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Many unconventional quantum phases host special non-magnetic excitations such as photons and visons.
We discuss two possible ways to detect these excitations experimentally. Firstly, spin-lattice coupling mixes
the excitations with phonons. The phonon spectral functionacquires new features that can be detected by
neutron or X-ray scattering. Secondly, valence-bond fluctuations translate into charge density fluctuations on
non-bipartite lattices. Such charge fluctuations can be characterized by conventional spectroscopies such as
Terahertz spectroscopy. As by-products, we discuss the general mechanisms of spin-Peierls transitions in two
and three dimensional spin liquids.

I. INTRODUCTION

The search for exotic quantum phases [1] in frustrated anti-
ferromagnets has been one of the main challenges in the field
of strongly correlated systems. Such phases are believed to
emerge when long-range order is destroyed by competing in-
teractions and strong quantum fluctuations. In a typical situ-
ation, SU(2) symmetry remains intact down to zero tempera-
ture so that excitations can be classified by their spin. While
magnetic excitations can be studied by techniques such as
inelastic neutron scattering (i.e spinons [2, 3]), exotic non-
magnetic excitations remain elusive.

Indeed, novel non-magnetic excitations are predicted in
generic unconventional magnetic phases. Consider the sem-
inal resonating valence bond (RVB) phase [4]. Extensive in-
vestigations of quantum dimer model (QDM) [1] revealed that
there are two types of dimer liquid in two and three dimen-
sions. The U(1) liquid exists on bipartite lattices in three
dimensions. Its low energy excitations are transverse gap-
less fluctuations of dimer density, or “photons” of an emer-
gent U(1) gauge theory [5]. On the other hand, the Z2 liq-
uid appears in non-bipartite lattices and possesses topological
order. The low energy excitations are Z2 vortices, “visons”
[6, 7]. While a single vison is a non-local object, excitations
of even number of visons correspond to dimer density fluctu-
ations [8, 9].

While these results were obtained in the QDM, generic con-
structions [10, 11] exist in which QDM’s are low energy limits
of SU(2) invariant spin models. Such phases and excitations
could exist in low energy limits of Heisenberg model thanks to
universality. The authors of an extensive DMRG [12] study of
spin-1/2 Heisenberg antiferromagnetic model on the kagome
lattice concluded that its ground state is a Z2 spin liquid. Stud-
ies of the multi-spin exchange model [13, 14] on triangular
lattice found a gapped spin-liquid phase that looks like a Z2

liquid. Both models are realized in real materials (For reviews,
see [1] and [15]). Observing singlet excitations in these mate-
rials would be positive evidence of the existence of Z2 liquid
phase in nature.

In this paper, we discuss two general ways to experimen-
tally probe singlet excitations in quantum antiferromagnets.
Firstly, singlet excitations mix with optical phonons through
spin-lattice coupling. For suitable parameters, this leads to
new features in the phonon spectral function which can be de-

tected by neutron or X-ray scattering. Spin-lattice coupling
has been an exciting topic throughout the years. Its study
was pioneered by the discovery and characterization of spin-
Peierls transition [16–19]. It was realized [20, 21] that sim-
ilar mechanisms can induce long range order in the highly
frustrated Heisenberg antiferromagnet on the pyrochlore lat-
tice. Magnetoelastic splitting of degenerate optical phonons
was observed in ZnCr2O4 [22] and a number of other com-
pounds. The strongest effect (10% splitting) has been seen in
MnO [23]. Wang and Vishwanath generalized the idea to lo-
cal phonon [24]. Dynamical effects of phonons were explored
[25] motivated by spin-Peirels compound CuGeO3 [26, 27].
These studies demonstrated the importance of both static and
dynamical effects of the spin-lattice coupling.

The second way exploits the ability of singlet excitations
to couple directly to an electric field. Bulaevskiiet al [28]
first discovered that some magnetic ground states and exci-
tations of certain Mott insulators have nonzero local electric
charge or current. In particular, fluctuations of valence-bond
densities induces electric dipoles. The coupling is stronger
for weak Mott insulators due to smallerU/t wheret is the
hopping amplitude of electrons andU is the onsite repulsion.
Spin-lattice coupling can lead to the same effect [28]. Con-
sequently, valence-bond density fluctuations couple to elec-
tromagnetic radiations directly. Conventional spectroscopic
techniques may be used to directly detect non-magnetic exci-
tations.

The rest of the paper is organized as follows. First, we
study the mixing between optical phonons and singlet exci-
tations. We introduce the general formulation of the mixing
and summarize the main results in sectionII . The formula-
tion is applied to both U(1) and Z2 liquids in sectionIII and
IV. In the sections, we also discuss the general mechanisms
of spin-Peierls transitions in both liquids. We then illustrate
possible charge signature of singlet excitations in the context
of spin-1/2 Heisenberg antiferromagnetic model on kagome
in sectionV. Finally, we conclude our paper by discussing
possible discoveries of singlet excitations in real materials.

II. GENERAL FORMULATION

Let us motivate the first mechanism in the simplest context.
Consider spins interacting via Heisenberg exchange whose
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strength depends on the distance between the spins [20–22]:

J(R + u)Si · Sj ≈ J(R)Si · Sj +
∂J

∂r
|r=R(Si · Sj)u. (1)

R is the equilibrium distance between the two spins if there
is no spin-lattice coupling.u is the elongation of the bond.u
couples linearly with bond operatorSi ·Sj which measures the
singlet density on bond〈ij〉. The coupling mixes the singlet
excitations and phonons. The phonon spectral function will
acquire features of the singlet excitations.

To elaborate on this idea, we consider following Hamilto-
nian on a general lattice:

H =
∑

r

(

1

2
u̇(r)2 +

1

2
ω2
0u(r)

2 + fu(r) ·V(r)

)

+Hs.

(2)
Hs is the spin hamiltonian andu(r) is the displacement of ion
at siter. We adopt the Einstein phonon model with mass of
the ion assumed to be1 for simplicity. Based on the model in
equation1, V(r) field is defined as follows [24]:

V(r) =
1

f

∑

r′∈{r}
êrr′(êrr′ · ∇rJ(r− r′))Sr · Sr′ . (3)

{r} is the set of neighbors of siter andêrr′ ≡ (r−r′)/|r−r′|.
f =

∑

r′∈{r} êrr′ · ∇rJr−r′ is the spin-lattice coupling.
For small ion displacements, the full phonon Green’s func-

tion in the random phase approximation (RPA) is:

G̃−1
αβ(r1, t1; r2, t2) = G−1

αβ(r1, t1; r2, t2)−f2χαβ(r1, t1; r2, t2)
(4)

whereG̃ is the full phonon Green’s function,G is the bare one
andχ is the time-ordered bond-bond correlation function:

χαβ(r1, t1; r2, t2) ≡ 〈T{Vα(r1, t1)Vβ(r2, t2)}〉 (5)

In the Fourier space, relation4 is written as:

G̃−1
αβ(k, ω) = G−1

αβ(k, ω)− f2χαβ(k, ω). (6)

In sectionsIII andIV, we will explore the consequence of
equations4 and6. For readers not interested in technical de-
tails, we summarize the main results here. These readers can
continue directly to sectionVI .

There are two types of dimer liquid [1]. U(1) dimer liq-
uid exist on three-dimensional bipartite lattices [1, 5]. Its low
energy effective theory has the same form as electrodynamics
[5]. The magnetic fieldB is related to the dimer, or singlet,
density. Low energy excitations, photons [5], are transverse
fluctuations of singlet density. The mixture between optical
phonons and photons generates new transverse sound modes.
In contrast to acoustic phonons, there is no longitudinal mode.
For cubic lattice, the new sound modes are located at momen-
tumQ = (π, π, π). Such modes can be observed experimen-
tally using X-ray or neutron scattering techniques. If the spin-
lattice coupling is larger than a critical value, the velocity of
the new sound modes becomes negative. The system enters
a valence bond solid phase and the lattice distorts. The two

transverse sound modes become the fluctuations of the mag-
nitude and the direction of the condensate respectively. The
fluctuation of the magnitude is gapless and disperses along
only one direction. On the other hand, the direction fluctua-
tion of lattice distortion and singlet condensate are constrained
to be perpendicular to each other.

Z2 liquid phase is the ground state of QDM’s on two- and
three-dimensional non-bipartite lattices [1]. The phase pre-
serves all symmetries and is gapped to all excitations. It
possesses topological order [1]: the degree of degeneracy of
ground state depends on the topology of the hosting manifold.
The low energy theory is the Z2 gauge theory [1, 29]. Elemen-
tary excitations are visons [6, 7], massive bosonic particles.
The visons are non-local excitations; singlet density fluctua-
tions involves at least two visons [8, 9]. Vison-dispersion can
be determined by Z2 gauge theory [1, 29]. The coupling be-
tween one phonon and two visons induces new phonon modes
below the edge of two-vison continuum. As the vison mass
decreases, these new phonon modes move away from the con-
tinuum and gain spectrum density. For suitable parameters,
such modes can be observed by X-ray and neutron scattering.
We stress that Z2 gauge theorypredictsthe momentum and
the relative strength of these new modes. They provide spe-
cific signatures of the Z2 liquid phase that can be verified or
falsified by experiments. As the vison mass becomes smaller
than a critical value, one or several new phonon modes con-
dense and the system becomes a valence bond solid. This is
the general mechanism of spin-Peirels transition in Z2 liquid
phase.

III. U(1) LIQUID

The first type of spin-liquid is the U(1) liquid. Such liquid
is the ground state of QDM’s on three-dimensional bipartite
lattices for extended parameter region. As an example, we
focus on the QDM on cubic lattice. The QDM on cubic lat-
tice has two phases [5]: the staggered valence bond crystal
phase and the U(1) liquid phase. The low energy physics of
the liquid phase is described by the following Hamiltonian in
the continuum limit [5]:

Hs =

∫

d3r

(

1

2
E2 +

1

2
ρ2B

2 + ρ4(∇×B)2
)

. (7)

In the Coulomb gaugeA0 = 0, ∇ · A = 0, the electric and
magnetic fields are expressed asE = ∂tA andB = ∇ ×A.
On the lattice, the magnetic fieldB is defined on the bonds
[30]:

Bα(r) = eiQ·r
(

nα(r)−
1

z

)

(8)

whereQ = (π, π, π) andnα(r) is the number of dimers on
the bond connectingr andr + α̂ (α = x, y, z). z = 6 is the
coordination number of cubic lattice.

To include the spin-lattice coupling, we write the bond op-
eratorS(r) · S(r + α̂) in terms of the gauge field. The bond
operator amounts to two operations on a general dimer cover-
ing. Its diagonal part counts the number of dimer on the bond
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FIG. 1: The new phonon mode aroundQ is illustrated on a two
dimensional slice of cubic lattice. The mode is induced by the “pho-
ton”, transverse fluctuation of dimer densities. Bond thicknesses re-
flect dimer densities.

while the off-diagonal part flips the dimers around plaquette
to which the bond belongs. The plaquette-flipping operator
translates intoE2 [5]. As a result, the off-diagonal term is ir-
relevant in the renormalization group sense. The spin-lattice
Hamiltonian translates into the following compact form in the
continuum limit:

Hsp =

∫

d3rf1B · ũ (9)

whereũ ≡ eiQ·ru andf1 is the spin-lattice coupling. The
Hamiltonian for phonon is:

Hp =

∫

d3r

(

1

2
(∂tũ)

2 +
1

2
ω2
0ũ

2

)

. (10)

The total Hamiltonian isH = Hp +Hsp +Hs.
We focus on the phonon spectrum in U(1) liquid phase

whereρ4 term can be neglected. Applying equations4 and6,
phonon develops two transverse sound modes around momen-
tumQ. These modes manifest themselves as new low-energy
poles in the phonon spectral function. For momentumQ+ k

(k ≪ 1), the energy is approximately:

ω(k) ≈
√

ρ2 −
f2
1

ω2
0

k. (11)

The spectrum weight of the modes is proportional to
f2
1k

2/(ω2
0 − ρ2k

2)2. In contrast, the spectrum of the longi-
tudinal phonon remains unchanged. This is a reflection of the
transverse nature of gauge fluctuations. Such sound modes
generally exist in QDM’s on other three-dimensional bipartite
lattices.

If f1 > ω0
√
ρ2, these sound modes become unstable. The

system develops a valence bond order at momentumQ and the
lattice distorts accordingly. This is the spin-Peierls transition
in three-dimensional U(1) liquid. To understand this transition

better, we write out the “potential energy” as a function ofũ

andB:

V (ũ,B) =
1

2
ω2
0ũ

2 + f1ũ ·B+
1

2
ρ2B

2. (12)

We write bothũ andB in terms of a parallel component and
a perpendicular component:

ũ = uẑ + u⊥, B = −Bẑ +B⊥ (13)

whereu⊥ · ẑ = 0, B⊥ · ẑ = 0 andu⊥ · B⊥ = 0. The
potential energyV also splits into the “parallel” partV‖ and
the “perpendicular” partV⊥ under the parametrization.

We consider the parallel part first:

V‖ =
1

2
ω2
0u

2 − f1uB +
1

2
ρ2B

2. (14)

It can be rewritten in terms of normal modelsη1 ≡
cos(θ/2)u − sin(θ/2)B andη2 ≡ sin(θ/2)u + cos(θ/2)B
with θ ≡ tan−1(2f1/(ω

2
0 − ρ2)):

V‖ =
1

2
(λ1η

2
1 + λ2η

2
2) +K1η

4
1 +K2η

4
2 (15)

whereλ1,2 = 1/2(ω2
0 + ρ2) ±

√

1/4(ω2
0 − ρ2)2 + f2

1 and
K1,2 > 0. The quartic terms are added to ensure the stability.
Physically, they come from the anharmonic contributions in
phonon energy. Whenf1 > ω0

√
ρ2, λ2 becomes negative

andη2 mode condenses. The magnitude of the condensate is
proportional tof1 − ω0

√
ρ2.

In the condensed phase, both the magnitude and the direc-
tion of the condensate fluctuate. To study the magnitude fluc-
tuations, we rewriteu = ū+ δu andB = B̄+ δB in equation
14 and keep only the quadratic terms inδu andδB. We in-
troduceδA such that∇× δA = δBẑ. The gauge is fixed by
demandingδA = δAŷ so that∂xδA = δB. After standard
manipulations, we discover that the magnitude fluctuation has
a low energy mode with the following dispersion:

ω2 ≈ 4
√
ρ2

ω0
(f1 − ω0

√
ρ2)k

2
x. (16)

This mode is gapless and only disperses along one direction.
Just as in the liquid phase, the mode can be observed by scat-
tering techniques since it is a mixture of phonon and dimer
density fluctuation.

The fluctuation of the condensate direction is controlled by
V⊥:

V⊥ =
1

2
ω2
0u

2
⊥ +

1

2
ρ2B

2
⊥. (17)

Naively, it seems thatu⊥ andB⊥ are effectively decoupled.
However, their directions are strongly correlated by the con-
strain thatu⊥ ·B⊥ = 0.

These results are expected from general arguments. The
condensation of normal modeη2 defines a special direction.
As a result, the degeneracy between the two transverse low
energy modes in the liquid phase is lifted. These two modes
become the magnitude and the direction fluctuations respec-
tively. While the ordering wave vector of the condensed phase
depends on the lattice, the mechanism described above are
generally applicable to all three-dimensional bipartite lattices.



4

l

i

FIG. 2: One-vison and two-vison excitations. A vison ati is created
by operators on all the bonds to the left ofi. A two-vison excitation
is related to the dimer density on the bondl between them.

IV. Z2 LIQUID PHASE

The second generic dimer liquid phase is the Z2 liquid
phase on two and three dimensional non-bipartite lattices [1].
Such a state preserves all lattice symmetries and has a gap to
all excitations. The system possesses topological order. Con-
sider a Z2 liquid on a cylinder, the state belongs to the even
or odd topological sectors if a cut around the cylinder crosses
even or odd number of dimers. The low energy excitations
are visons [6, 7], Z2 vortices residing on the sites of the dual
lattices. At the Rokhsar-Kivelson (RK) [31] point, the ground
state is an equal amplitude combination of all possible dimer
state. To obtain a vison at sitẽr, we make a cut [1] from the
site to the lattice boundary (Fig2). A state with one vison is
a combination of all possible dimer coverings. However, the
amplitude of a dimer covering is negative if the cut crosses an
odd number of dimers. Visons are nonlocal objects. A local
operator such asSr · Sr+l̂

involves even number of visons.
In the reminder of the section, we describe how phonons

are coupled to visons through spin-lattice coupling using Z2

liquid phase on the triangular lattice as an example. Firstly,
we briefly review the Z2 gauge theory description of the liq-
uid phase. The vison-phonon coupling is derived both from
microscopic models and through symmetry arguments. Un-
der RPA approximation, the coupling introduces new phonon
modes below the two-vison continuum. As the vison massm
decreases, these modes move away from the continuum edge
and gain spectral weight. For suitable parameters, such modes
can be observed by neutron and X-ray scattering at specific
momentum. At a criticalm, one of the modes condenses, the
lattice distorts and the system enters a valence bond crystal
phase. This is the analog of Spin-Peierls transition in Z2 liq-
uid.

A. Z2 gauge theory

The low energy physics of the Z2 liquid on triangular lattice
is described by the Z2 gauge theory on the dual lattice, the
honeycomb lattice [32, 33]. Its Hamiltonian is [33]:

H = −J
∑

〈r1r2〉
Mr1r2σ

z
r1
σz
r2

− Γ
∑

r

σx
r . (18)

Here Mr1r2 ’s are Z2 phases arranged such that the flux
through each hexagon is−1. σz

r either creates or destroys
a vison at siter.

Following Misguich and Mila [33]., we introduce the hard-
core boson representation:

σz
r = br + b†r, σ

x
i = 1− 2b†rbr. (19)

We anticipate that the excitations are gapped. Consequently,
the hardcore property of the bosons can be neglected since
the boson density is small at low energy. The theory is then
solved by standard techniques since it is quadratic in boson
operators. The low-energy quasi-particles are visons.

The vison energy is minimized at four momenta [32, 33]:
k1 = −k3 = (π/6, π/2) andk2 = −k4 = (5π/6, π/2). We
denote the vison with momentumkα +q asaα,q. The energy
of aα,q is approximatelyωq =

√

m2 + v2bq
2 for smallq. The

spectrum features agree with the numerical results of [34]. We
introduce vison field operators aroundkα:

φα(r) =
1√
V

∑

q

1
√

2ωq

exp
(

iq · r− q

Λ

)

aα,q (20)

whereΛ is the momentum cut-off beyond which the lattice
details become important. These fields obey Klein-Gordan
equations. They capture the low energy physics of the Z2 liq-
uid phase.

B. The vison-phonon coupling

The phonons couple to bond operatorSi · Sj . As was dis-
cussed, the bond operator has two effects on a dimer covering
state. The diagonal part measures the dimer density on bond
〈ij〉 while the off-diagonal part changes the dimer configu-
ration around the plaquette to which bond〈ij〉 belongs. Let
us focus on the diagonal part first. The off-diagonal part will
only change the overall constant in front of the Hamiltonian
thanks to the symmetry arguments presented latter.

The dimer density on a bond is related to two vison opera-
tors: Si · Sj ∼ c0Mrr′σ

z
rσ

z
r′ wherer andr′ are the two dual

lattice sites adjacent to bond〈ij〉. We rewriteσz
r in terms of

φα(r). The general vison-phonon coupling assumes the fol-
lowing form in the continuum limit:

H =
∫

ddr
∑

a,l

∑

α≥β ua,l(r)
(

g
(a,l)
αβ ei(kα+kβ)·rφα(r)φβ(r)

+f
(a,l)
αβ e−i(kα−kβ)·rφ∗

α(r)φβ(r) + h.c
)

. (21)

Herea is the sublattice label andl = x, y. g(a,l)αβ andf (a,l)
αβ are

coefficients determined from the Z2 gauge theory. They are
listed in appendixA.

The form of the vison-phonon coupling can also be fixed up
to an overall constant by lattice symmetry. To this end, we de-
termine howφα(r) transforms under translation, rotation by
π/3 and reflection around direction(1/2,

√
3/2). Due to the

presence ofπ flux, we need to accompany the lattice symme-
try operations with specific gauge transformations in orderto
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keep the Hamiltonian intact. These are projective symmetry
operations. On triangular lattice, they were first studied by
Moessner and Sondi [29]. We follow their convention.

We also determined how phonon transform under the same
set of lattice symmetry operations. The Hamiltonian is deter-
mined by finding the scalar representation of lattice symme-
tries involving one phonon and two vison. The result agrees
with the form obtained from Z2 gauge theory. This confirms
the validity of derived equation21.

C. New phonon modes and the Spin-Peierls transition

We begin to explore the physical consequence of vison-
phonon coupling by studying a toy problem. Consider a real
scalar fieldu(r) (phonon) couples to a complex scalar field
φ((r)) (vison). The non-interacting Lagrangian reads:

L =

∫

d2r

(

1

2
(u̇2 − ω2

0u
2) + |φ̇|2 − |∇φ|2 +m2|φ|2

)

.

(22)
φ = φ1 + φ†

2 where

φα(r) =

∫

d2q

(2π)2
1

√

2ωq

aα,q exp(iq · r) (23)

with α = 1, 2. The vison-phonon coupling assumes the gen-
eral form as in equation21. We further assumek2 = −k1

andg11 = g22 = g for simplicity.
Applying equation5, we compute the dynamical suscepti-

bility at momentum2k1:

χ(ω, 2k1) =
g2

2v2bωπ

(

tanh−1

(

2
√

m2 + v2bΛ
2

ω

)

−

tanh−1

(

2m

ω

))

.

(24)

HereΛ is a momentum cut-off. We assumevbΛ ≫ m. Con-
siderω = 2m− x with 0 < x ≪ 2m, the dynamical suscep-
tibility can be approximated by the following expression:

χ(ω, 2k1) ≈
g2

8v2bmπ
log
( x

4m

)

. (25)

As x → 0+, χ(ω,k1) diverges logarithmically. Such diver-
gence introduces a new phonon mode below2m. To make it
explicit, we write out the full phonon Green’s function under
RPA approximation:

G(2m−x, 2k1) ≈
1

4m2 − ω2
0 − g2

8πv2

b
m
log
(

x
4m

)

+ iǫ
(26)

whereǫ is a small positive number. A pole always exists for
small enoughx:

x0

2m
= 2 exp

(

−8πv2bm(ω2
0 − 4m2)

g2

)

. (27)

Asm become smaller, the pole is moving away from the lower
edge of the two-vison continuum. At a finite critical mass
mc, the new phonon mode condense and the system enters a
valence bond crystal order. The lattice distorts accordingly.
This is the general mechanism of Spin-Peierls transition inZ2

spin liquid.
The toy model captures the main physical points. For real-

istic models, there are further technical complications. Con-
sider the triangular lattice, the low energy vison fields arede-
fined at four different momentum. As a result, new phonon
modes are introduced at several locations in momentum space.
Also, there are four phonons per unit cell, the dynamical sus-
ceptibility is a4×4 matrix in general. As a result, there could
be more than one new phonon mode introduced at a certain
momentum.

We want to stress that the possible detection of these new
phonon modes paves way for new dialogues between theory
and experiment. Conventional ways to detect non-magnetic
excitations such as specific heat or thermal conductivity mea-
surements yield only integrated information. The approach
we proposed, on the other hand,predictsthe momentum of
the new phonon modes and their relative strength. If such
modes are observed with predicted properties, it would pro-
vide strong evidence of the existence of Z2 liquid.

D. Narrow continuum and bound state of visons

In the previous sections we assume that visons behave as
free bosons in low energy and that the vison band-width
is large. These assumptions might not be true on all non-
bipartite lattices. For example, it is well known that thereis
a two-vison bound state atM point for quantum dimer model
on triangular lattice around RK point [35]. For kagome lat-
tice, the vison dispersion is flat if only the nearest neighbour
interaction is included in the Z2 gauge theory [36]. If further
neighbour interactions are weak, the two-vison continuum can
be very narrow. In both scenarios, two-vison excitations have
well-defined energy. Such excitations directly mix with opti-
cal phonons and introduce new phonon modes which can be
detected by X-ray or neutron scattering experiments.

V. POSSIBLE CHARGE SIGNATURE

On non-bipartite lattices, singlet density fluctuations gen-
erate electric dipoles [28]. We consider three spins on a
equal lateral triangle interacting antiferromagnetically. The
exchange energy is minimized by combining two of them into
a singlet. The induced electric dipole lies in the plane of the
triangle normally to the singlet bond [28] (Figure3). In other
words, charge2Q accumulates on the free spin while the two
spins forming the singlet carry charge−Q each. If the dipole
is induced by higher-order perturbations in a weak Mott insu-
lator,Q > 0 is proportional to(t/U)3. The sign and the mag-
nitude of spin-lattice coupling determinesQ when the dipole
is generated by magnetostriction.
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−Q

−Q

−Q

Q

FIG. 3: A dimer-covering state of the kagome lattice. A vacuum
triangle carries an electric dipole illustrated by the black arrow as-
sumingQ > 0. Vertices around the defect triangle carry charge−Q

while other vertices carryQ.

Consider spin-1/2 Heisenberg antiferromagnetic model on
the kagome lattice (Figure3), a network of corner shar-
ing triangles. The low energy states are dimer-covering
states with maximum number of nearest neighbor singlets.
A quarter of triangles, the so-called “defect triangles”, lack
singlets[37, 38]. The uneven distribution of singlet densi-
tiestranslates into inhomogeneous charge densities. A simple
counting shows that the vertices of defect triangles each carry
−Q while all other vertices haveQ.

An applied AC electric field can be used to induce the mo-
tion of defect triangles. For typical sample size (L = 1 mm)
and singlet excitation energy (ω = 0.1 meV), the applied field
is approximately uniform,q = ω/c ≫ 1/L. The scattering
of the applied field will provide information about the singlet
spectrum of the system atq = 0. Suitable techniques include,
for example, Terahertz spectroscopy.

VI. DISCUSSION

In this work we described how exotic singlet excitations
can be detected, at least in principle, by existing spectroscopic
methods. While focusing on specific models, we stress that
the two mechanisms described aremodel-independent as long
as the global SU(2) symmetry is intact.

Currently two classes of materials could host the Z2 liq-
uid state. The first set of materials including ZnCu3(OH)6Cl2
(herbertsmithite), Cu3V2O7(OH)2·2H2O (volborithite) and
BaCu3V2O8(OH)2 (vesignieite) (See [1] and [15] for reviews)
realize theS = 1/2 Heisenberg antiferromagnetic model on
the kagome lattice. Yanet al [12] presented some evidence
that the ground state of the model is a Z2 spin liquid. The
vison spectrum were studied by several groups [36, 39, 40].
They identified the location of low energy singlet excitations
in the reciprocal space. Recently, single-crystal sample of
herbertsmithite was synthesized [41]. Measuring the spectral
function of phonons in the magnetic energy range (up to a few
meV) could reveal novel singlet excitations. It would also be

interesting to measure its spectrum atq = 0 using conven-
tional spectroscopies.

The second class of materials includingκ-(BEDT-
TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2 (See [15] for a
review) realizes the multi-spin exchange model on triangu-
lar lattice. Studies [13, 14] show that the ground state of the
model can be a gapless or a gapped spin liquid for different
parameters. The gapped liquid phase resembles the Z2 liquid
phase with a large number of singlet excitations within the
spin gap [13]. While κ-(BEDT-TTF)2Cu2(CN)3 [42] seems
to host the gapless liquid phase, the flexibility of the material
family κ-(BEDT-TTF)2X raises the hope that the gapped liq-
uid phase is the ground state for some other member whose
singlet excitations can be observed by studying the phonon
spectrum.

Beyond quantum magnetism, singlet excitations are be-
lieved to be important for other strongly correlated systems
such as high temperature superconductors [43]. We speculate
similar couplings between optical phonons and singlet exci-
tations also exist. It would be very interesting to search for
the trace of singlet excitations in phonon spectrum in these
systems.

I acknowledge helpful discussions with Oleg Tch-
ernyshyov, Michel Gingras, Collin Broholm and Natalia
Drichko. Oleg Tchernyshyov is specially thanked for care-
ful read and thorough critiques of an early draft. The work is
supported by the U.S. Department of Energy, Office of Basic
Energy Sciences, Division of Materials Sciences and Engi-
neering under Award No. DE-FG02-08ER46544 and NSERC
of Canada.

Appendix A

In the appendix, we listg(a,l)αβ andf (a,l)
αβ derived from Z2

gauge theory presented in sectionIV A . We also checked that
these coefficients are fixed up to an overall constant by sym-
metry. Only nonzero coefficients are listed.

We begin withg(A,l)
αβ :

g
(A,x)
11 = g

(A,x)
44 = 2

3 exp
(

− 2πi
3

)

, (A1a)

g
(A,x)
22 = g

(A,x)
33 = 2

3 exp
(

2πi
3

)

, (A1b)

g
(A,x)
12 = g

(A,x)
34 = −

√

3
2 , (A1c)

g
(A,x)
14 = 2

√
2

3 exp
(

5πi
6

)

, (A1d)

g
(A,x)
23 = 2

√
2

3 exp
(

− 5πi
6

)

, (A1e)

g
(A,y)
11 = −g

(A,y)
44 = 2

√
3

3 exp
(

−πi
6

)

, (A1f)

g
(A,y)
22 = −g

(A,y)
33 = − 2

√
3

3 exp
(

πi
6

)

, (A1g)

g
(A,y)
13 = −g

(A,y)
24 = 1, (A1h)

g
(A,y)
12 = −g

(A,y)
34 = −

√
2i
2 . (A1i)
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g
(B,l)
αβ :

g
(B,x)
11 = −g

(B,x)
44 = g

(B,x)
22 = −g

(B,x)
33 = 2i

3 , (A2a)

g
(B,x)
12 = −g

(B,x)
34 =

√

3
2 i, (A2b)

g
(B,x)
14 = −g

(B,x)
23 = 2

√
2

3 i, (A2c)

g
(B,y)
11 = g

(B,y)
44 = g

(B,y)
22 = g

(B,y)
33 = 2

√
3

3 , (A2d)

g
(B,y)
13 = −g

(B,y)
24 = −1, (A2e)

g
(B,y)
12 = g

(B,y)
34 = 1√

2
. (A2f)

f
(A,l)
αβ :

f
(A,x)
12 = 2

√
2

3 exp
(

5πi
6

)

, (A3a)

f
(A,x)
34 = 2

√
2

3 exp
(

− 5πi
6

)

, (A3b)

f
(A,x)
13 = 2

3 exp
(

− 2πi
3

)

, (A3c)

f
(A,x)
24 = 2

3 exp
(

2πi
3

)

, (A3d)

f
(A,x)
14 = f

(A,x)
23 = −

√

3
2 , (A3e)

f
(A,y)
11 = −f

(A,y)
33 = −f

(A,y)
22 = −f

(A,y)
44 = 1, (A3f)

f
(A,y)
13 = 2

√
3

3 exp
(

−πi
6

)

, (A3g)

f
(A,y)
24 = 2

√
3

3 exp
(

− 5πi
6

)

, (A3h)

f
(A,y)
14 = f

(A,y)
23 = −

√
2i
2 . (A3i)

f
(B,l)
αβ :

f
(B,x)
12 = −f

(B,x)
34 = 2

√
2i

3 , (A4a)

f
(B,x)
13 = f

(B,x)
24 = 2i

3 , (A4b)

f
(B,x)
14 = f

(B,x)
23 =

√

3
2 i, (A4c)

f
(B,y)
11 = −f

(B,y)
22 = f

(B,y)
33 = −f

(B,y)
44 = −1, (A4d)

f
(B,y)
13 = f

(B,y)
24 = 2

√
3

3 , (A4e)

f
(B,y)
14 = f

(B,y)
23 = 1√

2
. (A4f)
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