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Many unconventional quantum phases host special non-rtiagneitations such as photons and visons.
We discuss two possible ways to detect these excitationsriexentally. Firstly, spin-lattice coupling mixes
the excitations with phonons. The phonon spectral functioguires new features that can be detected by
neutron or X-ray scattering. Secondly, valence-bond fht@bns translate into charge density fluctuations on
non-bipartite lattices. Such charge fluctuations can beacherized by conventional spectroscopies such as
Terahertz spectroscopy. As by-products, we discuss therglemechanisms of spin-Peierls transitions in two
and three dimensional spin liquids.

I. INTRODUCTION tected by neutron or X-ray scattering. Spin-lattice caugpli
has been an exciting topic throughout the years. Its study

The search for exotic quantum phassidi frustrated anti- was pioneered by the discovery and characterization of spin

ferromagnets has been one of the main challenges in the fieP lerls trr]angition16—19].dlt Wals realized 20, 31] t_hathsirr;]-. h
of strongly correlated systems. Such phases are believed }@" Mechanisms can induce long range order in the highly

emerge when long-range order is destroyed by competing i Trustrated Heisenbe_zrg ar_1ti_ferromagnet on the pyrochhure !
g g g y y petng tice. Magnetoelastic splitting of degenerate optical gimn

teractions and strong quantum fluctuations. In a typicat sit -
ation, SU(2) symmetry remains intact down to zero tempera\-’v‘”‘s observed in ZngO, [27 and a number of other com-

ture so that excitations can be classified by their spin. &hil pougd;.STr:/(\a/ strongzs\t/_efrf]ecl(ﬁ%r?plitting)lhasdbﬁer)dseen i'?
magnetic excitations can be studied by techniques such 44N [23]. Wang and Vishwanath generalized the idea to lo-
inelastic neutron scattering (i.e spinor% 8]), exotic non- cal phonon24]. Dynamical effects of phonons were explored

magnetic excitations remain elusive. [25) motivated by spin-Peirels compound CuGe[6, 27].

. o . . These studies demonstrated the importance of both static an
Indeed, novel non-magnetic excitations are predicted 'ijnamical effects of the spin-lattice coupling

generic unconventional magnetic phases. Consider the sem-= . - ) o

inal resonating valence bond (RVB) phadg [Extensive in- The secolnd way exploits th_e a}b|llty of smgle@ excitations

vestigations of quantum dimer model (QDM] fevealed that to cogple directly to an electric f|el_d. Bulaevski al [2§] :

there are two types of dimer liquid in two and three dimen-ﬂrs.t dlscovered_ that some magnetic ground states and exci-
tations of certain Mott insulators have nonzero local elect

sions. The U(1) liquid exists on bipartite lattices in threeChar & or current. In particular. fluctuations of valencad
dimensions. Its low energy excitations are transverse gap g u - N particuiar, Tluctuati v

; ; ; p ” densities induces electric dipoles. The coupling is steong
less fluctuations of dimer density, or “photons” of an emer- . ;
gent U(1) gauge theons[. On the other hand, the,Zlig- for weak Mott insulators due to smalléf/t wheret is the

uid appears in non-bipartite lattices and possesses tgigalo gopnr{'lg?t.ir;ggtucﬂ.en()fce;icgggstgﬁﬂf ;g?nzngggg]e{’ggﬁn'
order. The low energy excitations arg ¥ortices, “visons” P! ' upiing )

[6, 7]. While a single vison is a non-local object, excitations sequently, valence-bond density fluctuations couple to-ele

of even number of visons correspond to dimer density fluctylromagnetic radiations directly. Conventional speciopie

ations B, 9]. :gggglsques may be used to directly detect non-magnetie exci

Wh_ilethese resul_ts were _obtained in the QDM, gene_ric_ coN" The .rest of the paper is organized as follows. First, we
structions 1o 1.1] eX'SF'nWh'Ch QDM'’s are Iowenergyllmlts_ study the mixing between optical phonons and singlet exci-
of SU(Z). Invariant spin m.od.els. Suc;h phases and exCItatlor]tsations. We introduce the general formulation of the mixing
coyld existin low energy limits of He|s<_enberg model thartks t and summarize the main results in sectlonThe formula-
un_lversallty._ The authors_ of an extensive DMRIZ]study of tion is applied to both U(1) and-Ziquids in sectionlll and
sp|_n-1/2 Heisenberg gntlferromagnetlp moollellon_the kagomqv In the sections, we also discuss the general mechanisms
lattice concluded that its ground state issaspin liquid. Stud- ) '

ies of the multi-spin exchange moddlg 14] on triangular of spin-Peierls transitions in both liquids. We then ilhasé
lattice found a gapped spin-liquid phase that looks likeya Z possible charge signature of singlet excitations in theedn

liquid. Both models are realized in real materials (Foreens, of spin-1 /2 Heisenberg antiferromagnetic model on kagome

. . o X in sectionV. Finally, we conclude our paper by discussing
see Ll and [15)). Opservm_g singlet excitations in the_se mate- possible discoveries of singlet excitations in real matsri
rials would be positive evidence of the existence gfliguid
phase in nature.

In this paper, we discuss two general ways to experimen-

tally probe singlet excitations in quantum antiferromagne Il. GENERAL FORMULATION
Firstly, singlet excitations mix with optical phonons thgh
spin-lattice coupling. For suitable parameters, this setd Let us motivate the first mechanism in the simplest context.

new features in the phonon spectral function which can be deZonsider spins interacting via Heisenberg exchange whose



strength depends on the distance between the spr87): transverse sound modes become the fluctuations of the mag-
07 nitude and the direction of the condensate respectivelyy Th
Q. Q. 9 Q. fluctuation of the magnitude is gapless and disperses along
TR+ w)S:-8; ~ J(R)S: - S; + or Ir=r(S: - 8;)u. (1) only one direction. On the other hand, the direction fluctua-
tion of lattice distortion and singlet condensate are qairstd
%o be perpendicular to each other.

Z, liquid phase is the ground state of QDM'’s on two- and
three-dimensional non-bipartite latticeH.[ The phase pre-
serves all symmetries and is gapped to all excitations. It
possesses topological ordéi:[the degree of degeneracy of
ground state depends on the topology of the hosting manifold
The low energy theory is the;fauge theory], 29. Elemen-
tary excitations are vison$,[ 7], massive bosonic particles.

1 1 The visons are non-local excitations; singlet density tlaet

H= Z (§ﬁ(r)2 + ngu(r)Q + fu(r) -V(r)) + H,. tions involves at least two vison8,[9]. Vison-dispersion can

r be determined by Zgauge theory], 29. The coupling be-
] ) o ] ) (2,) tween one phonon and two visons induces new phonon modes
H is the spin hamiltonian and(r) is the displacement ofion  pejow the edge of two-vison continuum. As the vison mass
at siter. We adopt the Einstein phonon model with mass ofyacreases, these new phonon modes move away from the con-
the ion assumed to beefor simplicity. Based on the model in  tjnyum and gain spectrum density. For suitable parameters,

R is the equilibrium distance between the two spins if ther
is no spin-lattice couplingu is the elongation of the bond.
couples linearly with bond operat8-S; which measures the
singlet density on bondij). The coupling mixes the singlet
excitations and phonons. The phonon spectral function wil
acquire features of the singlet excitations.

To elaborate on this idea, we consider following Hamilto-
nian on a general lattice:

equationl, V (r) field is defined as follows4]: such modes can be observed by X-ray and neutron scattering.
1 We stress that Zgauge theornpredictsthe momentum and
V(r)=- Z et (Exrr - Ve J(r —1'))S, - Sy (3)  the relative strength of these new modes. They provide spe-
f re{r} cific signatures of the Zliquid phase that can be verified or
falsified by experiments. As the vison mass becomes smaller
{r}is the set of neighbors of siteandé,,» = (r—r’)/|[r—r’|.  than a critical value, one or several new phonon modes con-
f= Zr,e{r} érr - VydJr_y IS the spin-lattice coupling. dense and the system becomes a valence bond solid. This is
For small ion displacements, the full phonon Green’s functhe general mechanism of spin-Peirels transitiondrigquid
tion in the random phase approximation (RPA) is: phase.
G;é(l‘htl;rzﬂb) = G;é(l‘h751;1‘27t2)—f2Xa/3(I‘17751;1‘27752)
4) 11, U() LIQUID
whereG is the full phonon Green’s functiors is the bare one
andy is the time-ordered bond-bond correlation function: The first type of spin-liquid is the U(1) liquid. Such liquid

is the ground state of QDM’s on three-dimensional bipartite
Xap(r1,t13r2, t2) = (T{Va(r1,t1)Va(r2,t2)})  (5)  Ilattices for extended parameter region. As an example, we
focus on the QDM on cubic lattice. The QDM on cubic lat-

In the Fourier space, relatighis written as: tice has two phases| the staggered valence bond crystal
~_1 P 9 phase and the U(1) liquid phase. The low energy physics of
Goplk,w) = Gagk,w) = fXap(k,w). ®)  the liquid phase is described by the following Hamiltonian i

In sectiondlIl andIV, we will explore the consequence of the continuum fimit p]:

equationst and6. For readers not interested in technical de- s (1 5 1 _, 9
tails, we summarize the main results here. These readers can s = /d " <§E 5B+ pa(V x B) ) )
continue directly to sectiow| . _

There are two types of dimer liquid], U(1) dimer lig- 'n the Coulomb gaugel, = 0, V- A = 0, the electric and
uid exist on three-dimensional bipartite latticasg]. Its low ~ Magnetic fields are expressedis= 0,A andB = V x A.
energy effective theory has the same form as electrodyrsami©n the lattice, the magnetic fieB is defined on the bonds
[5]. The magnetic field is related to the dimer, or singlet, '
density. Low energy excitations, photori, [are transverse _ 1
fluctuations of singlet density. The mixture between optica Ba(r) = €'¥r (na(r) - ;) (8)
phonons and photons generates new transverse sound modes.

In contrast to acoustic phonons, there is no longitudinaleno  whereQ = (7, 7, 7) andn,(r) is the number of dimers on
For cubic lattice, the new sound modes are located at momethe bond connecting andr + & (o« = z,y, 2). z = 6 is the

tum @ = (7, 7, 7). Such modes can be observed experimencoordination number of cubic lattice.

tally using X-ray or neutron scattering techniques. If thims To include the spin-lattice coupling, we write the bond op-
lattice coupling is larger than a critical value, the velpaf  eratorS(r) - S(r + &) in terms of the gauge field. The bond
the new sound modes becomes negative. The system entergerator amounts to two operations on a general dimer cover-
a valence bond solid phase and the lattice distorts. The twimg. Its diagonal part counts the number of dimer on the bond
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FIG. 1: The new phonon mode aroul is illustrated on a two
dimensional slice of cubic lattice. The mode is induced k&y/ffho-
ton”, transverse fluctuation of dimer densities. Bond th&sses re-
flect dimer densities.

3

better, we write out the “potential energy” as a functioriof
andB:
1 1
V(@,B) = §w§ﬁ2 + fin-B+ 5prQ. (12)
We write botha andB in terms of a parallel component and
a perpendicular component:

B=-B2+B, (13)

whereu, -2 = 0,B, -2 = 0andu, -B;, = 0. The
potential energy” also splits into the “parallel” part}; and
the “perpendicular” part’, under the parametrization.

We consider the parallel part first:

ua=uzZ+ug,

1 1
Vi = §w§u2 — fiuB + 5,)232. (14)
It can be rewritten in terms of normal models =
cos(0/2)u — sin(6/2)B andny = sin(6/2)u + cos(0/2)B
with 0 = tan=1(2f1 /(wd — p2)):

1
Vi= 5()\177% + Aom3) + Kt + Konjs (15)

while the off-diagonal part flips the dimers around plaggiett where ), , = 1/2(wg + pa) £ /1/4(w2 — p2)2 + /2 and

to which the b02nd belongs. The plaquette-flipping operatory, , - (. The quartic terms are added to ensure the stability.
translates intd* [5]. As a result, the off-diagonal term is ir-  ppysically, they come from the anharmonic contributions in
relevant in the renormalization group sense. The spife&tt pnonon energy. Wherf; > wo+/Pa, A2 becomes negative

Hamiltonian translates into the following compact formtie t
continuum limit:

Hy, = /d3rf1B -1 9)

whereii = ¢'Q@Tu and f; is the spin-lattice coupling. The

Hamiltonian for phonon is:

1
Hp = /d3’f‘ (%(atﬁ)Q + 5&)8&2) .

The total Hamiltonian is? = H, + H,p, + H.,.

(10)

andrn, mode condenses. The magnitude of the condensate is
proportional tof; — wo/p2.

In the condensed phase, both the magnitude and the direc-
tion of the condensate fluctuate. To study the magnitude fluc-
tuations, we rewrites = @ + du andB = B + 0B in equation
14 and keep only the quadratic termsdn andéB. We in-
troduced A such thatv x JA = §BZ. The gauge is fixed by
demandingyA = § Ay so thatd,0A = 0B. After standard
manipulations, we discover that the magnitude fluctuates h
a low energy mode with the following dispersion:

~ 4\/p_2(

f1 — woy/p2)k2.
wo

w2

(16)

We focus on the phonon spectrum in U(1) liquid phase

wherep, term can be neglected. Applying equatigrand6,

This mode is gapless and only disperses along one direction.

phonon develops two transverse sound modes around mometiSt @s in the liquid phase, the mode can be observed by scat-

tum Q. These modes manifest themselves as new low-ener

poles in the phonon spectral function. For moment@m k
(k <« 1), the energy is approximately:

w

(11)

9yring techniques since it is a mixture of phonon and dimer

ensity fluctuation.
The fluctuation of the condensate direction is controlled by
Vi

1 1
Vi = -wiul + 5pQB‘j. (17)

2
Naively, it seems thati, andB are effectively decoupled.

The spectrum weight of the modes is proportional toHowever, their directions are strongly correlated by the-co
f2k?/(wd — p2k?)2. In contrast, the spectrum of the longi- strain thatu, - B, = 0.

tudinal phonon remains unchanged. This is a reflection of the These results are expected from general arguments. The
transverse nature of gauge fluctuations. Such sound modesndensation of normal modg defines a special direction.

generally existin QDM’s on other three-dimensional biart

lattices.

As a result, the degeneracy between the two transverse low
energy modes in the liquid phase is lifted. These two modes

If f1 > wo\/p2, these sound modes become unstable. Théecome the magnitude and the direction fluctuations respec-

system develops a valence bond order at momeGand the
lattice distorts accordingly. This is the spin-Peierlsisision
in three-dimensional U(1) liquid. To understand this traos

tively. While the ordering wave vector of the condensed phas
depends on the lattice, the mechanism described above are
generally applicable to all three-dimensional biparttitites.
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Here M,,r,’s are Z» phases arranged such that the flux
through each hexagon isl. o either creates or destroys
avison at siter.

Following Misguich and Mila 83]., we introduce the hard-
core boson representation:

o) 07 = by +bl, 0 =1 — 200b,. (19)

We anticipate that the excitations are gapped. Consegentl

FIG. 2: One-vison and two-vison excitations. A vison & created the hardcore property of the bosons can be neglected since

by operators on all the bonds to the leftiofA two-vison excitation € boson density is small at low energy. The theory is then
is related to the dimer density on the bdrisetween them. solved by standard techniques since it is quadratic in boson

operators. The low-energy quasi-particles are visons.
The vison energy is minimized at four momens2,[33:
IV. Z,LIQUID PHASE k, = —k3 :(71'/6,71'/2) ande =-ky = (571'/6, 7T/2) We
denote the vison with momentuky, + q asa.,q. The energy

of aq,q is approximatelyy = \/m? + viq? for smallg. The

The second generic d|_mer Il_qwd phase_ IS ’Fhﬁml.“d spectrum features agree with the numerical result34f WWe
phase on two and three dimensional non-bipartite lattites [ introduce vison field operators aroukg:

Such a state preserves all lattice symmetries and has a gap to

all excitations. The system possesses topological order: C 1 1 ) q

sider a 2 liquid on a cylinder, the state belongs to the even $a(r) = Niv Z \/T exp (lq e K) Gaq  (20)
or odd topological sectors if a cut around the cylinder agess a 4

even or odd number of dimers. The low energy excitation
are visons#®, 7], Z» vortices residing on the sites of the dual
lattices. At the Rokhsar-Kivelson (RK3]] point, the ground
state is an equal amplitude combination of all possible dime
state. To obtain a vison at sife we make a cutl] from the
site to the lattice boundary (Fig). A state with one vison is

a combination of all possible dimer coverings. However, the
amplitude of a dimer covering is negative if the cut crosses a
odd number of dimers. Visons are nonlocal objects. A local The phonons couple to bond operafr: S;. As was dis-

operator such aS; - S m involves even number of visons. : .
. r . : cussed, the bond operator has two effects on a dimer covering
In the reminder of the section, we describe how phonong

i . ) . : State. The diagonal part measures the dimer density on bond
are coupled to visons through spin-lattice coupling usiag Z (i7) while the off-diagonal part changes the dimer configu-
liquid phase on the triangular lattice as an example. Kirstl

we briefly review the Z gauge theory description of the lig- ration around the plaquette to which bo(id) belongs. Let

. . o : us focus on the diagonal part first. The off-diagonal part wil
uid phase. The vison-phonon coupling is derived both from . o
) i only change the overall constant in front of the Hamiltonian
microscopic models and through symmetry arguments. Unj
thanks to the symmetry arguments presented latter.

der RPA approximation_, the coupling introduces_new phonon The dimer density on a bond is related to two vison opera-
modes below the two-vison continuum. As the vison mass ) o ,
decreases, these modes move away from the continuum edifys: Si - 8; ~ coMrwofoy, wherer andr” are the two dual

' Rttice sites adjacent to bor{dj). We rewrites? in terms of

and gain spectral weight. For suitable parameters, suctesnod . .
. 0. (r). The general vison-phonon coupling assumes the fol-
can be observed by neutron and X-ray scattering at specific™ \. ; . L
[6wing form in the continuum limit:

momentum. At a criticain, one of the modes condenses, the
lattice distorts and the system enters a valence bond trysta 4 (@) i(ko+ks)-
phase. This is the analog of Spin-Peierls transitiongi@- 11 = J & Yz p tai(r) (gaﬁ eillatla) T gy (r) g (r)

uid. e 00T (1)gs(x) +he) . (21)

Svhere A is the momentum cut-off beyond which the lattice
details become important. These fields obey Klein-Gordan
equations. They capture the low energy physics of thigz

uid phase.

B. Thevison-phonon coupling

Herea is the sublattice label arid= z, y. g(%’l) andf((y‘lﬁ’l) are
coefficients determined from the, fHauge theory. They are
listed in appendi@.

The low energy physics of the;Ziquid on triangular lattice The form of the vison-phonon coupling can also be fixed up
is described by the Zgauge theory on the dual lattice, the to an overall constant by lattice symmetry. To this end, we de

A. Z, gaugetheory

honeycomb latticed2, 33. Its Hamiltonian is B3: termine howe, (r) transforms under translation, rotation by
7/3 and reflection around directigii /2, 1/3/2). Due to the
H=-J Z Myyy,o0 00, =T Z oy. (18)  presence ofr flux, we need to accompany the lattice symme-
(rir2) r try operations with specific gauge transformations in otder



5

keep the Hamiltonian intact. These are projective symmetryAs m become smaller, the pole is moving away from the lower
operations. On triangular lattice, they were first studigd b edge of the two-vison continuum. At a finite critical mass
Moessner and Sond2f)]. We follow their convention. m, the new phonon mode condense and the system enters a
We also determined how phonon transform under the samealence bond crystal order. The lattice distorts accofgling
set of lattice symmetry operations. The Hamiltonian is dete This is the general mechanism of Spin-Peierls transitiatyin
mined by finding the scalar representation of lattice symmespin liquid.
tries involving one phonon and two vison. The result agrees The toy model captures the main physical points. For real-
with the form obtained from Zgauge theory. This confirms istic models, there are further technical complicationenC
the validity of derived equatiofl. sider the triangular lattice, the low energy vison fieldsdee
fined at four different momentum. As a result, new phonon
modes are introduced at several locations in momentum space
C. New phonon modes and the Spin-PeierIstransition Also, there are four phonons per unit cell, the dynamical sus
ceptibility is a4 x 4 matrix in general. As a result, there could
We begin to explore the physical consequence of visonb€ more than one new phonon mode introduced at a certain
phonon coupling by studying a toy problem. Consider a reamomentum.
scalar fieldu(r) (phonon) couples to a complex scalar field We want to stress that the possible detection of these new

#((r)) (vison). The non-interacting Lagrangian reads: phonon modes paves way for new dialogues between theory
and experiment. Conventional ways to detect non-magnetic

o (1, ., 9 9 i 5 21 12 excitations such as specific heat or thermal conductivitg-me
L= [dr 5(“ —wou) + [0 = [VoI" +m7ef ). surements yield only integrated information. The approach
(22)  we proposed, on the other hamutedictsthe momentum of
b= o1+ qg where the new phonon modes and their relative strength. If such
modes are observed with predicted properties, it would pro-
bo(r) / d?q 1 (i ) (23) vide strong evidence of the existence ofliguid.
alr) = ———a,. qgexp(tq- T
(271')2 /—2wq ,q €Xpl1q
with o = 1,2. The vison-phonon coupling assumes the gen- D. Narrow continuum and bound state of visons
eral form as in equatiof1. We further assumky, = —k;

andg;; = go0 = g for simplicity.
Applying equatiorb, we compute the dynamical suscepti- fr
bility at momentunk; :

In the previous sections we assume that visons behave as
ee bosons in low energy and that the vison band-width
is large. These assumptions might not be true on all non-
) 5 SEETY: bipartitg lattices. For example_, it is well known_ that thege
x(w, 2k;) = 9 <tanh1 < m” + v ) _ a two-vison bound state at' point for quantum dimer model

(24)

20w w on triangular lattice around RK poin8%f]. For kagome lat-

om tice, the vison dispersion is flat if only the nearest neightbo
tanh ™" (—)) interaction is included in thexZgauge theory36). If further

neighbour interactions are weak, the two-vison continuam c

be very narrow. In both scenarios, two-vison excitationsha
well-defined energy. Such excitations directly mix withiept
cal phonons and introduce new phonon modes which can be
detected by X-ray or neutron scattering experiments.

Here A is a momentum cut-off. We assumg\ >> m. Con-
siderw = 2m — z with 0 < z < 2m, the dynamical suscep-
tibility can be approximated by the following expression:

2

g X
2k, ~ lo (—) . 25
X{w, 2k1) 8uZmm &\am (25)
V. POSSIBLE CHARGE SIGNATURE

As z — 07, x(w, k1) diverges logarithmically. Such diver-
gence introduces a new phonon mode beaw To make it On non-bipartite lattices, singlet density fluctuations-ge
eXpllClt, we write out the full phonon Green'’s function umde erate electric d|p0|esZB] We consider three Spins on a
RPA approximation: equal lateral triangle interacting antiferromagneticallhe

1 exchange energy is minimized by combining two of them into
. (26)  asinglet. The induced electric dipole lies in the plane ef th
4m? — w3 — g log (ﬁ) + i€ triangle normally to the singlet bon@8] (Figure 3). In other
! words, charg@(@ accumulates on the free spin while the two
wheree is a small positive number. A pole always exists for spins forming the singlet carry charg&) each. If the dipole
small enoughx: is induced by higher-order perturbations in a weak Mottinsu
lator,@ > 0 is proportional tat/U)3. The sign and the mag-
L0 _ g (_8wv§m(w§ — 4m2)) 27) nitude of spin-lattice coupling determiné€swhen the dipole
om P g2 ' is generated by magnetostriction.

G2m—uz,2ky) ~




interesting to measure its spectrumgat= 0 using conven-
tional spectroscopies.

The second class of materials including-(BEDT-
TTF):Cu:(CN); and EtMgSb[Pd(dmit}], (See L5 for a
review) realizes the multi-spin exchange model on triangu-
lar lattice. Studies13, 14] show that the ground state of the
model can be a gapless or a gapped spin liquid for different
parameters. The gapped liquid phase resembles4tiguid
phase with a large number of singlet excitations within the
spin gap L3]. While x-(BEDT-TTF)LCux(CN); [42] seems
to host the gapless liquid phase, the flexibility of the mater
family k-(BEDT-TTF)X raises the hope that the gapped lig-
uid phase is the ground state for some other member whose
singlet excitations can be observed by studying the phonon

FIG. 3: A dimer-covering state of the kagome lattice. A vaouu

. . 0> : spectrum.
triangle carries an electric dipole illustrated by the klacrow as- ) . o
suming@ > 0. Vertices around the defect triangle carry charge Beyond quantum magnetism, singlet excitations are be-
while other vertices carrg). lieved to be important for other strongly correlated system

such as high temperature superconduct8k [We speculate
similar couplings between optical phonons and singlet-exci
Consider spirnk/2 Heisenberg antiferromagnetic model on tations also exist. It would be very interesting to searah fo
the kagome lattice (Figurg), a network of corner shar- the trace of singlet excitations in phonon spectrum in these
ing triangles. The low energy states are dimer-coveringystems.
states with maximum number of nearest neighbor singlets. | acknowledge helpful discussions with Oleg Tch-
A quarter of triangles, the so-called “defect trianglesich  ernyshyov, Michel Gingras, Collin Broholm and Natalia
singletsp7, 38. The uneven distribution of singlet densi- prichko. Oleg Tchernyshyov is specially thanked for care-
tiestranslates into inhomogeneous charge densities. Blsim fy| read and thorough critiques of an early draft. The work is
countin_g shows that th_e vertices of defect triangles eanfy ca sypported by the U.S. Department of Energy, Office of Basic
—@Q while all other vertices hav@. Energy Sciences, Division of Materials Sciences and Engi-
An applied AC electric field can be used to induce the moneering under Award No. DE-FG02-08ER46544 and NSERC
tion of defect triangles. For typical sample siZe{ 1 mm)  of Canada.
and singlet excitation energy (= 0.1 meV), the applied field
is approximately uniformg = w/c > 1/L. The scattering
of the applied field will provide information about the siagl
spectrum of the system gt= 0. Suitable techniques include,
for example, Terahertz spectroscopy. Appendix A

In the appendix, we Iisgf;g” and f((!‘lﬁ’l) derived from 2
VI. DISCUSSION gauge theory presented in sectidhA . We also checked that
these coefficients are fixed up to an overall constant by sym-
In this work we described how exotic singlet excitations metry. Only nonzero coefficients are listed.
can be detected, at least in principle, by existing spectuis
methods. While focusing on specific models, we stress that
the two mechanisms described amadel-independent as long

We begin withggf;’l):

as the global SU(2) symmetry is mtact. . 95114"1) _ 94(14A’m) _ %exp (_%) ’ (Ala)

Currently two classes of materials could host thelig- (A2) (Az) o .
uid state. The first set of materials including Zn@DH)sCls 922" = 933" = 3€xXp (%) ) (Alb)
(herbertsmithite), CyV20;(OH)2-2H,O (volborithite) and (Az) _ (Aa) _ _\/g (Alc)
BaCuy; V2 O0g(OH), (vesignieite) (Seel] and [15] for reviews) Jiz. =9 T 2
realize theS = 1./2 Heisenberg antiferromagnetic quel on ggvm) _ 23ﬁ exp (%) : (A1d)
the kagome lattice. Yast al [12] presented some evidence (Az) Vs _
that the ground state of the model is a &pin liquid. The 935" =22 exp (—22) (Ale)
vison spectrum were studied by several grolgs B9, 40]. g(A.,y) _ _g(A,y) _ 23 exp (_ﬂ) (ALf)
They identified the location of low energy singlet excitago 1 a4 3 6/
in the reciprocal space. Recently, single-crystal sample o ghav) = —glaw) = —QT‘/g exp (L), (Alg)
herbertsmithite was synthesizetll]. Measuring the spectral (Ay) (Ay)

13 = 7924 = L (Alh)

function of phonons in the magnetic energy range (up to a few _
meV) could reveal novel singlet excitations. It would also b g§§’y) = —géf’y) = —@. (A1)



ghs
g = =gy = g5 = —gi5 " = %, (A2a)
g5 = -0 =\ /%, (A2D)
gi” = -5 = 22, (A20)
g =g =9 =gy = BE (A2d)
gis” = —gu" = -1, (AZe)
915" = gii" = . (A2f)
fog":
Ay = 2 exp (32, (A3a)
i = 22 exp (-3, (A3b)
1%4’1) = %exp (—%) , (A3c)
Jai ™ = Fexp (3), (A3d)
A = 1 = -\ /%, (A3e)
F =g = e = e =1, (A3
fla = 2B exp (- 2), (A39)
FS = f 3 exp (—2m) (A3h)
f(AﬂJ) f(AﬂJ) % (A3i)

aff

(Ba) _ _p(Bo) _ 2ymi (Ada)
(Ba) _ plBa) _ o (A4b)

(B2) _ 2(?J)Pf-,ss) = /3, (A4c)

AP = =135 = 15 = [ = -1, (had)
FBY = B _ 2y5 (Ade)

JiB = g — 1 (A4f)
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