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We examine a graphene quantum dot formed by combining an electric and a uniform magnetic
field. The electric field creates a smooth quantum well potential while the magnetic field induces an
exponential tail to the dot states. The states peak in the well and the electrostatic barrier region as
a result of the Klein tunneling effect. Coupling between dot states which peak in different regions
can be achieved with the electric and magnetic fields. The tunability of this dot with moderate
external fields could be used for designing quantum devices in monolayer graphene.
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I. INTRODUCTION

The electronic properties of monolayer graphene are
derived from a two-dimensional Dirac equation. This
makes graphene suitable to explore quasi-relativistic ef-
fects in condensed matter physics as well as attractive
for quantum devices.1 For these two reasons various
graphene-based devices are under investigation. Litho-
graphic confinement leading to quantum dot behaviour
has been achieved in nano-crystals of graphene with a di-
ameter of some tens of nanometers. Coulomb blockade,
single-electron transport, charge and spin spectroscopy
have been demonstrated in single and coupled dots.1–4

Theoretical studies have shown that the electronic
properties of the dots formed in nano-crystals depend
crucially on the type of edges.1 However, the edges cannot
be routinely controlled experimentally, because edge dis-
order seems to be unavoidable and different types of edges
may coexist in one sample. Forming dots in monolayer
graphene is necessary in order to spatially isolate the dot
states from the edges. In this case the fabrication of the
dot involves the application of external fields. However,
electrons in graphene are massless and via Klein tunnel-
ing can penetrate any electrostatic potential barrier.1,5

Consequently, pure electrostatic confinement in graphene
is not possible6–9 and a uniform magnetic field has to be
applied.9 The usual ease in tuning a dot electrically can-
not be exploited in graphene, though an exception may
occur for zero-energy states.10

As shown in this work, the physics of a graphene dot
formed by combining an electric and a uniform magnetic
field is rich and has great potential for manipulation and
control over the dot system. The electric field creates a
quantum well while the magnetic field provides an ex-
ponential tail to the quantum states which is needed for
confinement. The electric field modifies the Landau level
spectrum by inducing energy levels within the Landau
gaps. These levels lie in a relatively low density of states.
Here we demonstrate that the tunability of these levels
can be achieved with both electric and magnetic fields.

The dot states exhibit features which arise due to the
relativistic character of graphene. When the magnetic
field is low, there is a class of states which peak in the

quantum well region but have also a large oscillatory am-
plitude in the electrostatic barrier region due to Klein
tunneling. As the field increases, the amplitude in the
barrier decreases exponentially and the states become
confined very close to the centre of the dot. The suppres-
sion of the Klein tunneling with the magnetic field may
be employed in coupled dots. The interdot coupling is
expected to be strong (weak) in the low (high) magnetic
field regime. Strong interdot coupling seems to be possi-
ble even when the dots are separated by a long distance.
There is also another class of states which peak mainly
in the barrier region. These states can couple to states
which have a large amplitude in the well, with a coupling
strength that depends on the fields. Numerical calcula-
tions show that it should be experimentally possible to
probe the dot properties in clean sheets of graphene.

The dot system studied here could allow the investiga-
tion of the Klein tunnelling effect in a well-defined two-
dimensional system. In nano-crystals of graphene, the
geometry is not circularly symmetric and a spectral gap
opening may prevent Klein tunnelling from taking place.
Moreover, the system that we study enables the forma-
tion and coupling of multiple graphene dots in various
two-dimensional configurations. This may be more dif-
ficult to achieve using nano-crystals. The proposed dot
could even be formed in suspended sheets of graphene in
order to minimize interaction and disorder effects due to
the substrate.

In Sec. II we show that some of the basic properties of
the dot system can be extracted directly from the classi-
cal energy-momentum relation of massless particles. We
also present the quantum mechanical model of the dot
which is based on the Dirac equation for the envelope
functions of graphene. Furthermore, in Sec. II a semi-
analytical model is solved for a piece-wise constant quan-
tum well potential. Calculations are presented in Sec. III,
where the tunability of the dot with electric and magnetic
fields is demonstrated. The conclusions of this work are
given in Sec. IV.
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II. GRAPHENE DOT FORMED BY ELECTRIC

AND MAGNETIC FIELDS

A. Dot properties derived from the classical

motion of massless particles

Consider a graphene sheet in a vector potential A =
(0, Aθ, 0) and an electrostatic potential V , and for sim-
plicity choose Aθ and V to have cylindrical symmetry.
Here V defines a quantum well potential centered at
r = 0 which is modelled as V (r) = −V0 exp(−r2/d2),
with V0 ≥ 0. Also, Aθ generates a perpendicular mag-
netic field to the graphene sheet which, in this work, is
chosen to be uniform, B = Bẑ = ∇×A, thus Aθ = Br/2.
The classical energy-momentum relation of a massless
particle moving in the fields A and V , with energy E
and radial momentum p, is

v2Fp
2 = (E − V )2 − v2F

(

M

r
+ eAθ

)2

, (1)

where the term M/r is due to the angular motion and
vF = 106 m s−1 is the Fermi velocity in graphene. The
classical motion is restricted to the region where p2 > 0,
and p2 = 0 defines the classical turning points. The
ability of the magnetic field to induce confined states with
an exponential tail, regardless of momentum and energy,
is based on the observation that if Aθ 6= 0 then p2 < 0
in the asymptotic regime of large r (r → ∞). Therefore,
classical motion is not allowed in this regime. But if Aθ =
0, then asymptotically p2 > 0 and classical motion is
allowed, resulting in deconfined states with an oscillatory
tail. In this work we are interested in the energy range
−V0 < E < 0 and confined states which are needed for
quantum dots, henceforth Aθ 6= 0.
Equation (1) shows that p2 can take positive values

even within the barrier region before it eventually be-
comes negative asymptotically.11 For instance this can
happen when |E−V0| is large and B is low. This regime
can always be arranged by tuning the electric and mag-
netic fields. If p2 > 0 in the barrier, then the quantum
states are expected to have an oscillatory spatial depen-
dence; a property which is related to the Klein tunneling
effect for massless particles.5,12 In contrast, the states of
a particle with mass described by a Schrödinger equation
decay in the barrier.
Figure 1 shows v2Fp

2 together with the potential well.
When B = 0.3 T, then p2 > 0 almost entirely in the
barrier (well) region for E = −30 meV (E = −8 meV),
and hence the state is expected to be confined in the
barrier (well). When B = 0.05 T and E = −12 meV,
then p2 > 0 both in the well and barrier regions. In this
case the state can have a large amplitude both in the well
and the barrier. It can also be derived from Eq. (1) that
if B is high enough and/or the angular momentum term
is large (M ≫ 0) then there exists an energy range for
which p2 < 0 for all r. So classical motion is not allowed,
suggesting that quantum states do not exist in this range.
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FIG. 1: (Color online) The figure shows v2Fp
2, defined in

Eq. (1), as a function of the radial distance r for three choices
of magnetic field B and energy E. The potential well V is
also shown.

Therefore, a gap, proportional to B and M , is formed in
the energy spectrum. Then as the depth of the potential
well increases the gap closes and states are formed in the
well and/or barrier depending on the choice of energy.

Equation (1) provides some insight into the properties
of the quantum dot and shows that different classes of
states can be defined according to the region which the
states tend to occupy. It also demonstrates the ability
to tune at will the dot states with electric and magnetic
fields. However, it cannot predict the energy levels of the
dot and the exact pattern of the states. For this reason
we present below the exact model of the quantum dot and
identify its connection to the classical energy-momentum
relation in Eq. (1).

B. Quantum mechanical dot model

In monolayer graphene there are two valleys that have
to be considered, at the Dirac points K and K ′, respec-
tively, of the Brillouin zone.1 In this work we assume
that the two valleys are uncoupled, as it has been demon-
strated in many experimental studies.1 The physics is the
same for both valleys, thus we examine the dot properties
only for one valley. In the continuum approximation and
for energies near the Dirac points, the two-component en-
velope functions Ψ satisfy a two-dimensional Dirac equa-
tion

[vFσ · (p+ eA) + V ]Ψ = EΨ, (2)

where σ are the Pauli matrices, p is the momentum op-
erator and E the energy. For a circularly symmetric sys-
tem, defined by the vector potential A = (0, Aθ, 0) and
the quantum well potential V of the previous subsection,



3

we can write for the wavefunctions

Ψ =
1√
r

(

f1(r) exp[i(m− 1)θ]
if2(r) exp(imθ)

)

, (3)

where m = 0,±1, ... is the angular momentum number
and r, θ is the radial distance and the azimuthal angle
respectively. The radial functions satisfy the equations13

V f1 +

(

U + γ
d

dr

)

f2 = Ef1, (4a)

(

U − γ
d

dr

)

f1 + V f2 = Ef2, (4b)

with vF = γ/~ and

U = γ
2m− 1

2r
+ γ

eAθ

~
. (5)

This eigenvalue problem can be diagonalised numerically
to give the eigenenergy E and the corresponding two-
component eigenstate (f1, f2). Here fi gives the proba-
bility amplitude of finding an electron on one of the two
sublattices of graphene.
Following the same method as that developed in Ref. 9,

it can be shown that the state fi satisfies the second order
differential equation

d2fi
dr2

+ s(r)
dfi
dr

+ wi(r)fi = 0, (6)

with s = V ′/(E − V ) and the prime denotes differentia-
tion with respect to r. Also

wi = −U2

γ2
± U ′

γ
± s

U

γ
+

(E − V )2

γ2
, (7)

where the minus (plus) sign is for i = 1 (i = 2). To derive
a more familiar Schrödinger-like equation we eliminate
the first derivative term. This can be done by writing fi
in the form

fi = ui exp

(

−1

2

∫

s(r)dr

)

, (8)

and substituting Eq. (8) into Eq. (6). This procedure
shows that the function ui is a solution to the equation

d2ui

dr2
+ k2i (r)ui = 0, (9)

with

k2i = ±U ′

γ
± s

U

γ
− s′

2
− s2

4
+

v2Fp
2

γ2
, (10)

where the minus (plus) sign is for i = 1 (i = 2). Un-
like the coupled equations for fi, the single equation
for ui has a more convenient form. The radial momen-
tum p2 in Eq. (1) can be directly identified in Eq. (10)
with M replaced by (m − 1/2)~. The quantum model
reveals that the region where the states are localised

is defined not only by the v2Fp
2 term but also by the

additional terms which appear in Eq. (10). Confined
states, i.e., states that decay asymptotically, occur when
k2i (r → ∞) ∼ −v2Fe

2A2
θ < 0, which is satisfied for Aθ 6= 0.

This condition agrees with that derived from Eq. (1).

One consequence of the Dirac equation is that the en-
ergy spectrum of the graphene dot is unbound. Depend-
ing on the external fields, the energy levels and the quan-
tum states may exhibit simple patterns. For instance,
when V = 0 and m ≥ 1 the energy spectrum consists
of two ladders (sets) of Landau levels (LLs) which can
be determined analytically.14 The ladders are separated
by a gap which is proportional to the field B and angu-
lar number m. The LLs are formed symmetrically with
respect to E = 0 and the number of nodes in the corre-
sponding Landau states increases successively by one for
each new level. For m ≤ 0 one additional LL is formed
at E = 0 and one of the two components fi is zero.

The inclusion of a potential term V 6= 0 modifies
the spatial region where the Landau states are localised.
In addition energy levels are formed within the Landau
gaps. The simplest regime was studied in detail in Ref. 15
within an approximate model. It was shown there that
for m ≥ 1 the dot states are approximately localised
in either of the two regions defined by the two terms
E−V ±U , which create two (independent) effective quan-
tum wells. Each well contributes one ladder of energy
levels to the dot spectrum. For m ≤ 0 the two wells
can no longer be defined because the two curves V ± U
cross. Nevertheless, exact numerical calculations confirm
the formation of the two ladders for m ≤ 0 as well.16

The model developed in Ref. 15 is valid provided the
two effective wells have no common energy range. This
can be achieved when there is an energy gap between the
minimum of E−V +U and the maximum of E−V −U .
If this condition is not satisfied the states of the two
ladders can form a richer pattern. Specifically, when m
is small the states of the upper ladder tend to couple to
the states of the lower ladder. This regime is the main
concern of the present work and it typically occurs when
the potential depth V0 is large and the field B is low.
As shown below, the induced coupled states can have a
large amplitude both near the centre of the quantum well
and in the barrier region. The coupling strength can be
controlled at will by tuning the external fields and hence
different classes of states can be probed. If m is large the
states are not affected by the quantum well since they are
localised in the asymptotic region where the potential is
constant. As a result the states for large m behave as
Landau states.

The formation of the two ladders and the coupling be-
tween the corresponding states have also been predicted
theoretically in a graphene dot system at zero magnetic
field but with a spatially modulated spectral (Dirac) gap
in the energy dispersion.13 In this system the states are
confined provided their energies lie inside the gap. The
coupling strength can be tuned with the potential depth
and the induced coupled states can be probed inside the
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FIG. 2: (Color online) Quantum states for m = +1 and a
piecewise-constant potential well with a radius R = 200 nm
and depth |v0| = 30 meV. The magnetic field B and the
energy E are: (a) B = 0.2 T, E ≈ −29.6 meV, (b) B = 0.2
T, E ≈ −13.9 meV, and (c) B = 0.09 T, E ≈ −18.1 meV.
Solid (dashed) curves show |f1|2 (|f2|2).

spatial region where the spectral gap is zero.13

C. Dot formed by a piecewise-constant potential

well and uniform magnetic field

This work is concerned with quantum dots formed
in monolayer graphene by combining electric and mag-
netic fields. In this context, the simplest dot model that
can be studied is when the magnetic field is uniform
and the induced potential well is piecewise-constant, e.g.,
V (r) = −|v0|Θ(r−R), where |v0| is the depth of the well,
R its radius and Θ is the step function. For complete-
ness the method to solve this problem is outlined here,
though the reader can proceed directly to Sec. III. As in
Sec. II B Eqs. (4a) and (4b) are uncoupled and a second-
order differential equation is derived for each radial state
fi. Equation (6) for s = 0 gives

d2fi
dr2

+
(E − V )2

γ2
fi −

U2

γ2
fi ±

1

γ

dU

dr
fi = 0. (11)

This equation is written in the more convenient form

d2fi
dr2

− a2r4 + bir
2 + ci

r2
fi = 0, (12)

with the coefficients a = eB/2~ and

b1 =
meB

~
− (E − V )2

γ2
, c1 = (m− 1)2 − 1

4
, (13a)

b2 =
(m− 1)eB

~
− (E − V )2

γ2
, c2 = m2 − 1

4
. (13b)

The form of Eq. (12) reveals that the states fi can be
expressed with the help of the confluent hypergeometric
functions U and M (Ref. 17). For example, when m ≥ 1
the two-component state which is regular at the origin
and decays asymptotically has for r ≤ R the following
form

(

f1
f2

)

= ηe−ar2/2

(

rd1M(A1, B1, ar
2)

c0r
d2M(A2, B2, ar

2)

)

, (14)

with

c0 =
2γa

E + |v0|

(

1− A1

B1

)

. (15)

For R ≤ r the two-component state has the form

(

f1
f2

)

= βe−ar2/2

(

rd1U(A1, B1, ar
2)

g0r
d2U(A2, B2, ar

2)

)

, (16)

with

g0 =
2γa

E
. (17)

The auxiliary parameters are

di =
1 +

√
4ci + 1

2
, (18a)

Ai =
bi
4a

+
1

2

(

1

2
+ di

)

, (18b)

Bi =
1

2
+ di. (18c)

The corresponding energies can be obtained from a stan-
dard matching condition which requires that both f1 and
f2 to be continuous at r = R. This condition leads to an
algebraic equation for the energies which is solved numer-
ically. Then having calculated the energies and taking
also into account the normalization condition the ratio
β/η is determined. Some quantum states for m = +1 are
plotted in Fig. 2. The region in which the states peak de-
pends on the magnetic field and energy. This behaviour is
consistent with that derived from the energy-momentum
relation in Eq. (1).
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III. TUNING THE GRAPHENE DOT WITH

ELECTRIC AND MAGNETIC FIELDS

In any real sample of graphene a piecewise-constant
potential well cannot be generated. So a more realistic
choice is made for the potential well and, specifically, the
potential well is chosen to have a Gaussian form as in
Sec. II A with d = 55 nm. Numerical calculations of the
electrostatic potential in the graphene sheet confirm that
the Gaussian potential is a very good approximation to
the potential that is generated by gate electrodes or a
scanning tunneling microscope tip.9 Also, the Gaussian
potential produces a smooth spatial variation on the scale
of the lattice constant and hence intervalley scattering
can be ignored.

The results presented in this work are for the m = +1
states which can peak very close to the centre of the
potential well and thus can be considered as quantum dot
states. States with small values of m show similar trends
to those with m = +1. As m increases, the states become
localised in the asymptotic region where the potential is
constant and hence the effect of the quantum well on the
states becomes negligible. This property also occurs for
a repulsive potential profile.18 Therefore, in the large m
regime the corresponding quantum states are described
approximately by Landau states since only the vector
potential and angular momentum are important.

The dot states of interest have to be energetically iso-
lated from other states, that is, they have to lie in a
region of low density of states (DOS), in order to be
detectable. If this condition is satisfied then scanning
tunneling microscopy (STM) could be used to probe the
local density of states and features of individual quantum
states. When there is no potential variation and a per-
pendicular magnetic field is applied to a graphene sheet
the DOS is high at the LLs which form the energy spec-
trum14 EN = ±

√

2e~v2FBN , with N = n+ (m+ |m|)/2,
and n being the radial quantum number. A potential well
induces energy levels within the Landau gaps where the
DOS can be low enough. As the external field is tuned,
the dot levels of interest have to lie within a specific Lan-
dau gap so that their detection to be possible. For this
reason we focus on dot levels which lie between the first
few LLs, for which the Landau gaps are larger compared
to those of highly excited LLs.

We assume that for the low magnetic fields considered
in this work there is no overlap between the LLs. Any
LL broadening, for example, due to disorder and inter-
action effects19,20 is small and it is typically less than
∼ 2 meV. It may be possible to achieve this condition in
clean samples of graphene. In particular, experiments in
suspended sheets of graphene have measured very large
mobilities indicating that these sheets are less sensitive to
disorder and impurities introduced by the substrate.21,22

-25

-15

-5

 5

 15

 0  40  80  120  160

E
 (

m
eV

)

V0 (meV)

* * * * * *

FIG. 3: Energy levels (dashed curves) as a function of the
potential depth V0, for m = +1 and a magnetic field B = 0.1
T. Some Landau levels are also shown (horizontal solid lines).
The quantum states for the marked energies are shown in
Fig. 4.

A. Electric field effect on the dot

As discussed in Sec. II B, in the graphene dot system
formed by electric and magnetic fields, the energy levels
for a fixed value of m can form two energy ladders sepa-
rated by a gap.16 This configuration can be achieved for
a high magnetic field and a small well depth. When the
well depth increases, energy levels from the upper energy
ladder fall in the gap, while the corresponding states de-
velop a large amplitude in the well region. Eventually,
when the well depth is large, states which peak in the
well couple to states of the lower energy ladder, and this
behaviour is manifested in the energy diagram by the
formation of anticrossing points.23

To demonstrate these effects, we show in Fig. 3 the en-
ergy diagram as a function of the potential depth V0 for
a magnetic field B = 0.1 T. For V0 = 0 the energy levels
correspond to the LLs of a graphene sheet. For a small
V0, the energy levels which define the two energy lad-
ders merge into the Landau gaps. When V0 ∼ 0 these
levels are separated by a gap which is approximately
equal to the energy splitting between the LLs +1 and −1
(Ref. 24). As V0 increases, the gap closes and eventually
energy levels of the upper ladder anticross with energy
levels of the lower ladder. The general trend is that if
the magnetic field is low the gap between the two energy
ladders is small and therefore the anticrossing points ap-
pear for a small well depth V0. For instance, the first
anticrossing point at B = 0.1 T is formed for V0 ≈ 60
meV (see Fig. 3), while at B = 0.2 T for V0 ≈ 90 meV.
With a further increase of V0, a state of the lower energy
ladder couples successively to states with higher energy
in the well, forming a series of anticrossing points. Thus
the required variation of V0 to probe two successive an-
ticrossing points becomes smaller as the typical energy
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FIG. 4: (Color online) Quantum states for the marked en-
ergies shown in Fig. 3. The potential depth is V0. Solid
(dashed) curves show |f1|2 (|f2|2). The potential well (in ar-
bitrary units) is also shown.

splitting in the well decreases.

Here we focus on the state with the highest energy in
the lower ladder and its coupling to quantum well states.
This state corresponds for V0 = 0 to the LL −1 and
then for V0 6= 0 the coupling leads to a “hybridised”
state with energy between the LLs −1 and −2. Some
examples of this hybridised state are shown in Fig. 4.
Comparison of the states in the left panels with those in
the right panels shows that the number of nodes for each
radial component increases by one in the well region11

r . 80 nm, when a new anticrossing point is formed in
the energy diagram (Fig. 3). This happens because for
each anticrossing point a higher energy state in the well
is involved which typically has an extra node. Near the
anticrossing points the coupling is strong and hence the
amplitude of each state in the well region is large. This
occurs, for example, for V0 = 59 meV and 103 meV.
Away from the anticrossing points the coupling is weak
and the amplitude of the states in the well decreases, e.g.,
for V0 = 40 meV and 90 meV.

As seen in Fig. 4, the hybridised state has a peak in the
barrier region11 which, to a good approximation, is insen-
sitive to V0. This happens because the charge carriers in
graphene are massless and they exhibit Klein tunneling.
This allows the states to develop an oscillatory amplitude
in the barrier. In conventional dots obeying Schrödinger’s
equation the quantum states decay in the barrier. Klein
tunneling takes place in the two-dimensional graphene
dot when within a barrier region k2i > 0 in Eq. (10). This
condition can be arranged easily for the dot system by
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FIG. 5: (Color online) Energy diagram of the graphene dot
as a function of the potential depth V0, for a magnetic field
B = 0.1 T. The horizontal lines correspond to the Landau
levels which are independent of V0. The dotted lines are the
energy levels for m = +1.

tuning the external fields. Furthermore, the exact pat-
tern of the state in the barrier depends on the choice of
energy. Specifically, the number of peaks within the bar-
rier increases for states which lie between higher excited
LLs with EN < 0. However, the narrowing of the corre-
sponding Landau gaps in combination with the expected
broadening of the LLs in any real sample of graphene
may make the detection of these states difficult.

Figure 5 illustrates the energy diagram of the dot as a
function of the potential depth V0. Here all possible val-
ues of m are taken into account, but as explained above,
for a large m the corresponding energy levels behave as
LLs and thus they have the dependence EN ∝ −

√
BN .

Between the LLs there are regions where only a few lev-
els lie, suggesting that the corresponding states could be
probed with STM measurements.25 For this reason the
energy of the hybridised state in Fig. 4 is adjusted be-
tween the LLs −1 and −2 where the DOS is relatively
low. Inspection of Fig. 5 shows that there are ranges of
V0 in which the energy of this state is at least 0.5 meV
away from any other energy levels. Thus it should be ex-
perimentally possible to probe the pattern of the state in
Fig. 4 in clean samples of graphene with a small broad-
ening of the LLs. The local DOS near the centre of the
dot is expected to show a low-high-low variation as V0

sweeps through an anticrossing point.

When the broadening of the LLs is large, the regions
of low DOS which occur between the LLs shrink making
the detection of individual dot states difficult; the states
have to lie in a very narrow energy range (window) in
order that to be detectable. A high magnetic field B
may increase this energy range provided that any broad-
ening of the LLs increases much slower than the Landau
gaps. However, when B is high a large V0 is needed for
anticrossing points to appear and the states to follow the
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quantum states for the energy levels E1,2 are shown in Fig. 7.

pattern in Fig. 4. In this case the disadvantage is that
the DOS between the LLs increases as V0 and B increase,
suggesting that the magnetic field cannot be chosen ar-
bitrarily high. Also, if in an experiment it is desirable
the state to peak in the barrier region and far from the
centre of the dot then the magnetic field has to be kept
low.
In order to deal with the broadening of the LLs it

may be necessary to probe hybridised states between the
LLs 0 and −1, for which the Landau gap is the largest.
Though, only states with m ≤ 0 can, for certain parame-
ter regimes, form anticrossing points at energies which lie
between the LLs 0 and −1. This can be understood from
the fact that for V0 = 0 only states with m ≤ 0 contribute
to the zeroth Landau level. Then as V0 increases, their
energies merge into the zeroth Landau gap and even-
tually anticross with energy levels of the upper ladder.
States with m ≤ 0 can also form anticrossing points in
excited Landau gaps as happens with the m = +1 states
in Fig. 3.

B. Magnetic field effect on the dot

The effect of a magnetic field on the dot is now ex-
amined when the potential well is fixed. In Sec. III A it
was shown that, when the electric field increases, states
belonging to different energy ladders become coupled.
Moreover, the coupling is strong near the anticrossing
points. In this section it is demonstrated that when the
magnetic field increases the coupling is suppressed result-
ing in states which correspond approximately to individ-
ual states in each ladder.
In Fig. 6 the energy diagram is plotted as a function of

the magnetic field when the depth of the potential well is
V0 = 51 meV. We are interested in the two highest energy
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FIG. 7: (Color online) Quantum states for the energies shown
in Fig. 6. For the energy level (a) E2 and (b) E1. Solid
(dashed) curves show |f1|2 (|f2|2). The potential well (in ar-
bitrary units) is also shown.

levels below zero (for m = +1) which are denoted by E1

and E2. In the field range 0.04 < B < 0.5 T, the E1 level
lies between the LLs 0 and −1, while for 0.04 < B < 0.35
T the E2 level lies between the LLs −1 and −2. Thus
quantum states can be arranged to lie between successive
LLs in a wide field range. Calculations show that this
effect is robust and can be achieved for different well
depths and m values. In addition, as shown below within
a specific magnetic field range the spatial region in which
the states are localised changes drastically, confirming
that the tunability of the dot is feasible with a uniform
magnetic field.

Figure 7(a) shows the quantum state corresponding to
the energy level E2 in Fig. 6. This “hybridised” state
is formed due to the coupling between the states of the
two energy ladders. In particular, the peak in the well
(barrier) region11 is due to the state in the upper (lower)
ladder. When B = 0.04 T the coupling is strong and
the hybridised state peaks both in the well region, that
is r . 80 nm, and the barrier.26 As B increases, the cou-
pling is suppressed and the amplitude of the hybridised
state very close to the centre of the well decreases. Con-
sequently, the hybridised state takes approximately the
form of the state in the lower energy ladder. Also, when
the field increases the magnetic confinement becomes
stronger, therefore the state in the lower ladder shifts
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FIG. 8: (Color online) Energy diagram of the graphene dot as
a function of the magnetic field B, for a potential depth V0 =
51 meV. The high-density regions have the same magnetic
field dependence as that of the Landau levels in graphene
(EN ∝ −

√
BN). The dotted lines are the energy levels for

m = +1.

closer to the centre of the dot and becomes localised in a
narrower region. These trends are also displayed by the
hybridised state in Fig. 7(a), which has a large peak in
the region 200 . r . 400 nm at B = 0.04 T, whereas the
peak occurs around 50 . r . 150 nm at B = 0.3 T.
The magnetic-field-dependent coupling is also respon-

sible for the behaviour of the “hybridised” state cor-
responding to the energy level E1 [see Fig. 7(b)]. At
B = 0.04 T the state peaks in the well region r . 80 nm,
but has also a large amplitude in the barrier region before
it eventually decays asymptotically. Klein tunneling is
involved in the low field regime but is not so pronounced
because there is only a small region with k2i > 0 within
the barrier. Then as B increases the amplitude of the
two components in the barrier is gradually suppressed
and the state becomes confined near the centre of the
well. For B = 0.5 T the hybridised state has approxi-
mately the form of the state in the upper energy ladder
and k2i < 0 everywhere in the barrier. Thus no Klein
tunneling occurs at high B. The regime of high mag-
netic field as well as the symmetry between a dot and
an antidot system have been investigated theoretically
in Ref. 27. A graphene dot system especially designed
to probe the klein tunneling effect in a two-dimensional
geometry has been studied in Ref. 9.
Figure 7 demonstrates that the magnetic field-induced

suppression of the amplitude of the states in the barrier
is a strong effect. This property may be useful for a
system of two neighboring graphene dots separated by
a long distance. In this system the interdot coupling
can be tuned with the magnetic field instead of using
gate electrodes as in conventional dots. The coupling is
expected to be strong in the low field regime, provided
Klein tunneling is involved. The coupling can be strong
even when the two dots are far apart, a situation that

cannot be arranged easily in conventional semiconductor
dots.
In Fig. 8 we show the energy diagram of the dot as

a function of the magnetic field B. All values of m
are taken into account, but as explained above, when
m is large the energy levels have the LL dependence
EN ∝ −

√
BN . As seen in Fig. 8, regions of very low

DOS are formed between the LLs. This condition can
be arranged when the quantum well is narrow enough
so that only a limited number of m values contributes
energy levels between the LLs. The energy level E1 in
Fig. 6 crosses some other levels for a few values of B but
it is isolated from any other levels in a wide field range.
This property makes possible the resolution of the corre-
sponding state and its variation with the magnetic field
[Fig. 7(b)]. Investigation of the energy diagram in Fig. 8
shows that for 0.04 < B < 0.3 T the energy level E2

in Fig. 6 is at least 0.4 meV away from any other lev-
els. This suggests that the corresponding quantum state
[Fig. 7(a)] could be detected using similar STM measure-
ments, for example, as those in Ref. 25.

IV. DISCUSSION AND CONCLUSION

This work investigated the properties of a graphene
quantum dot formed by the combination of electric and
magnetic fields. The electric field creates a smooth
quantum well potential which could be generated using
gate electrodes. Because of the Klein tunneling effect
in graphene the well cannot confine electrons. However,
when a uniform magnetic field is applied perpendicular
to the graphene sheet the states decay asymptotically
as needed for confinement. The electric field modifies
the Landau level spectrum by inducing levels within the
Landau gaps. It was demonstrated that the states which
correspond to these levels are tunable with the electric
and magnetic fields. This property has also been con-
sidered in one-dimensional systems of graphene such as
wave-guides and wires.28,29

Some of the basic properties of the dot system
were qualitatively extracted from the classical energy-
momentum relation of massless particles. These proper-
ties were then confirmed and quantified with exact nu-
merical calculations. It was found that some states can
peak both in the potential well and within the barrier
because of the Klein tunneling effect in graphene. This
behaviour cannot be observed in a non-relativistic dot
described by a Schrödinger equation. States which peak
in the barrier region occur also in one-dimensional sys-
tems of graphene and have been examined in Refs. 30
and 31.
The relative amplitude of the states in each region de-

pends on the values of the electric and magnetic fields
and thus it can be tuned at will. For example, at a high
magnetic field there are states which peak very close to
the centre of the well and decay exponentially in the bar-
rier. For low enough fields, Klein tunneling is involved
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and the amplitude of the states in the barrier increases
drastically. Coupling between states which peak in differ-
ent regions results in the formation of anticrossing points
in the energy spectrum of the dot. Numerical calcula-
tions suggest that the density of states is relatively low
between the Landau levels. Therefore, it should be ex-
perimentally possible to probe individual quantum states
when the broadening of the Landau levels is small.
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