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Recent theoretical work on the role of microscopic chaos in the dynamics and relaxation of many-
body quantum systems has made several experimentally confirmed predictions about the systems
of interacting nuclear spins in solids, focusing, in particular, on the shapes of spin echo responses
measured by nuclear magnetic resonance (NMR). These predictions were based on the idea that the
transverse nuclear spin decays evolve in a manner governed at long times by the slowest decaying
eigenmode of the quantum system, analogous to a chaotic resonance in a classical system. The
present paper extends the above investigations both theoretically and experimentally. On the the-
oretical side, the notion of chaotic eigenmodes is used to make predictions about the relationships
between the long-time oscillation phase of the nuclear free induction decay (FID) and the ampli-
tudes and phases of spin echoes. On the experimental side, the above predictions are tested for the
nuclear spin decays of 19F in CaF2 crystals and 129Xe in frozen xenon. Good agreement between
the theory and the experiment is found.

PACS numbers: 76.60.Lz, 76.60.Es, 05.45.Gg, 03.65.Yz

I. INTRODUCTION

The role of microscopic chaos in the observable behavior of macroscopic objects is a notoriously difficult
elusive issue1–5. On the theoretical side, the notion of chaos in many-body quantum systems is often brought
up in the context of level spacings statistics6,7, eigenstate thermalization hypothesis8–10 or quantum fidelity
decay11. These properties are well-defined mathematically but, at the same time, virtually impossible to
verify for macroscopic systems. The aspect of chaos more directly related to the observable relaxation in
macroscopic systems is the existence of eigenmodes of the time evolution operator in chaotic systems known as
Pollicott-Ruelle resonances1,12. Even though these eigenmodes were originally defined for classical systems, a
number of authors discussed promising indications that this notion can be extended to many-body quantum
systems13–18. At the same time, direct numerical studies of equilibration dynamics in quantum systems
are limited to relatively small numbers of particles and as such do not reveal a consistent picture19–24.
These difficulties may, in turn, be related to the possibility that finite quantum systems tend to exhibit
unconventional statistical ensembles under external perturbations24,25. It is therefore clear that exploring
the connection between chaos and quantum relaxation requires help from experiments which can deal with
trully macroscopic quantum systems. In the present paper we focus on a possible experimental implication of
microscopic chaos for free induction decays (FIDs) and spin echoes measured by nuclear magnetic resonance
(NMR) in solids.

Previously, one of us (B.V.F.) has argued13–15 that, as a consequence of microscopic chaos induced by
generic non-linear interaction between nuclear spins, the long-time behavior of nuclear FIDs in solids has
the universal long-time form

F (t) = Ae−γtcos(ωt− ϕa), (1)

where A, γ, ω and ϕa are constants. Depending on the microscopic Hamiltonian of interacting nuclear
spins, the frequency ω may be equal to zero. However, in the most common case of the magnetic dipole
interaction, ω has a finite value (see the discussion in Ref.15). Indeed, such behavior was observed as generic
in the experimental26–29 and numerical14,30 studies of quantum and classical spin systems. In a typical
case, the constants γ and ω fall on the fastest natural microscopic time scale of the nuclear spin system,
thereby precluding any explanation of the above behavior in terms of a damped harmonic oscillator — such
an explanation would require a separation of time scales between the slow observable F (t) and much faster
microscopic motion.
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The theoretical analysis of Ref.15 predicted only the functional form (1) of the long-time FID behavior
without predicting the parameters A, γ, ω and ϕa. A later paper31 went further and predicted that different
spin echoes initiated in the same system by perturbing the FID with almost any sequence of radio-frequency
(rf) pulses would have different initial behavior but then evolve to exhibit the long-time behavior (1) char-
acterized by the same time constants γ and ω. This prediction was confirmed experimentally in Refs.27,28

for hyperpolarized solid xenon and CaF2. A related possible experimental indication of chaos was reported
earlier in the context of NMR polarization echo studies32.

The present paper explores the chaos-related notion that the long-time behavior of many-spin density
matrices created in the course of the FID has a self-similar form accompanying exponentially decaying
oscillations. In Section II, we show theoretically that for the spin echoes initiated by perturbing the FID
in the above long-time regime, all possible shapes of the echo responses are superpositions of two basics
shapes with the relative weight of each shape determined by the phase of the FID oscillations at the time
of the echo pulse. This two-shape decomposition is predicted to lead to a definite relationship between the
long-time oscillation phase of the original FID and the long-time oscillation phases of the echo responses.
In Section III, we verify the above predictions experimentally for CaF2, and include measurements on solid
xenon in the appendix.

II. THEORY

The prediction of universal behavior of quantum spin systems in Refs.15,31 was based on the conjec-
ture that the long-time behavior (1) is a manifestation of the slowest decaying chaotic eigenmode of the
time-evolution operator, similar to a Pollicott-Ruelle resonance1,12. Such eigenmodes control not just one
observable quantity F (t) but also the evolutions of many-spin density matrices within the system

ρkl(t) = ρ0,kle
−(γ+iω)t + ρ†0,kle

−(γ−iω)t (2)

where ρkl(t) is the density matrix for any finite subsystem of the entire spin system, i.e. ρkl(t) can be a
one-spin density matrix, two-spin density matrix, or, in general, an n-spin density matrix, provided n is
much smaller than the total number of spins in the system. As is often done in the NMR literature, Eq. (2)
represents the leading correction to the infinite temperature density matrix ρkl = 1. The term ρkl = 1

does not contribute to the measured spin polarization. This high-temperature approximation should remain
valid as long as the initial nuclear polarization is not too large, in the sense that the initial energy of the
nuclear spin system with respect to the effective Hamiltonian of nuclear spin-spin interaction in the Larmor
rotating reference frame33 is close to the energy of the infinite temperature state. If the initial polarization
is too large, then the system is expected to relax to a finite temperature equilibrium determined by its initial
energy, in which case Eq.(2) would represent the correction to the equilibrium density matrix for the final
temperature.

Equation (2) is the only connection between the theoretical analysis in this paper and the notion of
microscopic chaos. Namely, the assumption of microscopic chaos justifies the proposition that well-defined
relaxational eigenmodes of the time-evolution operator of the entire system exist. In turn, the notion of
an eigenmode of the time-evolution operator implies that the values of γ and ω do not depend on the
order of the density matrix. Whatever the initial form of the n-spin density matrix, the long-time behavior
would then be dominated by the slowest chaotic eigenmode of form (2) (among those compatible with the
symmetry of the initial density matrix). The time-independent non-Hermitian form of ρ0,kl for a given order
of the density matrix, as well as the values of γ and ω, are determined by the microscopic Hamiltonian
of the system. While the above connection to microscopic chaos is very indirect, we are not aware of any
other framework justifying Eq.(2). Our assumption of microscopic chaos is, in turn, motivated by the non-
integrable character of nuclear dynamics governed by the nuclear spin-spin interaction Hamiltonian in the
Larmor rotating reference frame15.

The experimental evidence available so far is obtained from the total polarization of nuclear spins and, as
such, indicates that the decay (2) is certainly present in the behavior of the one-spin density matrix, but not
necessarily two-spin, three-spin and progressively higher-order spin density matrices. Higher-order density
matrices are responsible for higher-order nuclear correlations (spin coherences in NMR language). The
FID starts from a factorizable density matrix for the entire system33, meaning that the initial nuclear spin
configuration is uncorrelated. Therefore, the expectation behind Eq. (2) is that the higher-order correlations
first develop dynamically and then start decaying34, eventually approaching form (2). The effect of the echo



3

pulse does not reverse but rather modifies the higher-order correlations. The predictions made below about
the relationship between the shape of the echo response and the phase of the long-time FID beats at the time
of the echo pulse are expected to be incorrect if the many-spin density matrices preceding the echo pulse do
not exhibit the long-time behavior of form (2) with the same parameters γ and ω independent of the order
of the density matrix. On the other hand, the experimental confirmation of this relationship significantly
strengthens the picture based on the notion of chaotic relaxation modes (Pollicott-Ruelle resonances).

We use the theoretical framework of Ref.31. The quantity called the “signal” is the total polarization of
nuclear spins transverse to the external magnetic field. We consider the NMR response to the sequence of
two rf pulses

90◦y − τ −X (3)

where the 90◦y pulse initiates the free induction decay (FID) and, after the delay time τ , pulse X “scrambles”
the time evolution of the spin system. The FID between the two pulses is to be denoted by function F (τ),
and the signal at time (t − τ) after the second pulse is to be characterized by the echo response function

F̃ (τ, t). Time t is understood to be measured from the time of the first pulse. Most of the experimental tests
of the FID-spin-echo relationships reported in Refs.27,28 used the solid echo pulse sequence characterized by
X = 90◦x

33,35.

In the rest of this paper, we focus on the echo response F̃ (τ, t), which is initiated at a time τ sufficiently
long such that the FID function F (τ) has already reached the asymptotic form (1). This long-time FID
regime was considered in Ref.31, but there the main focus was on obtaining the envelope of the Hahn spin
echo sequence 90◦y − τ − 180◦x − τ for heteronuclear spin systems in an inhomogeneous magnetic field, in
which case the echo can be monitored only at time τ following the second pulse. In the present paper, we
assume that the magnetic field is homogeneous, and thus that the echo response to the pulse sequence (3)
can be monitored at any moment of time following the pulse X. We further assume that the shapes of the
FIDs and echoes are determined by the dynamics of an isolated system of interacting nuclear spins in the
Larmor rotating reference frame. The interaction Hamiltonian is assumed to be non-integrable, such as the
case of the standard Hamiltonian of truncated magnetic-dipolar interaction33.

When ω 6= 0, the long-time behavior of the density matrix (2) consists of the sum of the two Hermitian-

conjugate terms ρ0,kle
−(γ+iω)τ and ρ†0,kle

−(γ−iω)τ . Each of these terms evolves in time in a self-similar way,

in the sense that the evolution is controlled by the time-independent matrix ρ0,kl or ρ†0,kl, while the time

evolution of the entire density matrix ρkl(t) is reduced to rescaling each of the above terms and changing
their relative phase. As a result, we can also express the long-time behavior of the FID signal as the sum of
two corresponding contributions

F (τ) = f(τ) + f∗(τ), (4)

where

f(τ) =
1

2
a e−(γ+iω)τ , (5)

and a is a complex-valued constant. Following pulse X, the new density matrix becomes

ρkl(τ+) = e−(γ+iω)τ ÛXρ0,kl + e−(γ−iω)τ ÛXρ
†
0,kl, (6)

where ÛX is the quantum operator representing the effect of pulse X in the Liouville space of the appropriate
subsystem. As a result, we obtain

F̃ (τ, t) = f(τ)f̃(t− τ) + f∗(τ)f̃∗(t− τ)

= |a|e−γτ
[
cos(ωτ − ϕa)Ref̃(t− τ) + sin(ωτ − ϕa)Imf̃(t− τ)

]
, (7)

where f̃(t − τ) is the self-similar shape of the echo response associated with the first term in Eq. (6), and
ϕa is the complex phase of a.

Equation (7) implies that one can experimentally measure any two echo responses F̃ (τ1, t) and F̃ (τ2, t),

such that ω(τ2−τ1) is not equal to a multiple of π, then extract from these two responses functions Ref̃(t−τ)
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and Imf̃(t− τ) and then, finally, predict F̃ (τ, t) for all other τ . In fact, function Imf̃(t− τ) can be measured

directly by applying pulse X at a node of the FID, where cos(ωτ−ϕa) = 0, while Ref̃(t−τ) can be measured
by applying pulse X in the middle between two nodes, where sin(ωτ − ϕa) = 0.

We can now elaborate on the long-time behavior of f̃(t− τ) in order to relate the phases of the FID beats

with the phases of the echo responses. The long-time behavior of f̃(t− τ) is expected to be of the following
form31

f̃(t− τ) = b1e
−(γ+iω)(t−τ) + b2e

−(γ−iω)(t−τ), (8)

where b1 and b2 are two complex-valued constants. These constants are not necessarily complex conjugates
of each other, because function f̃(t− τ) represents the after-pulse response for only one of the two terms on
the right-hand side of Eq.(2). Each of these two terms alone is non-Hermitian and thus does not represent a

physical density matrix. The only requirement here is that F̃ (τ, t) given by Eq. (7) is real. Substitution of
Eq. (8) into Eq. (7) gives

F̃ (τ, t) =
1

2
|a| e−γt |C(τ)| cos[ωt+ ϕC(τ)], (9)

where |C(τ)| and ϕC(τ) are the amplitude and the complex phase of the function

C(τ) = b∗1e
−iϕa + b2e

i(ϕa−2ωτ). (10)

Both |C(τ)| and ϕC(τ) should be independently accessible experimentally. The convenient representation
of Eq.(10) to test is

|C(τ)|2 = |b1|2 + |b2|2 + 2|b1||b2|cos(2ωτ − 2ϕa − ϕb1 − ϕb2), (11)

|C(τ)| cosϕC(τ) = |b1|cos(ϕa + ϕb1) + |b2|cos(2ωτ − ϕa − ϕb2), (12)

where ϕb1 and ϕb2 are the complex phases of constants b1 and b2, respectively.

The FID function F (τ) and the family of echoes F̃ (τ, t) can be measured experimentally choosing τ and

t− τ large enough that the long-time regime (1) is reached for both F (τ) and F̃ (τ, t). The test of Eqs. (11)
and (12) can then be carried out in the following way:

1) The parameters |a|, ϕa, γ and ω are obtained from the FID asymptotics.

2) The values of |C(τ)| and ϕC(τ) are obtained for each τ by fitting the tails of the echo responses F̃ (τ, t)
to Eq. (9) as a function of t.

3) Equations (11,12) predict that both |C(τ)|2 and |C(τ)| cosϕC(τ) consist of two terms: a τ -independent
constant and a τ -dependent term oscillating with frequency 2ω. The observation of this behavior as a
function of τ already constitutes a non-trivial test of the theory.

4) The experimental curves for |C(τ)|2 and |C(τ)| cosϕC(τ) are parameterized as follows:

|C(τ)|2 = B1 +D1 cos(2ωτ + φ1), (13)

|C(τ)| cosϕC(τ) = B2 +D2 cos(2ωτ + φ2), (14)

where the six parameters B1, B2, D1, D2, φ1 and φ2 should be directly accessible. The choice of the phases
φ1 and φ2 are made such that the values of D1 and D2 are positive. The theoretical formulas (11,12) depend
on four real-valued parameters: |b1|, |b2|, ϕb1 and ϕb2 . Therefore, two further non-trivial tests are possible.

Test 1: One obtains |b2| = D2, and then |b1| =
√
B1 − |b2|2. Prediction: D1 = 2|b1||b2|.

Test 2: One obtains ϕb2 = −φ2−ϕa, and then ϕb1 = −φ1−2ϕa−ϕb2 . Prediction: B2 = |b1|cos(ϕa+ϕb1) =
|b1|cos(φ2 − φ1).

As a final remark, we would like to mention that, in the case of monotonic long-time decays [ω = 0
in Eq.(1)], the treatment analogous to the one presented above predicts that the echo responses exhibit a
self-similar shape with monotonic exponential long-time tails, which on a semi-logarithmic plots of the type
of Fig. 1 would fall onto the same line.
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FID Parameters Solid Echo Parameters
|a| = 9, 380, 000± 45, 000 B1 = 18.3± 0.2 B2 = 0.0± 0.3
ϕa = 1.921± 0.006 D1 = 2.1± 0.3 D2 = 4.2± 0.4
γ = 0.0414± .0008 µs−1 φ1 = −1.5± 0.1 φ2 = 0.4± 0.1
ω = 0.120± .007 µs−1

TABLE I: Long-time FID and echo fit parameters for CaF2. The FID parameters are obtained by fitting
the FID to Eq. (1). The echo parameters are obtained by fitting the amplitudes and phases of the
measured solid echoes to Eqs.(13) and (14).

Test 1 Test 2
D1,predicted = 2.3± 0.3 B2,predicted = −0.01± 0.07
D1,measured = 2.1± 0.3 B2,measured = 0.0± 0.3

TABLE II: Two tests of the theoretical predictions formulated at the end of Section II.

III. EXPERIMENT

This section is focused on CaF2 where we were able to initiate echoes in the long-time regime of the
FID. We also have the results from 129Xe in solid xenon, but in this material the latest echoes we were
able to measure were not yet quite in the long-time regime of the FID. There are also additional theoretical
complications related to the polycrystalline nature of the solid xenon36 that would make the predictions less
rigorous, even if the echoes obtained were well into the long-time portion of the FID. As a consequence, the
129Xe data are included in an appendix.

The FID and solid echoes of 19F in CaF2 were acquired at room temperature in an external magnetic
field of 2 T (19F Larmor frequency 83.55 MHz). The CaF2 crystal used in our experiments was obtained
from Optovac, Inc and is lightly doped with paramagnetic impurities (0.01% Ce) to reduce T1 to ≈ 2 sec at
2 T. The CaF2 crystal was prepared with [100] axis along the long dimension of the cylinder. The crystal
was then held with the magnetic field along the [001] direction. The data were acquired with an Apollo
(Tecmag) spectrometer using 2 µs square pulses with a receiver dead time of 13 µs. Using these parameters,
1000 transients were averaged with a repetition time of 10 seconds for each experiment to enhance the
signal-to-noise ratio. 32 solid echoes were acquired, one every 2.5 µs from 16 µs to 96 µs. The family of
representative echoes is shown in Fig. 1.

Operationally, we identify the long-time FID regime as follows: We measure the FID over as long a time
as possible, fit its tail by Eq.(1), and then define the onset of the long-time regime as the moment of time
when the fit deviates from the measured FID by 5 percent. This moment of time occurs during the second
FID beat at t ≈ 60 µs (see Fig. 1). Therefore, we assume that echoes generated after time t = 60 µs meet
the criteria for testing the predictions made in Section II.

Determination of the amplitude |a|, decay coefficient γ, beat frequency ω, and complex phase ϕa of the
FIDs in CaF2 was made by fits to Eq. (1) (see Table I). The amplitude |C(τ)| and complex phase ϕC of
each echo signal were determined by fitting each solid echo signal to Eq. (9) with γ, ω, |a|, and ϕa fixed to
the values obtained from the fit to the FID.

In Fig. 2 we plot |C(τ)|2 and |C(τ)| cosφC for the solid echoes of 19F in CaF2. The solid lines are the
fits to either Eq. (13) or Eq. (14), from which the parameters in Table I were obtained. Figure 2 shows the
results for echoes initiated in both the early-time and the long-time regimes of the FID in order to illustrate
the approach to the long-time behavior described by Eqs.(13,14).

Tests 1 and 2 formulated at the end of Section II are then carried out. The predicted and the measured
values of parameters D1 and B2 are listed in Table II. We find that in each test the predicted and the
measured values agree with each other within the experimental uncertainties.

Finally, Section II contains a more general prediction: that all possible shapes of echo responses including
both the initial and the long-time behavior can be obtained from two basic functions Ref̃(t−τ) and Imf̃(t−τ)

as described by Eq. (7). To determine these functions, we chose two measured echo responses F̃ (τ1, t) and
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(a)

(b)

FIG. 1: (Color online). 19F solid echoes in CaF2. Half of the 32 acquired solid echoes are shown, split
between (a) and (b) for visual clarity. The echoes shown are acquired every 5 µs from 16 µs to 96 µs. The
first point of each echo is indicated by a solid circle to guide the eye. The dashed line represents the
long-time FID fit given by Eq.(1). The inset of (a) shows the experimental FID (solid line) and the
long-time fit (dashed line) on a linear scale in a time interval around t = 60µs, where the two lines start
deviating from each other.

F̃ (τ2, t) initiated at times τ1 = 81.0 µs and τ2 = 93.5 µs, respectively. According to Eq. (7)

F̃ (τ1, t
′ + τ1) = A1Ref̃(t′) +B1Imf̃(t′) (15)

F̃ (τ2, t
′ + τ2) = A2Ref̃(t′) +B2Imf̃(t′) (16)

where in Eq.(15) t′ = t − τ1, A1 = F (τ1) and B1 = F (τ1) tan(ωτ1 − ϕa), while in Eq.(15) t′ = t − τ2,
A1 = F (τ2) and B1 = F (τ2) tan(ωτ2 − ϕa). Here F (τ1) and F (τ2) are the measured values of the FID

at times τ1 and τ2, respectively. Now we express functions Ref̃(t′) and Imf̃(t′) in terms of the measured

functions F̃ (τ1, t
′+τ1) and F̃ (τ2, t

′+τ2) by solving the system of linear equations (15,16) and then substitute

Ref̃(t − τ) and Imf̃(t − τ) back to Eq.(7) to predict other echo responses initiated in the long-time FID

regime. The functions Ref̃(t′) and Imf̃(t′) are plotted in Fig. 3. Since for solid echoes F̃ (τ, τ) = F (τ),

Eq.(7) implies that Ref̃(0) = 1 and Imf̃(0) = 0; however, due to the finite (13 µs) recovery time of our
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(a)

(b)

FIG. 2: (Color online) (a) Amplitudes and (b) phases of 19F solid echoes in CaF2 as a function of
inter-pulse delay time τ . Open circles represent echoes generated in the early-time of the FID, while solid
circles represent echoes generated in the long-time of the FID. The solid line (red) is the best fit of the
long-time data to Eq. (13) for (a) or to Eq. (14) for (b).

spectrometer, we were unable to measure these functions back to time t′ = 0.
In Fig. 4, we show several of the measured echoes in CaF2. Each echo F̃ (τ, t′ + τ) in Fig. 4 has been

multiplied by a factor eγτ to correct for the exponential decay of the FID at their respective initial time values.
Labeled in the plot legend are the two echoes F̃ (τ1, t

′ + τ1) and F̃ (τ2, t
′ + τ2) used in determining the shape

functions Ref̃(t′) and Imf̃(t′). In Fig. 5, the measured echo responses initiated at τ = 61, 66, 76, 83.5, 86,

and 91 µs are compared with the predicted ones obtained by substituting Ref̃(t′) and Imf̃(t′) into Eq.(7).
We observe in Fig. 5 that the agreement of the long-time behavior between the predicted and the measured
echo responses is very good for all echoes, which is consistent with the results presented in Table II and in
Fig. 2. The initial behavior of the early echo responses (τ = 61 µs, 66 µs, and 76 µs) exhibits some initial
discrepancies between the predicted and the measured behavior. However, it is clear that the predicted
behavior still captures the evolution of the measured echo shapes in a satisfactory way. In particular, the
long-time tails of the predicted and the measured early echoes converge to each other. In the later echoes
(τ = 83.51 µs, 86 µs, and 91 µs), the above initial discrepancy no longer appears, and the entire echo shape
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FIG. 3: (Color online) The shape functions Ref̃(t′) and Imf̃(t′) obtained from the linear system of
equations (15,16).

FIG. 4: (Color online) 19F solid echoes in CaF2 labeled by their interpulse delay times τ . The quantity

plotted is eγτ F̃ (τ, t′ + τ). The 81.0 µs and 93.5 µs echoes represent the echoes used to obtain the shape

functions Ref̃(t′) and Imf̃(t′).

is found to agree with the predicted shape.
A possible reason for the above initial discrepancy in the early echoes may be the presence of the chaotic

eigenmodes that decay faster than the slowest mode controlling the long-time FID behavior (1), but still not
fast enough to completely disappear by time τ when the echo is initiated. The existence of a well-separated
second slowest eigenmode was demonstrated by the recent experiment of Meier et al.29 on a CaF2 crystal
for the same orientation with respect to the magnetic field. This second eigenmode disappears below the
noise level on the timescale of 60 µs. These additional eigenmodes are probably more pronounced in the
higher-order spin correlations, because these correlations develop in the course of the FID evolution only
after an initial time delay with respect to the beginning of the FID34. Therefore, the behavior of many-spin
density matrices should approach the long-time form (2) also with some delay with respect to the time when
the FID starts exhibiting the universal long-time form (1).

The same additional eigenmode may be controlling the approach of |C(τ)|2 to the predicted asymptotic
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FIG. 5: (Color online) 19F solid echoes in CaF2 (solid lines). The red (broken) lines show the theoretical

echo shapes obtained using the Ref̃(t′) and Imf̃(t′) shape functions. The quantity plotted is

eγτ F̃ (τ, t′ + τ). The values of τ are indicated in the plot legend.

behavior in Fig. 2a. This approach takes place on the same timescale of 60 µs. In addition, we observe that
the frequency ω of the second slowest eigenmode measured in Ref.29 is not much different from the frequency
of the slowest eigenmode, while the decay constants γ for the two modes are different by a factor of two. This
may explain the fact apparent from comparison between Figs. 2a and 2b, namely: as a function of the delay
time τ , the phase of the echo beats approaches the long-time prediction faster than the echo amplitude.

IV. SUMMARY AND CONCLUSIONS

In this paper, we investigated the properties of spin echoes initiated in the regime where the nuclear FID has
reached the universal exponentially damped oscillatory behavior. Using the theoretical framework motivated
by the notion of microscopic chaos, we predicted how the shapes of the echo responses depend on the phase of
the FID oscillations at the time of the echo pulse, and, in particular, obtained the phase relationships between
the long-time oscillation of the FIDs and the echoes. We have further conducted several experimental tests of
the above predictions for FIDs and solid echoes in CaF2 and solid xenon, and obtained results in good overall
agreement with the theoretical expectations. The long-time phase relationships between the FID and the
echoes were confirmed particularly well. This good agreement amounts to an indication that the long-time
behavior of the higher-order spin density matrices has the form given by Eq. (2) with the same values of γ
and ω as the original FID. Such a behavior is expected for a relaxational eigenmode of the time-evolution
operator in a chaotic system.

While the fundamental difficulties in defining the notion of microscopic chaos still remain, the present
paper demonstrates that the approach of Refs.15,31 based on making parallels with relaxational eigenmodes
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in classical chaotic systems continues to generate successful quantitative predictions. These predictions were
made in a regime not accessible by controllable first principles calculations. We are not aware of any other
approach that would reproduce the same predictions under conditions that the quantities of interest (nuclear
spin decays) evolve on the fastest microscopic time scale of the system.
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Appendix A: Measurements in Solid Xenon

We have carried out measurements on 129Xe in solid xenon similar to those reported in Sec. III for
CaF2, but, due to experimental constraints described below, we were not able to generate solid echoes
in the long-time regime of the FID. In this system, the signal-to-noise ratio is limited by the degree of
hyperpolarization we were able to achieve in the solid xenon through optical pumping techniques (about
10%). The experimental FID in solid xenon is shown in Fig. 6. Even though it can be measured over 5
orders of magnitude, it exhibits fewer beats than in CaF2 before the signal decays into the noise. This is
because the ratio ω/γ in solid xenon is about 1.7, while in CaF2 it is closer to 3 (see Tables I and III).
As a result, echo signals generated after the first FID beat in solid xenon had smaller relative amplitude
than in the case of CaF2 and thus could not be accurately measured over sufficiently long time intervals.
The echoes presented in Fig. 6 were initiated during or before the first beat, which likely implies that the
FID behavior just before the echo pulse was not entirely dominated by the slowest eigenmode as required
by Eq.(2). However, as the echoes acquired with the longest interpulse delays show an approach to the
predicted forms, we still present the data.

For this appendix we use the FID and solid echoes which are presented in Ref.28. Polycrystalline xenon
samples were produced in a magnetic field of 2 T (129Xe Larmor frequency 24.56 MHz) using the methods
described in Ref.28. Ten solid echoes were acquired approximately 0.2 ms apart from 0.4 ms to 2.5 ms. A
fit of Eq. (1) to the FID show that it does not enter the long-time regime described by Eq. (1) until after
t = 2.5 ms. As the latest echo was acquired with an interpulse delay time of 2.5 ms, no echoes were acquired
in the long-time regime of the FID. The xenon FID and solid echoes are shown in Fig. 6.

FIG. 6: (Color online). 129Xe solid echoes in solid xenon. The latest 4 echoes acquired are shown. The first
point of each echo is indicated by a solid circle to guide the eye. The dashed line is the long-time FID fit
given by Eq.(1. The inset shows the experimental FID (solid line) and the fit (dashed line) on a linear scale.

The amplitude |a|, decay coefficient γ, beat frequency ω, and complex phase ϕa of the 129Xe FID were
determined by fits to Eq. (1) (see Table III). The amplitude |C(τ)| and complex phase ϕC of each echo
signal were determined by fitting each solid echo signal to Eq. (9) with γ, ω, |a|, and ϕa fixed to the values
obtained from the fit to the FID.

In Fig. 7, we plot |C(τ)|2 and |C(τ)| cosφC for the measured solid echoes. The solid lines are the fits to
either Eq. (13) or Eq. (14), from which the parameters in Table III were obtained. Figure 7 shows the results
for echoes initiated in both the early-time and the long-time regimes of the FID. We observe that the latest
echoes begin to approach the behavior predicted by Eqs. (13) and (14). These echoes are labeled “late-time
echoes” even thought they are not actually in the late-time region as is the case in the CaF2.

Tests 1 and 2 formulated at the end of Section II are then carried out. The predicted and the measured
values of parameters D1 and B2 are listed in Table IV. In each test, the predicted and the measured values
agree with each other within the experimental uncertainties.
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(a)

(b)

FIG. 7: (Color online) (a) Amplitudes and (b) phases of 129Xe solid echoes in solid xenon as a function of
inter-pulse delay time τ . Open circles represent echoes generated in the early-time of the FID, while solid
circles represent echoes generated in the long-time of the FID. The solid line (red) is the best fit of the
long-time data to Eq. (13) for (a) or to Eq. (14) for (b).

Finally, we compare the obtained echoes with the predicted shape functions. We first obtain the shape
functions Ref̃(t′) and Imf̃(t′) as described in Sec. III. In Fig. 8a, we show the measured echoes in 129Xe.

Each echo F̃ (τ, t′ + τ) in the figure has been multiplied by a factor eγτ to correct for the exponential decay

of the FID at their respective initial time values. The two echoes F̃ (τ1, t
′ + τ1) and F̃ (τ2, t

′ + τ2) used for

determining the functions Ref̃(t′) and Imf̃(t′) are shown in Fig. 8a. The functions Ref̃(t′) and Imf̃(t′) are

FID Parameters Solid Echo Parameters
|a| = 151, 800± 1, 600 B1 = 260± 30 B2 = 0± 3
ϕa = −1.254± 0.006 D1 = 290± 40 D2 = 12± 3
γ = 1.251± 0.005 ms−1 φ1 = 0.71± 0.05 φ2 = 2.4± 0.5
ω = 2.10± 0.01 ms−1

TABLE III: Long-time FID and echo fit parameters for solid xenon. The FID parameters are obtained by
fitting the FID to Eq. (1). The echo parameters are obtained by fitting the amplitudes and phases of the
measured solid echoes to Eqs.(13) and (14).
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Test 1 Test 2
D1,predicted = 250± 60 B2,predicted = −1.0± 0.3
D1,measured = 290± 40 B2,measured = 0± 3

TABLE IV: Two tests of the theoretical predictions formulated at the end of Section II.

(a)

(b)

FIG. 8: (Color online) (a) 129Xe solid echoes in solid xenon labeled by their interpulse delay times τ . The

quantity plotted is eγτ F̃ (τ, t′ + τ). The 1.7 ms and 2.5 ms echoes represent the echoes used to obtain the

shape functions Ref̃(t′) and Imf̃(t′). (b) The functions Ref̃(t′) and Imf̃(t′) obtained from the linear
system of equations (15,16).

shown in Fig. 8b.
In Fig. 9, the remaining two late-time echoes are compared with the predicted ones obtained by substituting

Ref̃(t′) and Imf̃(t′) into Eq.(7). We emphasize that the theoretical prediction of the echo shapes is expected
to hold only for echoes initiated after 2.5 ms in this material. Therefore, the discrepancy in the early parts
of the echo shapes is expected for the reasons discussed in Sec. III in relation to the early-time echo shapes
in CaF2.

We finally mention a possible additional complication in solid xenon associated with the fact that our xenon
samples are not single crystals but rather polycrystallites. Our very recent theoretical study36 indicates that
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FIG. 9: (Color online) 129Xe solid echoes in solid xenon (solid lines). The red (broken) lines show the

theoretical echo shapes obtained using the Ref̃(t′) and Imf̃(t′) shape functions. The quantity plotted is

eγτ F̃ (τ, t′ + τ). The values of τ are indicated in the plot legend.

the observed long-time FID behavior of the polycrystalline solid xenon probably represents a typical long-time
behavior of the individual crystallites contributing to the polycrystallite average, but the true asymptotic
FID behavior of the entire polycrystallite is expected to appear only at times beyond the range accessible in
our experiments. This asymptotic FID behavior should be controlled by the small fraction of the constituent
crystallites with the slowest exponential decay constants γ.
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