurrent. In prin-
ciple other contributions exist, in which quasiparticles
are deflected in the transverse direction by the Lorentz
force. These contributions are not included in the ap-
proximation we apply here. The terms not accounted for
by Eq. (81) include the contribution due to the anoma-
lous MT process, discussed by Fukuyama et al.26 and the

contribution δσ
(dos)
⊥ , recently discovered diagrammati-

cally by Michaeli et al.24, which is reminiscent of the
density of state suppression. They are related to the cor-
responding corrections to the longitudinal conductivity
as follows:

δσ
(an)
⊥ = −2ωcτδσ

(an)
‖ , (116)

δσ
(dos)
⊥ = −ωcτ

2
δσ

(dos)
‖ . (117)

Note, that δσ
(an)
⊥ and δσ

(an)
‖ cancel each other in the

expression for the Hall resistivity ρxy = −σxy/(σ2
xx +

σ2
xy) ≈ −σxy/σ2

xx. In contrast, the DOS-corrections give
a finite contribution to ρxy.

Let us discuss the contribution to Hall conductivity
that arises due to the deflection of the fluctuating su-
percurrent. In order to calculate it, it is enough to mod-
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ify the superconducting fluctuation propagator according
to28

L−1
R(A)(ω)→ L−1

R(A)(ω)− ςω. (118)

As a consequence of the additional term, the supercon-
ducting propagators lose their particle/hole symmetry,
i.e., the relation LA(−ω) = LR(ω) no longer holds. In
the framework of the BCS theory, the asymmetry pa-
rameter ς can be related to the energy dependence of
the density of states at the Fermi level: ς = − 1

2λ
d ln ν
dµ

or, equivalently28, to the variation of Tc with the chem-
ical potential: ς = − 1

2
d lnTc

dµ . In the simple model of

3D electrons with a quadratic spectrum, one has ν(ε) ≈
ν0(1 + ε/2εF ) and ς = −1/(4εFλ). For λ � 1 the con-

tributions arising from δσ
(sc)
⊥ are parametrically larger

than those arising from δσ
(dos)
⊥ and δσ

(an)
⊥ . In our calcu-

lation of the Hall conductivity, we work in the framework
of the quasiclassical approach, using, however, Eq. (118)
for the propagators LR(A). This is a consistent procedure
that allows to obtain all contributions to the transverse
current proportional to the large parameter 1/λ.

In region (I) after expansion in Ωc(n + 1/2)/4πT and

ω/4πT the correction δσ
(sc)
⊥ takes the form

δσ
(sc)
⊥ = −16e2ςΩc (TτGL)

2

π2
f (s) , (119)

where

f (s) = s2

[
1 + ψ

(
1

2
+ s

)
− ψ (1 + s)− sψ′ (1 + s)

]
.

In this region, the Hall effect can be considered phe-
nomenologically: the same expression (119) was obtained
by Aronov and Rapoport27 (with a different coefficient,
it has later been corrected by Aronov et al.28) on the ba-
sis of the time dependent Ginzburg-Landau theory. For
s � 1, when quantization of the LLs for the supercon-
ducting fluctuations is negligible, the expression (119)
becomes:26

δσ
(sc)
⊥ =

e2ςΩc
96

(
T

T − Tc

)2

. (120)

The region of applicability of the Eq. (119) is in fact
very narrow, and already for T & 1.01Tc one should not

expand the full expression for δσ
(sc)
⊥ in Ωc(n+ 1/2)/4πT

to get an accurate result. The corresponding formula has
been given in Ref. 24:

δσ
(sc)
⊥ =

2e2ςT

π

∑
n

(n+ 1)

[
LRn+1 (0)− LRn (0)

]3[
LRn+1 (0) + LRn (0)

]2 . (121)

In region (II), we can limit ourselves to the lowest LL
and follow the same route as in the calculation of the
longitudinal conductivity. This gives for the quantum
regime:

δσ
(sc)
⊥ = −e

2ςΩc
3π2

ln
1

h
, (122)

1 2 3
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FIG. 4: Resistance as a function of magnetic field for temper-
atures T/Tc = 0.03, 0.1, 0.35. Inset: the zoomed region of
the approximate crossing for T/Tc = 0.15 − 0.3. The sample
parameters are RD = 5kΩ and Tcτ = 10−2.

and for the classical regime:

δσ
(sc)
⊥ =

2e2

π

ςT

h
. (123)

Note, that in this region δσ
(dos)
⊥ and δσ

(an)
⊥ exhibit the

same singular behavior as δσ
(sc)
⊥ . We do not provide

the corresponding expressions, since they follow straight-
forwardly from Eqs. (116) and (117), together with
Eq. (96).

A more detailed discussion of the Hall effect due to
superconducting fluctuations is presented in a separate
publication, Ref. 24.

V. CONCLUSION

We considered homogeneously disordered films above
the superconducting transition T > Tc(B) and calculated
corrections to longitudinal as well as transversal conduc-
tivities. Our results are presented by equations (79)-(81).
We analyzed the asymptotic behavior of these corrections
in different regions of the phase diagram and provided a
comparison with previously published results.

Our results for the Hall effect have recently been used
in the description of experimental data by Breznay et.
al25. The results for the longitudinal conductivity, Eqs.
(79)-(81), can also be useful for the analysis of experi-
ments. They allow for a complete numerical evaluation
of the fluctuation corrections to conductivity without
any additional approximation, e.g., the lowest Landau
level approximation. Exemplary results are presented in
Figs. 3, 4 for the resistivity R = (R−1

D + δσ)−1 as a func-
tion of magnetic field and temperature. A similar behav-
ior of the resistance was observed in the experiment of
Baturina et al.8. In Ref. 8, the authors presented a fit
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to the measured data that was based on the asymptotic
expressions (96) derived in Ref. 4 and reproduced in our
work based on a different method. We note, however,
that although these expressions provide a good approxi-
mation in the vicinity of the QCP, their region of validity
does not extend up to the relatively large temperatures
and magnetic fields that were considered in the exper-
iment (up to 0.35Tc and up to 5Bc, correspondingly).
When fitting this data, the more precise Eqs. (79)-(81)
should, therefore, be used.

According to the results presented in this work, the re-
sistance curves drawn as a function of the magnetic field
exhibit an approximate crossing point for a finite interval
of temperatures, as demonstrated in Fig. 3. As can be
seen from this picture, the curves do not literally cross
in a single point, but deviations from this ideal behav-
ior are small. The existence of this approximate crossing
point is a consequence of a relatively wide minimum in
the R(T ) curve for B = 1.05Bc as shown in Fig. 3. This
type of behavior has been observed in several systems;
see e.g. Fig. 4 in Ref. 52. However, in these experiments
the curves continue to cross even at the smallest temper-
atures, while we did not find this kind of behavior from
the Gaussian corrections to conductivity. This could be
related to the fact that for such low temperatures the
proximity to the QCP becomes of crucial importance,
and the present theory is not sufficient because 1) it does
not account for the effect of non-Gaussian fluctuations
and 2) does not take into account the smearing of the
transition by disorder53,54, which is usually observed in
this region (see Fig. 2 in Ref. 55 as an example).

To conclude, we have developed an approach to the cal-
culation of fluctuation conductivity based on the Usadel
equation and valid for both the classical as well as the
quantum fluctuation regime for arbitrary magnetic fields.
This approach is more physically transparent than con-
ventional perturbation theory based on the Kubo formula
and provides a bridge between the phenomenological the-
ory and microscopics. We believe that it may find appli-
cations in studies of fluctuation effects out of equilibrium
or in hybrid superconductor/normal metal structures.
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Appendix A: Collision integrals

In this appendix we discuss the quantum components
ĝZ,W of the Green’s function ĝR. We parameterize them

as

ĝZ =

(
z1 0
0 z2

)
, ĝW =

(
w1 0
0 w2

)
(A1)

and get the following equations:

D−1wi = IWi , D̄−1zi = IZi (A2)

with

D−1 = D∇̂2 − ∂t1 − ∂t2 , D̄−1 = D∇̂2 + ∂t1 + ∂t2 . (A3)

The collision integrals IZ1,2 are given by

IZ1 = i
(
∆q · f∗ − f̄ ·∆∗q

)
,

IZ2 = i
(
∆∗q · f − f̄∗ ·∆q

)
(A4)

and collision integrals IWi = IWi,coll − IWi,neq by (this sepa-

ration is motivated below)

IW1,coll = i(f · J1 − J̄1 · f̄∗),
IW2,coll = i(f∗ · J2 − J̄2 · f̄),

IW1,neq = 2je · z1 · je + je · f̄ · f̄∗′ + f · jh · f̄∗′+
f ′ · jh · f̄∗ + f ′ · f∗ · je,

IW2,neq = 2jh · z2 · jh + jh · f̄∗ · f̄ ′ + f∗ · je · f̄ ′+
f∗′ · je · f̄ + f∗′ · f · jh. (A5)

For convenience, we defined (je,h = ±∇he,h):

J1 = ∆∗q −∆∗c · he + hh ·∆∗c − hh ·∆∗q · he,
J̄1 = ∆q −∆c · hh + he ·∆c − he ·∆q · hh,
J2 = ∆q −∆c · hh + he ·∆c − he ·∆q · hh,
J̄2 = ∆∗q −∆∗c · he + hh ·∆∗c − hh ·∆∗q · he. (A6)

While
〈
IZ
〉

= 0 due to causality35, the collision inte-

gral IW does not vanish identically after averaging. Nev-
ertheless, its expansion in the electric field can be shown
to start from E2. First, we note that IWi,neq should be

related to the production of the heat. Indeed,
〈
IWi,neq

〉
is proportional to the Drude result for the electric cur-
rent je,h. Next, observe that the terms in

〈
IWi,neq

〉
which

are only linear in je,h are further multiplied by averages
which include the spatial gradients of f and vanish in the
absence of an electric field, when the system is isotropic.
Hence,

〈
IWi,neq

〉
= O(E2). There is still another term,

IWi,coll. For E = 0 it corresponds to the collision integral
due to Cooper interactions, which enters the kinetic equa-
tion and was calculated by Reizer45. Let us just note,
that if the only source of non-homogeneity is a spatially
varying electric potential (as it is in our case), then the
collision integral, written in terms of the gauge invariant
particle/hole energies should be independent of the spa-
tial coordinates. As such, it cannot depend on the electric
field itself, which is a vector, but only on E2. This is sum-
marized by the equation: IW1,2,coll = Icoll(E

2, ε ∓ eφ(x)).

Since for E = 0 it vanishes (provided the electronic dis-
tribution functionH is thermal) and depends only on E2,
it should be disregarded for the calculations in the linear
response.
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Appendix B: Calculation of the supercurrent

Here we present more details of the calculation of

j
(s)
α (ε). We start with expression (72). After substituting

the solution for f and averaging in ∆ we get:

j(s)
α (ε) =

1

8
eE
∑
mn

∫
(dω)Iα,mnAmn(ω, ε) (B1)

Here Iα,mn represents the result of integration in the mo-
mentum quantum number:

Iα,mn = 2i

∫
(dp)Im

(
ψmp(r)∇̂αψ∗np(r)

)
〈np|x |mp〉

(B2)

and Amn =
∑
k A

(k)
mn has several contributions, which

arise from different ways to expand propagators or
bosonic/fermionic distribution functions in the electric
field. The next step is to calculate integral (B2): taking
into account 〈n, p|x |m, p〉 = xnm + pl2Bδnm, where xnm
are matrix elements, calculated with χn(x), we obtain:

Ix(m,n) = 2υxnm∂mn, (B3)

Iy(m,n) =
2i

l2B
υ(xnmxmn − δmn(x2)mn). (B4)

We also take into account:

xmn =
lB√

2
(
√
n+ 1δm,n+1 +

√
nδm,n−1) (B5)

∂mn = − 1√
2lB

(
√
n+ 1δm,n+1 −

√
nδm,n−1) (B6)

and obtain the result, presented in (77), (78).
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Phys. Rev. B 31, 7001 (1985).
39 M. Abramowitz and I. Stegun, Handbook of Mathematical

Functions (Dover Publ. NY, 1972).
40 W. Brenig, M. A. Paalanen, A. F. Hebard, and P. Wölfle,
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