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We present measurement results for the gradient of the Casimir force between an Au-coated sphere
and an Au-coated plate obtained by means of an atomic force microscope operated in a frequency
shift technique. This experiment was performed at a pressure of 3 × 10−8 Torr with hollow glass
sphere of 41.3µm radius. Special attention is paid to electrostatic calibrations including the problem
of electrostatic patches. All calibration parameters are shown to be separation-independent after
the corrections for mechanical drift are included. The gradient of the Casimir force was measured
in two ways with applied compensating voltage to the plate and with different applied voltages
and subsequent subtraction of electric forces. The obtained mean gradients are shown to be in
mutual agreement and in agreement with previous experiments performed using a micromachined
oscillator. The obtained data are compared with theoretical predictions of the Lifshitz theory
including corrections beyond the proximity force approximation. An independent comparison with
no fitting parameters demonstrated that the Drude model approach is excluded by the data at a 67%
confidence level over the separation region from 235 to 420 nm. The theoretical approach using the
generalized plasma-like model is shown to be consistent with the data over the entire measurement
range. Corrections due to the nonlinearity of oscillator are calculated and the application region
of the linear regime is determined. A conclusion is made that the results of several performed
experiments call for a thorough analysis of the basics of the theory of dispersion forces.

PACS numbers: 78.20.-e, 12.20.Fv, 12.20.Ds

I. INTRODUCTION

Modern measurements of the Casimir force1 have been actively pursued since 1997 (reviews2,3 contain the description
of all experiments performed up to 2001 and 2009, respectively). In this period it has been conclusively demonstrated
that the Casimir force can be reproducibly measured using modern laboratory techniques. The obtained results have
found prospective applications ranging from nanotechnology4–6 to constraining parameters of fundamental physical
theories beyond the standard model.7–12

The Lifshitz theory13,14 of the van der Waals and Casimir forces has been applied to two semispaces made of real
materials at nonzero temperature15–17 and generalized for interacting surfaces of arbitrary shape.18–20 The comparison
between the measurement data and computations using the Lifshitz theory with particular dielectric permittivities
has shown areas of disagreement. It was found that theoretical predictions obtained using the dielectric permittivity of
the Drude model are excluded by the data of three precise experiments21–24 on indirect dynamic determination of the
Casimir pressure between two parallel metallic plates performed in the configuration of a sphere above a plate by means
of a micromachined oscillator at separations from 0.16 to 0.75µm (note that in the modern phase of measurements
of the Casimir force the experimental configuration of two parallel plates was used only in Ref.25). The same data
were found consistent with the Lifshitz theory combined with the generalized plasma-like model.24 Coincidently it
was proven3,26 that the Lifshitz theory combined with the plasma model satisfies the third law of thermodynamics
(the Nernst heat theorem), but violates this fundamental physical principle when the dielectric permittivity of the
Drude model for metals with perfect crystal lattices is used. Keeping in mind that the dielectric response of metals for
real electromagnetic fields is correctly described by the Drude model, whereas the plasma model is an approximation
applicable only at sufficiently high frequencies, these results initiated continuing discussions.2,27–29 Specifically, it
was suggested to carefully check all approximations used in the computations, in particular, the proximity force
approximation (PFA), reconsider the role of such background effects as electrostatic patch potentials and surface
roughness, and to determine the role of variations in optical data of the Au films.
Results similar in spirit were obtained with dielectric surfaces. Thus, measurements of the difference in the Casimir

forces between an Au-coated sphere and Si plate in the presence and in the absence of a laser pulse on a plate
measured by means of an atomic force microscope (AFM) at short separations were found to be consistent with the
Lifshitz theory when neglecting the dc conductivity of dielectric Si in the dark phase.30,31 The same measurement
data exclude the Lifshitz theory with the dc conductivity of Si taken into account in the absence of a laser pulse.30,31

Measurements of the thermal Casimir-Polder force between 87Rb atoms belonging to the Bose-Einstein condensate
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and SiO2 plate32 agree well with the Lifshitz theory neglecting the dc conductivity of SiO2, but were found
33 in clear

disagreement with the same theory including the dc conductivity in the computations. On the theoretical side, it was
demonstrated34 that the Lifshitz theory for dielectrics with included dc conductivity violates the Nernst heat theorem.
Theoretical and experimental advances in the Casimir effect, including the unresolved problems, are discussed in the
book,35 whereas reviews36,37 present details of experiments with fluids and semiconductors, respectively.
Recently two more experiments were performed. The first of them38 was performed by means of a torsion pendulum.

It reports observation of the thermal Casimir force at large separations 0.7 − 7.3µm between a spherical lens of
R = 15.6 cm radius of curvature and a plane plate both coated with Au, as predicted by the Lifshitz theory using
the Drude model. This experiment did not directly measure the Casimir force but up to an order of magnitude
larger total force presumably determined by large electrostatic patches.38 The Casimir force was extracted using a
fitting procedure with two fitting parameters. The results of this experiment are in contradiction with two earlier
torsion-pendulum experiments performed at large separations,39,40 and with dynamic measurements by means of
micromachined oscillator.21–24 These results have been called into question in the literature.41,42 The second of two
recent experiments measured the Casimir force between an Au-coated sphere and an indium tin oxide (ITO) plate
using an AFM in the static mode.43,44 It was shown that the UV treatment of an ITO plate results in up to 35%
decrease in the magnitude of the Casimir force. On the basis of the Lifshitz theory this was explained by the Mott-
Anderson phase transition of the ITO plate under the influence of UV treatment from metal to dielectric state,
where the dc conductivity of ITO was omitted in computations. However, the inclusion of the dc conductivity of the
UV-treated sample results in the contradiction of theoretical predictions with the experimental data.
Keeping in mind that the Lifshitz theory faces outstanding problems when using the most natural and well tested

models of dielectric response, it is important to perform more experiments on measuring the Casimir force between
Au surfaces particularly using a laboratory setup different in technique and preparation of the test bodies and from
those applied previously. In this paper we report measurements of the gradient of the Casimir force between an
Au-coated hollow glass microsphere and an Au-coated sapphire plate by means of the dynamic AFM operated in
the frequency shift technique (also referred to as frequency modulation). Previously measurements of the Casimir
interaction between Au surfaces, allowing discrimination between predictions of the Drude and plasma models at short
separations, were performed by means of a micromachined oscillator.21–24 The experiment45 with Au-coated surfaces
of a sapphire disk and a polystyrene sphere using the static AFM was not enough precise to discriminate between
different theoretical predictions. Similar AFM experiments have been performed in the dynamic mode using the phase
shift46,47 and the amplitude shift48 techniques. These have also not been precise enough to distinguish between the
various models. In the frequency shift technique, the gradient of the Casimir force acting on the cantilever modifies the
resonant frequency and the corresponding shift in frequency is recorded using a phase locked loop (with application
to AFM the frequency shift technique is discussed in detail in Ref.49). As a result, the frequency shift technique is
free from limitations inherent to the phase shift and amplitude shift techniques and leads to a factor of 10 larger
sensitivity. This allows discrimination between different theoretical approaches to the thermal Casimir force using the
AFM.
This experiment was performed at a lower pressure of 3 × 10−8Torr. Much attention was paid to electrostatic

calibration. Specifically, all mechanical drifts were measured and the corresponding corrections in the measured
quantities were introduced. As a result, the residual potential difference, the closest sphere-plate separation and the
coefficient converting the frequency shift into the force gradient were found independent of separation distance. The
numerical simulation of the electrostatic force due to electrostatic patch potentials was performed. It was shown that
for both small and large patches the residual potential between the sphere and the plate would heavily depend on the
separation for patch sizes of order or larger than this separation. The absence of such dependence in our measurements
confirms the fact that the interacting regions of the test bodies used were free from work function inhomogeneities of
a size scale which may significantly distort the total force measured.
The gradient of the Casimir force between the sphere and the plate was obtained in two different ways: from the

total force (electric plus Casimir) with different applied voltages and electric force subtracted (44 measurement sets)
and in an immediate way by the application of only the compensating voltage to counterbalance the residual potential
difference (40 measurement sets). The mean gradients of the Casimir force obtained in these two ways were found in
good mutual agreement and in agreement with the measurements by means of the micromachined oscillator.23,24 The
random, systematic and total experimental errors at a 67% confidence level have been determined.
The experimental data were compared with theoretical predictions of the Lifshitz theory. In so doing the corrections

to the PFA obtained from exact calculations in the sphere-plate geometry were taken into account. Computations of
the gradient of the Casimir force were performed taking the surface roughness into account. The roughness profiles
were investigated using an atomic force microscope. In computations the optical data for the complex index of
refraction of Au from different sources have been used. The theoretical prediction using the Drude model approach
(i.e., the tabulated optical data for the imaginary part of dielectric permittivity extrapolated to lower frequencies by
the imaginary part of the Drude model) is excluded by the results of our measurements at a 67% confidence level
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over the separation region from 235 to 420nm. The Lifshitz theory combined with the generalized plasma-like model
is shown to be consistent with the measurement data over the entire measurement range from 235 to 750 nm. We
have also studied the oscillator system used in the experiment in the nonlinear regime and determined the application
region of the linear equation used to convert the frequency shift of the oscillator into the gradient of the Casimir force.
The structure of the paper is as follows. In Sec. II we describe the experimental setup and scheme for dynamic

measurements of the gradient of the Casimir force in the frequency shift technique. Electrostatic calibrations and
related problems are considered in Sec. III. Here, we pay special attention to the problem of patch potentials by
performing numerical simulations of additional forces due to electrostatic patches or contaminants. All calibrations
are performed with account of the mechanical drift in separation distances. Section IV contains measurement results for
the gradient of the Casimir force. We present the measurement data obtained in two ways, with applied compensating
voltage and with applied different voltages with subsequent subtraction of the electric force. In Sec. V we perform the
comparison between experiment and theory. The role of nonlinear effects in dynamic measurements using an AFM is
discussed in Sec. VI. In Sec. VII the reader will find our conclusions and discussion.

II. SETUP AND SCHEME FOR DYNAMIC MEASUREMENTS IN THE FREQUENCY SHIFT

TECHNIQUE

The main role in the setup for dynamic measurement of the gradient of the Casimir force in the frequency shift
technique [see Fig. 1(a)] is played by the detection system. This system consists of an AFM cantilever with attached
sphere, piezoelectric actuator, fiber interferometers, light source and phase locked loop (PLL). The detection system
was placed in a high vacuum chamber [see Fig. 1(a)]. The high vacuum down to 10−9Torr was created and sustained
with the help of different pumps, valves, gauges and various vacuum feed-throughs. We begin the description of the
setup with the vacuum system.
For the main vacuum chamber an 8′′ six-way stainless steel cross was used. This chamber was mounted on a 8′′

ion pump. The chamber was first evacuated by a turbo-pump backed by an oil-free dry scroll mechanical pump.
The first two pumps can achieve a vacuum down to 2 × 10−7Torr. The ion pump allows to reach a vacuum of
10−9Torr. The vacuum chamber was separated from the turbo and mechanical pumps by a gate valve which can
be closed when only the ion pump is to be used. The low vacuum pressure less than 10−3Torr was measured with
a thermal-conductivity gauge. For measuring high vacuums of 10−9Torr an ionization gauge was used. The main
vacuum chamber was supported on a damped optical table having a large mass to reduce the mechanical noise. For
the electrical connections to elements inside the vacuum chamber D-type subminiature connections were used offering
UHV feed-through with 25 pins which were hermetically sealed and insulated by means of glass ceramic bonding.
For optical connections a home-built optical fiber feed-through was used made on a CF flange welded with a clean
stainless tube. A cladding-stripped 1550nm fiber was inserted through the steel tube and sealed using Varian vacuum
Torr seal.
We continue the description of the setup by acquaintance with the fiber interferometers [see Fig. 1(b) for more

details]. Two fiber optic interferometers were used. One interferometer monitored the cantilever oscillation. The
second recorded the displacement of the Au plate mounted on the AFM piezoelectric actuator. For constructing
the interferometer, we used a 1550nm single mode fiber which has extremely low bending loss and low splice loss
compared to the standard SMF-28 1550nm fiber. A super luminescent diode with a wavelength of 1550nm, served
as the light source for the cantilever frequency measurement interferometer. The coherence length of the diode was
66µm. A short coherence length is necessary to avoid noise from spurious interferences from unwanted reflections.
An optical isolator with FC-APC connectors joined the diode to a 50/50 directional coupler. We used the typical
fused-tapered bi-conic coupler at 1550nm wavelength with return-loss of –55dB relative to the input power. To reduce
the signal power attenuation, we avoided bulkhead connectors which usually have ∼ 0.3dB power loss. A fiber coupled
laser source with a wavelength of 635nm was used for the Au plate displacement interferometer. In our experimental
setup, we used a commercial anodized black xyz-stage [see Fig. 1(b)] to move the fiber end vertically above and
close to the cantilever. But the anodizing may significantly increase outgassing rates because of its porous structure.
Therefore special treatments were done before placing the xyz-stage into the high vacuum chamber. The xyz-stage
was first disassembled and the parts scrubbed with strong solution of detergent in an ultrasonic cleaner. They were
then rinsed with very hot water. Next they were immersed in a 10% solution of sodium hydroxide (NaOH) saturated
with common salt (NaCl) at 80◦C. The parts were then polished in a conventional wheel polishing machine. They
were then immersed in 10% solution of hydrochloric acid to obtain a bright finish. This was then followed by rinsing
in DI water and reassembly of the xyz stage using powder-free disposable plastic gloves. Finally the xyz stage was
rinsed with acetone followed by ethyl alcohol before insertion into the vacuum chamber.
The interferometer system [see Fig. 1(b)] used for measuring the frequency shift consists of the following parts.

The output of the directional couplers was measured with InGaAs photodetectors. A low noise photodetector and
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amplifier system was fabricated for the cantilever interferometer. To avoid any potential errors or noise from the
divider or balancing system, the InGaAs diode was coupled to an OPA627 low noise operational amplifier (very high
input impedance ∼1013Ω) as a trans-impedance amplifier. The output of the interference signal was fed into a band-
pass filter cascaded by low and high pass filter to cut off unwanted frequency bands. The high-pass filter helped us
to remove the noise in the excitation signal from frequency modulation controller and the low-pass filter removed 1/f
and environmental noise. For frequency demodulation we use a PLL (Nano Surf.). The PLL frequency demodulator
system combines a controller module and detector module to measure the force gradient induced resonant frequency
shift. The output of the high pass filter was fed to the PLL for the frequency demodulation. The output of the PLL
was connected to a piezoelectric transducer which drives the cantilever at its resonant frequency ω = 2π × 1.604 kHz
with a constant amplitude. The oscillation amplitude of the cantilever was fixed at < 10 nm for all separations. The
output of the low pass filter was used to form a closed loop proportional-integral-derivative (PID) controller and
to maintain constant separation distance between the fiber end and the cantilever during the frequency modulation
detection. The distance was kept constant using a piezoelectric actuator with the PID controller.
Now let us consider the detection system. As mentioned above, the force gradient was measured between an Au-

coated plate and Au-coated sphere attached to the cantilever [see Fig. 1(b)]. In difference with previous experiments,
to achieve high resonance frequencies (and therefore low noise) hollow glass microspheres and stiffer rectangular Si
cantilevers were used. The Si cantilevers are conductive, which is necessary for electrical contact to the sphere. The
surfaces of the hollow glass spheres are smooth as they are made from liquid phase. We followed a special procedure for
cleaning the spheres before attachment to the cantilever. The sphere cleaning procedure removes organic contaminants
and debris from the surface. The first step in the cleaning process was to make a 10ml solution of ethanol into which
the spheres were deposited. This solution was thoroughly mixed in a vortex mixer for about 1 minute. Then, using
a pipette, the alcohol was extracted from the solution, leaving the spheres in the vial. To remove strongly attached
adsorbates and debris, a 10 ml solution of Hydrogen peroxide (H2O2) was added to the vial. A vortex mixer was
again used to mix for about 2min. The O2 gas released from the solution removed any attached debris from the
spheres. Next, the H2O2 was extracted with a pipette, and the spheres were immersed in 10ml of ethanol again. To
completely separate the debris from the spheres, we centrifuged the alcohol/sphere solution, for 10 minutes. The large
radius, clean hollow spheres float to the top of the mixture and the debris sediment to the bottom. We used a pipette
to remove the spheres at the top and place them in a pyrex petri dish to dry. The dried spheres were then mounted
on the conductive Si cantilevers using Ag epoxy. The cantilever-sphere system and a 10mm in diameter sapphire
disk were coated with Au in an oil-free thermal evaporator described elsewhere.50 The sphere cantilever system was
rotated to get a uniform coating. In contrast to previous experiments only the tip of the cantilever with the sphere
was coated with Au. Complete coating of the cantilever leads to large decrease in its oscillation Q-factor and loss of
sensitivity. The thickness of the Au coating was measured to be 280± 1 nm using an AFM. The radius of the sphere
was measured to be R = 41.3 ± 0.2µm using a scanning electron microscope. Thus, the sphere coating was thicker
and the sphere radius smaller than in the static AFM experiment.45

The cantilever with the sphere was placed in a specially fabricated holder [see Fig. 1(b)] containing two piezos (first
connected to the PID loop and the second to the PLL). The Au plate was mounted on top of a tube piezoelectric
actuator from a commercial AFM capable of traveling a distance of 2.3µm. Ohmic contacts were made to the Au
plate through a 1 kΩ resistor. To minimize electrical ground loops all the electrical ground connections were unified
to the AFM ground. The calibration of the tube piezoelectric actuator was done using the second interferometer
and is described in previous work.51 To change the sphere plate distance using the piezoelectric actuator and avoid
piezo drift and creep, a continuous 0.01Hz triangular voltage signal was applied to the actuator. The chamber was
evacuated using the turbo pump [see Fig. 1(a)] to a pressure of 2× 10−7Torr. Next, the ion pump [see Fig. 1(a)] was
turned on and the turbo pump was isolated from the chamber by closing the 6′′ gate valve. When chamber reaches
3× 10−8Torr pressure, the experiment was started.
The measurement scheme allowing determination of the gradient of the Casimir force is the following. In a dynamic

experiment using the frequency shift technique the total force gradient acting on the cantilever due to interaction of
the sphere and plate surfaces modifies the natural resonance frequency of the oscillator. The corresponding change
in the frequency ∆ω = ωr − ω0, where ωr is the resonance frequency in the presence of external force Ftot(a), a is
the separation between the sphere and the plate, is recorded by the PLL. The total force Ftot(a) is the sum of the
electrostatic force Fel(a) and the Casimir force F (a)

Ftot(a) = Fel(a) + F (a). (1)

Note that even if no voltage is applied to the Au plate and the Au sphere is grounded, there is some residual
potential difference V0 between the interacting bodies. This is caused by different connections or work functions of
sphere and plate materials from patches and adsorbates on their surfaces. To perform the electrostatic calibrations
of our measurement system, the Au coated plate was connected to a voltage supply operating with 1µV resolution.
Then 11 different voltages Vi in the range from –87.4 to 32.6mV were applied to the Au plate, while the sphere
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remained grounded.
Starting at the maximum separation, the plate was moved towards the sphere and the corresponding frequency

shift was recorded at every 0.14nm. As was mentioned above, the sphere-plate force acting on the cantilever causes
a change in the resonance frequency. In the linear regime it is given by

∆ω = −
ω0

2k

∂Ftot(a)

∂a
, (2)

where k is the spring constant of the cantilever. Equation (2) is an approximate one. In Sec. VI it is obtained from
the solution of a more complicated nonlinear problem and the application region of this equation is determined. The
electric force entering Eq. (1) is expressed as

Fel(a) = X(a,R)(Vi − V0)
2, (3)

where the function X(a,R) can be written in the form35,52

X(a,R) = 2πǫ0

∞
∑

n=1

cothα− n cothnα

sinhnα
,

coshα = 1 +
a

R
(4)

and ǫ0 is the permittivity of the free space. For convenience in computations this function can be presented
approximately35,53 as the sum of powers ci(a/R)i from i = −1 to i = 6. The absolute separation a is measured
between the zero levels of the roughness on the surfaces of a sphere and a plate (see Sec. V). Experimentally the ab-
solute separation is found as a = zpiezo + z0, where zpiezo is the plate movement due to the piezoelectric actuator and
z0 is the point of closest approach between the Au sphere and Au plate (note that in this experiment the separation
at the closest approach is much larger than the separation on contact of the two surfaces).
Substituting Eq. (1) in Eq. (2) and using Eq. (3), one obtains

∆ω = −β(Vi − V0)
2 − C

∂F

∂a
, (5)

where C ≡ C(k, ω0) = ω0/(2k) and β ≡ β(a, z0, C,R) = C∂X(a,R)/∂a. Here, the first term on the right-hand side is
associated with the gradient of electrostatic force caused by a constant voltage applied to the plate while the sphere
remained grounded. The second term is proportional to the gradient of the Casimir force. Below Eq. (5) is used for
the determination of the gradients of the Casimir force from the measured data for the frequency shifts.

III. ELECTROSTATIC CALIBRATIONS AND RELATED PROBLEMS

To determine the gradients of the Casimir force from Eq. (5) one needs to know the precise values of the involved
parameters β, C and z0. These can be determined by applying different voltages Vi to the plate and investigating the
parabolic dependence of the frequency shift expressed in arbitrary units on Vi. The calibration procedure requires
much care because errors in calibration parameters due, for instance, mechanical drift result in respective errors in
the measured Casimir force or its gradient. Electrostatic calibrations in measurements of the Casimir force have
created much discussion in the literature.54–58 Specifically, in some cases it was observed54 that the residual potential
difference V0 depends on separation: V0 = V0(a). This was attributed to the probable role of the patch potentials
arising due to the polycrystal structure of metallic coatings59 or dust and contaminants on the surfaces60 (for a pure
Coulombian interaction, similar to the applied voltages considered above, V0 is separation-independent). It was even
speculated58 that patches may render the experimental data23,24 at distances below 1µm compatible with theoretical
predictions based on the Drude model. Below we present the results of numerical simulation of the electrostatic force
due to patch potentials and then describe the electrostatic calibrations.

A. Numerical simulations of additional forces due to electrostatic patches

Here, we consider the force arising from a spatial distribution of electrostatic potentials on the surface of an Au
plate in close proximity to an Au sphere for typical parameters of experimental interest. A realistic variation of the
patch potentials was chosen in the range between −90 and 90mV. This was based on the maximum difference in the
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workfunctions between the 〈100〉 and the 〈111〉 crystal orientations of Au.61 The electrostatic force between the Au
plate with patches and the grounded Au sphere was numerically simulated using 3-dimensional finite element analysis
commercial software package (COMSOL Multiphysics).
For this purpose an additional package of the AC/DC module of COMSOL Multiphysics, which is software specif-

ically designed for problems with electrodynamics and electrostatics, was used. The physical system used in the
simulation was drawn with the CAD module of COMSOL Multiphysics and the boundary conditions discussed below
were assigned.
We first drew a 100µm diameter sphere and 120×120×20µm3 plate (see Fig. 2). The sphere and plate were placed

inside a rectangular box held at constant potential. To represent the patches, square grids of various sizes were made
on the plate. The size of the grids varied between 300 nm to 6000nm. Random potentials between –90 to +90mV
were assigned to the patches using a random number generator. There was no height difference between the patches
and the surrounding.
After that, the governing equation, that needs to be solved, with the given boundary conditions was defined. For the

electrostatic force between two metallic objects in vacuum with applied voltages to the plate, the governing equation
is the Poisson equation: ∇ε0εr∇V = 0, where εr is the relative permittivity set equal to unity and V is the potential.
The numerical program solves the electric field and potential at each coordinate in the 3-dimensional space. It finds
the force for a given configuration of potentials on the surfaces. The force acting on the sphere was obtained by
integrating the Maxwell stress tensor along the sphere boundary.
The boundary conditions were as follows. The sphere, and the external box were grounded (potentials were set

equal to zero). The sphere and plate were positioned at some distance a. First the force only due to the patches,
Fpat, was calculated. Here the potential applied to the plate is kept at zero and only the patches have nonzero
potentials. Next, the sphere-plate force for various potentials V applied to the plate, FV , was calculated, when the
patch potentials were set to zero. The value of the applied potential V to the plate was varied till FV = Fpat. This
value of V is equal to V0, the potential that is necessary to compensate the electrostatic force from the patches. Zero
electrostatic sphere-plate force was confirmed for the plate with patches by applying a potential of V0 to the plate.
To achieve the highest resolution in solving the electrostatic problem we used the following parameters for generation

of the surface mesh: 1) The maximum element size is 10−7; 2) Maximum element size scaling factor is 1; 3) Element
growth rate is 1.2; 4) Mesh curvature factor is 0.2; 5) Mesh curvature cutoff is 0.001; 6) Resolution of narrow regions
is 1. The latter parameter was used to control the number of elements generated in a narrow region. Among these
parameters, 3)–6) are very important if a finer mesh is required, especially for complicated objects with sharp, narrow
edges or small holes.
Now we consider the results of the influence of the random distribution of electrostatic patch potentials on the

electrostatic force between the gold sphere and plate. The investigations were performed for periodic patches with
random electrostatic potentials distribution for different sphere-plate separations. The corresponding compensation
voltage V0 when FV = Fpat was found at every separation.
In the finite element analysis method the errors mainly result from the discretization of the surface mesh elements.

To obtain the necessary precision and optimize the computation time, the number of mesh elements was restricted
to 243122. To calibrate the simulation, the theoretical force was compared to that obtained from the numerical
simulation. In these checks a uniform plate with no patches was used. The sphere and plate were placed at 100 nm
separation. The voltage V was applied to the plate and the corresponding FV was found using the numerical sim-
ulation. The value was found to be precise to within 0.23% of the theoretical value. This was repeated for several
sphere-plate separation distances between 50–1000nm.
First the role of large patches was studied. Patch sizes of 6× 6µm2 were used on the plate. The distance between

the patches was kept at 6µm. The residual potentials that will compensate the electrostatic force of the patches were
found for sphere-plate separation distances from 50nm to 1000nm. These are shown in Fig. 3(a) as solid squares.
The residual potential was found to change as a function of the separation distance. The change decreases with
separation and is very small at 1000nm even for these 6µm patches. Next the separation distance between the
patches was increased to 9µm, while the patch size remained fixed. The calculations were repeated as before for
different sphere-plate separation distances and results are shown as solid circles in Fig. 3(a). The same exercise was
repeated for 12µm distance between the patches and the compensation voltage found is shown as solid triangles in the
same figure. It is clear from the figure that while the values of the compensation potential are different for different
separation distances the dependence of V0 on separation is very similar. This shows that even for these relatively
large patches it is possible to obtain a region of separation distance on the order of a micron where the compensation
potential is relatively independent of separation distance.
Next we investigated the role of smaller patches of size 900×900 nm2. The distances between the patches were fixed

at 600nm. The simulation was repeated and the compensation voltage was found for separation distances between
50 nm and 1000nm. The values are shown as solid triangles in Fig. 3(b). The V0 is found to vary as a function of the
separation distance from 9mV to 21mV. Then the patch size was decreased to 600× 600 nm2 while the patch-patch
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distance remained fixed. The simulations were repeated and the compensation voltage as a function of separation
is shown as solid circles in Fig. 3(b). The smaller patches are seen to lead to smaller V0 which also varies less with
separation distance. The variation seems to be correlated with the patch size and the V0 varies little for separation
distances greater than the patch size.
Then the patch size was further reduced to 300 × 300 nm2 and simulations repeated for the same patch-patch

distance. For these smaller patches the plate size was reduced to 32× 32µm2 to optimize the computation time. The
results of the compensation voltages are represented by solid squares in Fig. 3(b). It is clear that the compensation
voltage V0 of the smaller patches have a correspondingly weak dependence on the separation distance. It is worth
noting that the 300× 300 nm2 patches have a V0 which is almost independent of the separation distance particularly
above 300nm. It should be mentioned that the crystallite sizes observed on the Au coated plates used in experiments
are even less than 300 nm. This implies that clean samples where the patch effects originate only from crystallite
size should show a V0 that is independent of sphere-plate separation distance. It should also be emphasized that the
values of V0 between 8 and 9mV computed are similar to those observed in experiments. This lends credence to the
notion that the patches present in experiments are of similar size and potential as has been simulated.
At the same time, patches or surface contaminants of about 2µm size, like those considered recently58 in order

to make the experimental data23,24 compatible with theoretical predictions of the Lifshitz theory combined with the
Drude model, lead to a very strong dependence of V0 on the separation distance at separations up to a few hundred
nanometers [see the upper line marked by solid triangles in Fig. 3(b)]. In several experiments21–24,38,43–45,55 it was
experimentally found, however, that V0 = const over the entire measurement range. This rules out the hypothesis58

that the deviation between the experimental data23,24 and the Drude model predictions may be attributed to the role
of large patches. We will return to this point in the next section in connection with our measurements.

B. Calibration with account of mechanical drift

Now we describe how the parameters of our measurements, V0, z0 and C were determined by means of electrostatic
calibrations. We begin with the determination of V0. From Eq. (5) it can be seen that the frequency shift ∆ω has
a parabolic dependence on the voltage Vi applied to the plate and reaches a maximum at Vi = V0. Thus, V0 can
be extracted from this dependence using χ2-fitting procedure. The curvature of the parabolas is related to β and
includes the closest separation and the cantilever parameter C. Thus, these parameters can be also extracted from
the fit. In order to test for systematic errors in the fitting parameters, the fitting procedure was repeated many times
at different distance ranges.
In the first step, 11 different voltages Vi were applied to the plate and the corresponding frequency shift signal

due to the total force gradient was measured. Then, we subtracted any drift of the frequency shift signal. For this
purpose we used the fact that for separations larger than 2µm the total force between the sphere and plate is below
the instrumental sensitivity. At these separations, the noise is far greater than the signal and in the absence of
systematic errors the signal should average to zero. Then the correction due to the drift in sphere-plate separation
can be measured. The effect of the drift can be observed in Fig. 4(a), where 8 repeated measurements of the frequency
shift signal S∆ω as a function of the sphere-plate separation change ∆z are shown for same applied voltage to the
plate. Drift causes the separation to increase by around 1 nm in 700 s, where 100 s correspond to the time taken to
make the one measurement [note that positional precision much better than 1 nm is achieved in this experiment as
observed in Fig. 4(a)]. To calculate the drift rate, the change in position at one frequency shift signal is plotted as
a function of time as shown in Fig. 4(b). This was repeated for 15 different signals and the average drift rate was
found to be 0.002 nm/s. The separation distances in all measurements and between subsequent measurements were
corrected for this drift rate.
After applying the drift correction the residual potential V0 between the sphere and plate was found. The frequency

shift signals at every 1 nm separation were found by interpolation (data acquisition was done every 0.14nm). From
the parabolic dependence of the electric force gradient shown in Eq. (5), V0 can be identified at the position of the
parabola maxima. The frequency shift signal was plotted as a function of the applied voltages Vi at every separation
and the corresponding V0 and curvature of the parabola β were found. This V0 is shown in Fig. 5(a) as a function of
separation distance with a step of 1 nm. In Fig. 5(b) we show the systematic errors of each individual V0, as determined
from the fit. The mean systematic error equal to 0.86mV is shown by the horizontal line. The random error in the
mean V0 averaged over all separations is equal to 0.04mV. This finally leads to a mean V0 = −27.4± 0.9mV where
the total error of 0.9mV is determined at a 67% confidence level. As can be seen from Fig. 5(a), the mean V0 is
independent of separation over the entire measurement range. To check this observation, we have performed the
best fit of V0 to the straight line [see Fig. 5(a)] leaving its slope as a free parameter. It was found that the slope is
0.000012± 0.000255mV/nm, i.e., the independence of V0 on separation was confirmed. Note that the larger spread
of the individual V0 at larger separations is caused by the smaller values of the total force measured. This, however,
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does not influence the systematic errors in the determination of V0 from the fit [see Fig. 5(b)]. The total error in the
mean value of V0 does not influence the systematic error in the measurement scheme with fixed V0 which is mostly
determined by instrumental noise (see Sec. IVA).
The observed independence of V0 on a should be considered in connection with the problem of patch potentials

discussed in Sec. IIIa. According to our discussion, the patches due to different crystal orientations of the polycrystal
sample, surface contaminants and dust may lead to different dependences of V0 on a. Specifically, our simulations
show that V0 depends only slightly on a for patch sizes smaller than the separation distance. This is the case of
patches due to different crystal orientations. The influence of this type of patches is automatically taken into account
in our measurements either in the value of subtracted electric force or in the value of applied compensating voltage
(see Sec. IV). From our simulations it also follows that V0 depends heavily on a for patch sizes of order or larger
than the separation distance. According to Fig. 4, in our experiment V0 remains constant up to a = 750 nm. Thus,
the existence on our plate of patches of more than 2000nm size discussed in the literature58 is incompatible with our
measurement data for V0. As was mentioned in the introductory part of Sec. III, the dependence of V0 on separation
was observed in different experiments on the Casimir force (see, e.g., Refs.46–48,54,56,62). It might be caused for different
reasons including the mechanical drift considered above. In each case the specific reason can be only determined from
a complete analysis of the setup and all the details of that particular experiment.
The next step was to determine the separation distance at closest approach z0 and the coefficient C in Eq. (5). As

was explained above, these parameters can be found from the dependence of the parabola curvature β on distance
a. The corresponding theoretical expression for parabola curvature was fit to the measured data for β as function of
the separation distance. A least χ2-procedure was used in the fitting and the best values of z0 and C were obtained.
The fitting procedure was repeated by keeping the start point fixed at the closest separation, while the end point zend
measured from the closest separation was varied from 750nm to 50 nm. In Fig. 6(a) the z0 so determined is shown as
a function of the end point used in the fit. The systematic errors in the determination of z0 from the fit vary between
0.36nm and 0.48nm. In plotting Fig. 6(a) we have included the correction to the mechanical drift of separations, as
described above. The values of z0 are seen to be independent on zend indicating the absence of errors resulting from
zpiezo calibration. Similarly the value of the coefficient C was also extracted by fitting the β-curve as a function of
separation to theoretical expression. The results obtained after the inclusion of the correction due to mechanical drift
are shown in Fig. 6(b). Here, the systematic errors vary between 0.13 kHzm/N and 0.19kHzm/N. The independence
on zend again indicates the absence of errors resulting from zpiezo calibration. The mean values of the calibration
parameters obtained are z0 = 195.9 ± 0.4 nm and C = 68.3 ± 0.16 kHzm/N. The indicated total errors are mostly
determined by the systematic errors in the fit. These allow determination of absolute separation between the sphere
and the plate and conversion of the frequency shift signal to the gradient of the total force.

IV. MEASUREMENT RESULTS FOR THE GRADIENT OF THE CASIMIR FORCE

In this section we present the data obtained for the gradient of the Casimir force as a function of separation and
determine the random, systematic and total experimental errors. The data for the gradient of the Casimir force
are obtained in two ways: with applied compensating voltage and with different applied voltages with subsequent
subtraction of the gradient of electric force. The obtained results are compared with the measured in an earlier
experiment.23,24

A. Measurement scheme with applied compensating voltage

To compensate the residual potential difference between the sphere and the plate one should apply to the plate the
potential Vi = V0. Then the electric force vanishes and from Eq. (5) we obtain the gradient of the Casimir force

F ′(a) =
∂F (a)

∂a
= −

1

C
∆ω. (6)

The dependence of the Casimir force gradient on separation was measured 40 times. The mean values of the force
gradient with a step of one nanometer are shown as black dots in Fig. 7 and over a more narrow separation region in
the inset to Fig. 7. In the same figure all 40 individual measured values of the Casimir force gradient are shown as
grey dots with a step of 5 nm (in the inset a step size of 1 nm is shown).
The statistical properties of the experimental data measured are characterized by the histograms presented in

Figs. 8(a) for a = 235 nm and 8(b) for a = 275 nm. The histograms are described by Gaussian distributions with
the standard deviations equal to σF ′ = 0.89µN/m [Fig. 8(a)] and σF ′ = 0.87µN/m [Fig. 8(b)]. The values of the
respective mean gradients of the Casimir force are F ′ = 73.58µN/m [Fig. 8(a)] and F ′ = 41.07µN/m [Fig. 8(b)].
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The solid and dashed vertical lines are the theoretical predictions from the plasma and Drude model approaches,
respectively (see Sec. V for a discussion).
Now we discuss the results of the error analysis. The random error in the gradient of the Casimir force calculated

from 40 repetitions at a 67% confidence level is shown as the short-dashed line in Fig. 9 (note that all the experimental
errors here and below are in fact determined with a step of 1 nm). The systematic error in the measured gradient is
determined by the instrumental noise including the background noise level, and by the errors in calibration. In Fig. 9
the systematic error determined at a 67% confidence level is shown by the long-dashed line. The solid line in Fig. 9
demonstrates the total experimental error obtained by adding in quadrature the random and systematic errors. As
can be seen in Fig. 9, all errors do not depend on separation, as it usually occurs35 in measurements of the Casimir
force by means of an AFM with applied compensating voltage at separations above 200nm. The systematic error due
to the instrumental noise is dominant and mostly determines the value of the total experimental error. The values of
the mean measured force gradients at different separations (first column) together with the total experimental errors
are shown in the second column of Table I. As can be seen from this table, the relative total experimental error takes
the minimum value of 0.69% at a = 236 nm, and then increases to 0.85%, 1.7% 3.0%, 4.9%, and 11.6% at separations
a = 250, 300, 350, 400, and 500 nm, respectively. At a = 746 nm the relative total experimental error reaches a value
of 47%.
It is of crucial importance to compare the gradients of the Casimir force measured here by means of the dynamic

AFM with the results of a previous precision experiment23,24 performed by means of micromachined oscillator in
Indianapolis University — Purdue University Indianapolis (IUPUI). In Fig. 10(a,b) the magnitudes of the mean
Casimir pressure between two Au-coated plates determined in Refs.23,24 are shown by (a) black and (b) white lines
over different separation regions. In accordance with the PFA, the magnitudes of the Casimir pressure measured here
can be obtained from the force gradient as

|P (a)| =
1

2πR
F ′(a). (7)

In Fig. 10(a,b) the mean pressure magnitudes measured by us are shown as crosses. The arms of the crosses are
determined by the absolute errors in the measurement of separations and force gradients (the latter are given in
Fig. 9). Note that the error in separation distances determined at a 67% confidence level is approximately equal to
the error in the point of the closest approach between the sphere and the plate, ∆a = ∆z0 = 0.4 nm.
As can be seen in Fig. 10(a,b), the magnitudes of the mean Casimir pressures measured by us are in excellent

agreement with the experimental results obtained previously.23,24 What’s more in most of cases the centers of our
experimental crosses are found in closest proximity to the magnitudes of mean experimental pressures measured in
the IUPUI. To quantify this statement, in Table I (column 4) we present the gradients of the Casimir force which
are obtained by multiplication of the pressure magnitudes |P | measured in the experiment with micromachined
oscillator23,24 by 2πR, where R is the radius of our sphere. For convenience in comparison, the total experimental
errors are indicated at the same 67% confidence level as in our measurements. From the comparison of columns 2
and 4 in Table I it can be seen that all differences between the respective gradients are in the limits of the total
experimental errors in each experiment.

B. Measurement scheme with different applied voltages

Now we consider another experimental approach to measuring the gradients of the Casimir force in sphere-plate
geometry, the same as was used to perform electrostatic calibrations. In this approach different voltages Vi are
applied to the plate while the sphere remains grounded and the gradient of the total force (electrostatic plus Casimir)
is measured. Then the gradient of the Casimir force is obtained from Eq. (5) as

F ′(a) = −
1

C
∆ω −

∂X(a,R)

∂a
(Vi − V0)

2. (8)

The dependence of the Casimir force gradient on separation was measured 4 times with 11 applied voltages leading
to 44 force-distance curves. The mean values of the Casimir force gradient with a step of one nanometer are shown as
black dots in Fig. 11(a) and over a more narrow separation region in the inset. All 44 individual values of the Casimir
force gradient are shown as grey dots with the step of 5 nm (1 nm in an inset). It can be seen that Fig. 11(a) is very
similar to Fig. 7 where the measured gradient of the Casimir force was obtained using another procedure.
The error analysis in this case is a little different than performed before. Specifically the random error calculated

from 44 repetitions at a 67% confidence level is shown by the short-dashed line in Fig. 11(b). From the comparison
with Fig. 9 it is seen that in the measurement scheme with different applied voltages the random error is slightly
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smaller. In addition to the two sources of systematic errors discussed in Sec. IVA, we now have one more systematic
error in the gradient of electrostatic force subtracted in accordance to Eq. (8). As a result, the systematic error in
the gradients of the Casimir force shown by the long-dashed line in Fig. 11(b) depends on separation. The total
experimental error determined at a 67% confidence level is shown by the solid line in Fig. 11(b). At short separations
the total error is slightly larger and at large separations slightly smaller than in the measurement scheme with applied
compensating voltage. Specifically, at a = 236 nm it is equal to 0.75% and at a = 500 nm to 11.3%.
We present the values of mean gradients of the Casimir force measured with different applied voltages at different

separations in column 3 of Table I together with their total experimental errors. From the comparison of column 3
with column 2 it can be seen that the gradients of the Casimir force measured with different applied voltages and
with the compensating voltage are in very good mutual agreement. The differences between the values in columns 2
and 3 calculated at any separation are significantly smaller than the total experimental errors indicated in Table I.
This confirms the fact that our error analysis is conservative and the errors are overestimated giving high confidence
to our conclusions with respect to the comparison with theory (see Sec. V). In a similar way, the comparison between
columns 3 and 4 also demonstrates a very good agreement between our data and the results of IUPUI experiment23,24

within the limits much below allowed ones, as determined by the absolute errors.

V. COMPARISON BETWEEN EXPERIMENT AND THEORY

Now we compare the experimental data for the gradient of the Casimir force between the sphere and the plate with
the predictions of the Lifshitz theory. In doing so we adapt the classical Lifshitz formula for two parallel plates to
the sphere-plate geometry using the PFA and take into account recently calculated corrections to this approximate
method.63,64 (The corrections computed previously65,66 cannot be used in this experiment because they are found for
much larger values of a/R.) In the framework of the PFA, the Lifshitz-type formula for the gradient of the Casimir
force between a sphere and a plate takes the form

F ′

PFA(a, T ) = 2kBTR
∞
∑

l=0

′
∫

∞

0

qlk⊥dk⊥
∑

α

r2α
e2qla − r2α

. (9)

Here, kB is the Boltzmann constant and T = 300K is the laboratory temperature (we restore this argument, omitted
above, in theoretical equations). The quantity k⊥ is the projection of the wave vector on a plate, q2l = k2

⊥
+ξ2l /c

2, and
ξl = 2πkBT l/~ with l = 0, 1, 2, . . . are the Matsubara frequencies. The prime following the summation sign multiplies
the term with l = 0 by 1/2 and α = TM, TE denotes the transverse magnetic and transverse electric polarizations of
the electromagnetic field. The reflection coefficients rα calculated along the imaginary frequency axis are given by

rTM ≡ rTM(iξl, k⊥) =
ε(iξl)ql − kl
ε(iξl)ql + kl

,

rTE ≡ rTE(iξl, k⊥) =
ql − kl
ql + kl

,

kl =

[

k2⊥ + ε(iξl)
ξ2l
c2

]1/2

, (10)

where ε(iξl) is the dielectric permittivity of boundary materials at the imaginary frequencies.
Computations of F ′(a, T ) using Eq. (9) were performed with the two models of the dielectric permittivity of Au

called in the literature the Drude model approach and the plasma model approach.3,35 In the Drude model approach,
the tabulated optical data67 for the imaginary part of dielectric permittivity of Au are used. They are extrapolated
to lower frequencies by means of the imaginary part of the Drude model with the plasma frequency ωp = 9.0 eV and
the relaxation parameter γ = 0.035 eV. Recently it was shown68 that ε(iξl) obtained with this extrapolation is in
excellent agreement with ε(iξl) obtained with the help of the weighted Kramers-Kronig relations from the measured
tabulated data. In the plasma model approach, the same optical data with the contribution of free charge carriers
subtracted are extrapolated to lower frequencies by means of the simple plasma model with the same value of the
plasma frequency for Au.
The correction to the approximate expression (9) was recently calculated in the framework of the exact theory.63,64

The exact force gradient between the sphere of large radius and the plate was represented in the form

F ′(a, T ) = F ′

PFA(a, T )
[

1 + θ(a, T )
a

R
+ o

( a

R

)]

, (11)
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where the quantity θ(a, T ) was calculated. Specifically, for ideal metal bodies at T = 0 it was found63,64,69

θ(a, T ) =
1

9
−

20

3π2
= −0.564. (12)

General expressions for θ(a, T ) were also provided for real material bodies described by the frequency-dependent
dielectric permittivity at nonzero temperature. In the framework of the Drude model approach, as described above,
the quantity θ(a, T ) was computed64 as a function of separation at T = 300K. It was found that θ(a, T ) increases
monotonically from –0.438 to –0.329 when a increases from 222 nm to 642nm. This means that the error from using
the PFA, which was taken equal to a/R in the analysis of previous experiments21–24,30,31,43 was in fact overestimated.
Therefore that analysis should be characterized as highly conservative.
To compare experiment with theory, one should also take into account the surface roughness. The roughness profiles

on both surfaces of sphere and plate were investigated using an AFM. The root-mean-square roughness on the sphere
and the plate was found to be δs = 2.0 nm and δp = 1.8 nm, respectively. We have averaged the computed gradients
of the Casimir force (11) to calculate the force gradient between rough surfaces F ′

theor (the method of geometrical
averaging3,35). At separations considered in this experiment (a ≥ 235 nm) the same results for F ′

theor were obtained
after the multiplication of Eq. (11) by the factor

ηR(a) = 1 + 10
δ2s + δ2p

a2
+ 105

(δ2s + δ2p)
2

a4
, (13)

i.e., using the multiplicative approach.3,35 This is explained by the fact that at such large separations and small
roughness the influence of roughness on force gradients is very small. Thus, at the shortest separation a = 235 nm
it contributes only 0.13% of the force gradient. The role of surface roughness further decreases with the increase of
separation between the surfaces.
The comparison of the experimental data obtained with applied compensating voltage to the plate (Sec. IVA) with

theory is shown in Fig. 12(a-d) over different separation regions. The experimental data are shown as crosses with
the total experimental errors determined at a 67% confidence level. The exact theoretical results for F ′

theor computed
using the Drude model approach, as explained above, are shown by the black bands. The widths of these bands are
determined by the error in the sphere radius and by the errors in the optical data of Au defined by the number of
significant figures in the tables.67 Recall that the use of alternative optical data70 and respective values of ωp ≤ 8 eV
makes F ′

theor much smaller and, thus, further increases descrepancy between experiment and theory. Furthermore,
for such optical data a significant disagreement was found68 between the dielectric permittivities obtained by the
extrapolation using the Drude model and by the weighted Kramers-Kronig relations. By the grey bands in Fig. 12(a-
d) we present the theoretical results for F ′

theor as a function of separation found using the plasma model approach.
They are computed by Eq. (9) multiplied by the factor (13) to take into account the surface roughness. The error
arising from the use of the PFA is included in the widths of grey bands. These widths take into account that the
correction due to inaccuracy of the PFA is between −0.564a/R and zero (it was shown64–66 that for real metals at
T 6= 0 the magnitude of the main correction to the PFA is smaller than for ideal metal).
From Fig. 12(a-d) it can be seen that theoretical predictions obtained using the plasma model approach are in

excellent agreement with the data over the entire range of separations. As to the predictions of the Drude model
approach, they are excluded by the measurement data over the wide separation region from 235 to 420nm. At larger
separation distances the vertical arms of the crosses only touch the theoretical band predicted by the Drude model
approach, whereas the centers of crosses are still far away from the theoretical predictions. Thus, the experimental
data obtained with applied compensating voltage are consistent with the predictions of the plasma model approach
and exclude the Drude model approach. This is in accordance with the results obtained previously using another
experimental technique.21–24

We now compare with theory the experimental gradients of the Casimir force measured with different applied
voltages to the plate (see Sec. IVB). In this case the results of the comparison are shown in Fig. 13(a-d), where the
experimental data are indicated as crosses. As in Fig. 12, the black bands are computed using the exact theory in
the framework of the Drude model approach. The grey bands are computed using the PFA and the plasma model
approach. The error in the plasma model approach is included in the widths of grey bands. The results of the
comparison between experiment and theory are the same as in Fig. 12. The plasma model approach is found in
excellent agreement with the experimental data over the entire measurement range (shown in Fig. 13 and also at
larger separations). The Drude model approach is excluded by the data over the separation region from 235 to 420 nm
at a 67% confidence level. At larger separations the vertical arms of the crosses only touch the black theoretical bands
whereas the centers of the crosses continue to belong to the grey bands.
We emphasize that the use of the exact theory in computations of the black bands (the Drude model approach)

does not influence the obtained conclusions. Although the correction to the PFA result in Eq. (11) is negative and
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slightly increases the deviation between the data and the black bands in Figs. 12 and 13, the separation range where
the Drude model approach is excluded (from 235 to 420nm) remains the same irrespective of whether the exact theory
or the PFA is used.

VI. NONLINEAR EFFECTS IN DYNAMIC TECHNIQUE

As was noted in Sec. II, in the dynamic technique, when the cantilever is oscillating, the separation distance between
the sphere and the plate is varied harmonically in time

a(t) = a+Az cosωrt, (14)

where ωr is the resonant frequency of the cantilever under the influence of the Casimir force and Az is the oscillation
amplitude which was chosen to be less than 10 nm. It was supposed that under this condition at separations under
consideration our oscillation system belongs to the linear regime where the shift of the natural frequency is given by
Eq. (2). Here, we derive the analytic expression for the frequency shift in the nonlinear regime of an oscillator and
determine the application region of Eq. (2).
The expressions for the shift of frequency of a nonlinear oscillator under the influence of the Casimir (Casimir-Polder)

force were found perturbatively for the micromachined oscillator4,5 and exactly for the Bose-Einstein condensate cloud
above a plate.71 The techniques involving shifts of the resonant frequency under the influence of an external force was
discussed for the purpose of precise force measurements using different setups.49,72 The exact expression71 adapted
to the case of an AFM with attached sphere in the nonlinear regime is given by

ω2
r − ω2

0 = −
ωrω

2
0

πkAz

∫ 2π/ωr

0

dt cos(ωrt)F [a+Az cos(ωrt), T ], (15)

where F is the Casimir force acting between the sphere and the plate. Note that a similar equation was used73 to
investigate the nonlinear regime for a micromachined oscillator with attached cylinder interacting with a plate. Here
we consider the measurement scheme with the applied compensating voltage when only the Casimir force causes the
frequency shift of the oscillator. As was discussed in Sec. V, under the condition a ≪ R one can put with sufficient
precision

F (z, T ) = FPFA(z, T ) = kBTR

∞
∑

l=0

′
∫ ∞

0

k⊥dk⊥

×
∑

α

ln
(

1− r2αe
−2qlz

)

. (16)

Substituting Eq. (16) into Eq. (15) and expanding the logarithms into power series, one obtains

ω2
r − ω2

0 =
ωrω

2
0

πkAz
kBTR

∫ 2π/ωr

0

dt cos(ωrt) (17)

×
∞
∑

l=0

′
∫

∞

0

k⊥dk⊥

∞
∑

n=1

r2nTM + r2nTE

n
e−2qln[a+Az cos(ωrt)].

Changing the order of summations and integrations and introducing the new variable x = ωrt, we arrive at

ω2
r − ω2

0 =
ω2
0

πkAz
kBTR

∞
∑

l=0

′
∞
∑

n=1

1

n

∫

∞

0

k⊥dk⊥

×(r2nTM + r2nTE)e
−2naql

∫ 2π

0

dx cosxe−2nqlAz cos x. (18)

The latter integral can be calculated explicitly74

∫ 2π

0

dx cos xe−2nqlAz cosx = −2πI1(2nqlAz), (19)

where In(z) is the Bessel function of imaginary argument.
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Taking into account that the frequency shift under the influence of the Casimir force is small in comparison with
the resonant frequency, it holds

ω2
r − ω2

0 = (ωr − ω0)(ωr + ω0) ≈ 2ω0(ωr − ω0). (20)

Then Eq. (18) can be rewritten as

ωr − ω0 = −
ω0

kAz
kBTR

∞
∑

l=0

′
∞
∑

n=1

1

n

∫ ∞

0

k⊥dk⊥

× (r2nTM + r2nTE)e
−2naqlI1(2nqlAz). (21)

In terms of dimensionless variable y = 2aql Eq. (21) takes the form

ωr − ω0 = −
ω0

4a2kAz
kBTR

∞
∑

l=0

′
∞
∑

n=1

1

n

×

∫

∞

ζl

ydy(r2nTM + r2nTE)e
−nyI1

(

Az

a
ny

)

, (22)

where ζl = 2aξl/c is the dimensionless Matsubara frequency. This is the final analytic expression for the frequency
shift of a cantilever in the nonlinear regime.
Let us compare Eq. (22) with Eq. (2) and determine the application region of the latter. For this purpose we

represent the Bessel function as power series74

I1(z) =
z

2
+

z3

16
+O(z5) (23)

and substitute the first two terms into Eq. (22):

ωr − ω0 = −
ω0

8a3k
kBTR

∞
∑

l=0

′
∞
∑

n=1

∫

∞

ζl

y2dy

× (r2nTM + r2nTE)e
−ny (24)

−
ω0A

2
z

64a5k
kBTR

∞
∑

l=0

′
∞
∑

n=1

n2

∫

∞

ζl

y4dy(r2nTM + r2nTE)e
−ny.

The sum in n in the first term on the right-hand side of Eq. (24) is calculated as

∞
∑

n=1

(r2TM + r2TE)e
−ny =

r2TM

ey − r2TM

+
r2TE

ey − r2TE

. (25)

By comparing Eq. (24) and (9) with account of Eq. (25) and the connection between dimensional and dimensionless
variables, we arrive at

ωr − ω0 = −
ω0

2k

∂FPFA(a, T )

∂a
−

ω0A
2
z

64a5k
kBTR

×

∞
∑

l=0

′
∞
∑

n=1

n2

∫ ∞

ζl

y4dy(r2nTM + r2nTE)e
−ny. (26)

Furthermore, taking into account that

∞
∑

n=1

n2(r2TM + r2TE)e
−ny = r2TMe−y 1 + r2TMe−y

(1− r2TMe−y)3

+ r2TEe
−y 1 + r2TEe

−y

(1 − r2TEe
−y)3

, (27)
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we rewrite Eq. (26) in the form

ωr − ω0 = −
ω0

2k

∂FPFA(a, T )

∂a
−

ω0A
2
z

64a5k
kBTR

×

∞
∑

l=0

′
∫

∞

ζl

y4dy

[

r2TMe−y 1 + r2TMe−y

(1− r2TMe−y)3
(28)

+r2TEe
−y 1 + r2TEe

−y

(1− r2TEe
−y)3

]

.

Here, the first term on the right-hand side coincides with the right-hand side of Eq. (2) (the linear regime), whereas
the second term describes nonlinear corrections (note that the total force now coincides with the Casimir force).
One can restrict oneself to the linear regime if the magnitude of the second term is much smaller than that of the

first. Keeping in mind that the force gradient is connected with the pressure by means of Eq. (7), this condition can
be written as

|P (a, T )| ≫
kBTA

2
z

64a5

∞
∑

l=0

′
∫

∞

ζl

y4dy (29)

×
∑

α

[

r2TMe−y 1 + r2TMe−y

(1− r2TMe−y)3
+ r2TEe

−y 1 + r2TEe
−y

(1− r2TEe
−y)3

]

.

We have calculated the quantity in the right-hand side of Eq. (29) for the parameters of our experimental setup
under the condition that this quantity does not exceed 1% of the magnitude of the Casimir pressure. The obtained
maximum allowed oscillation amplitudes of the cantilever are shown in Fig. 14 as a function of separation by the solid
and dashed lines for the plasma and Drude model approaches, respectively. The allowed regions in the plane (a,Az),
where the contribution of nonlinear effects is less than 1%, lie beneath the lines. As an example, at separations 100,
235, 300 and 500nm the oscillation amplitude should not exceed 7.07, 16.1, 20.2, and 32.8 nm if computations are
performed using the Drude model approach. If computations are performed using the plasma model approach only
slightly different maximum amplitudes are allowed. They are equal to 7.11, 16.2, 20.5, and 33.4 nm at the same
respective separations.
Note that the use of full Eqs. (22) and (28) opens opportunities for performing measurements in the nonlinear

regime. In this case the immediately measured quantity would be the frequency shift to be compared with theoretical
computations using Eqs. (22) or (28) with different dielectric properties of boundary surfaces.

VII. CONCLUSIONS AND DISCUSSION

In the foregoing we have presented the results of precise measurements of the gradient of the Casimir force between
an Au-coated sphere and a plate by means of an AFM operated in the dynamic regime. From several modifications
of dynamic measurements the most sensitive frequency shift technique has been employed which has never been used
before in experiments on the Casimir force using an AFM. This was connected with creation of significantly different
setup adapted for dynamic measurements, use of higher vacuum and hollow glass microspheres of smaller radius.
Special attention was devoted to electrostatic calibrations of the setup, i.e., to a problem which created much

discussion in previous literature. We have addressed in much detail both the problem of electrostatic patches and
contaminants on the surface and the problem of dependence of the calibration parameters on separation between
the test bodies. It is well known that many different models of patches were discussed in the literature leading
to varying predictions of additional electrostatic forces from large58 to negligibly small.75 To address this problem,
we performed numerical simulation of the electrostatic force due to the patch potentials and have shown that for
both relatively small and large patches the residual potential between the sphere and the plate would be separation-
dependent for patch sizes of order or larger than the separation. This adds importance to the second problem, i.e., to
the separation-dependence of the calibration parameters. Experimental investigation of this problem demonstrated
that the calibration parameters are constant if the corrections to mechanical drift are introduced. Our measurement
data for electric forces unequivocally exclude the predicted58 large electrostatic force from the polycrystal structure of
Au coatings. On the other hand, the observed independence of the residual potential difference on separation rejects
the hypothesis58 of large contaminants on the surface, which could decrease significantly the enormously large effect
of a polycrystal structure, but, as follows from our simulations, lead to the separation-dependent residual potential.
These findings are in line with the fact that the surfaces of the Au-coated sphere and the plate in our experiment
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have been subjected to a multistep cleaning procedure and would be unlikely to have large contaminants. Thus, our
conclusion is that the experimental data are in favor of the model of patches proposed previously.75

It should be stressed that the mean gradient of the Casimir force as a function of separation has been measured
in our experiment in two independent ways (with applied compensating voltage and with applied different voltages
to the plate with subsequent subtraction of electric forces). The obtained results were found in excellent agreement
in the limits of total experimental errors. The latter were determined as combinations of random and systematic
errors at a 67% confidence level. The mean measured gradients of the Casimir force were converted into the pressure
between two parallel plates and compared with respective results measured in the most precise experiment performed
by means of micromachined oscillator.23,24 The mean Casimir pressures determined in both experiments were found
in excellent agreement over the entire measurement range.
The mean measured gradients of the Casimir force were compared with theoretical predictions of the Lifshitz theory

with no fitting parameters. In so doing two theoretical approaches proposed in the literature were used based on the
Drude and plasma models of dielectric permittivity. The contribution of surface roughness was calculated to be less
than 0.13% of the force gradients. The measured data were shown to be consistent with theoretical results obtained
using the generalized plasma-like model over the entire measurement range. Theoretical predictions computed using
the Drude model approach were excluded by the data over the separation region from 235 to 420 nm at a 67%
confidence level with measurements at every nanometer. The nonlinear regime of our oscillator was investigated,
and the linearity in the region of used experimental parameters was confirmed. It is pertinent to note that one
experiment alone performed at a 67% confidence level would be not enough to falsify application in Casimir physics
of a well tested and commonly used theoretical model. In this regard our experiment should be considered as an
additional independent argument to more precise experiments (up to 99.9% confidence level) performed using another
experimental technique.3,22–24

The main result on the exclusion of the Drude model by the data deserves special discussion. It is common
knowledge that response of metallic materials to real electromagnetic fields is correctly described by the Drude model,
whereas the plasma model is only an approximation valid in the region of sufficiently high frequencies. Experiments
using a micromachined oscillator21–24 demonstrated that in the Lifshitz theory not the Drude but the plasma model is
supported by the data. Thereafter many attempts were undertaken to rule out this conclusion. This is the reason why
one more experiment, using an alternative laboratory setup, is highly desirable. In our experiment, using a dynamic
AFM in a frequency modulation technique, we confirmed the results of previous measurements performed by means
of a micromachined oscillator. We also addressed the problem of patch potentials, independence of the calibration
parameters on separation and applicability of the linear regime of the dynamic AFM. In addition, an independent
comparison between experiment and theory beyond the PFA has been made with no fitting parameters. Nevertheless
the Drude model approach was again excluded by the data. One can conclude that the exclusion of this approach to
a theoretical description of the Casimir interaction between metallic surfaces received a more complete experimental
confirmation. Keeping in mind similar experiments with semiconductor and dielectric test bodies discussed in Sec. I,
a thorough analysis of all the assumptions in the basics of the Lifshitz theory seems pertinent.
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FIG. 1: (Color online) (a) Layout of the vacuum FM-AFM setup used in precision dynamic measurements of the gradient of
the Casimir force. (b) Schematic of the force measurements microscope. (1) is a Au plate placed on the AFM piezo (2). (3)
is the plate movement interferometer detection fiber. For monitoring the cantilever (4) oscillations the second interferometer
was used, the detection fiber end is shown as (5). The end was fixed in the fiber holder (6), which was placed in the XYZ
stage and can move in the XYZ direction for adjusting the signal from cantilever. The cantilever chip (7) was connected to two
piezoelectric actuators (8 and 9) and clutched in the home-made cantilever holder (10) as shown in the picture.
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FIG. 2: (Color online) The sphere-plate configuration with patches which were put on the top of a plate.
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FIG. 3: (Color online) The residual potential difference between the sphere and the plate as a function of separation for (a)
patches of fixed sizes 6 × 6µm2 with different distances between patches and (b) fixed distances between patches equal to
600 nm with different sizes of patches.
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FIG. 4: (a) The drift in experimental curves for the frequency shift signal as a function of the change in sphere-plate separation
for 8 repetitions of the same applied voltage to the plate. (b) The change in the plate position at one frequency shift signal
value as a function of time.
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FIG. 5: (Color online) (a) The residual potential difference between Au-coated sphere and plate as a function of separation.
(b) The systematic error of each individual V0, as determined from the fit, versus separation.
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FIG. 6: The dependences of (a) the closest sphere-plate separation and (b) the coefficient C in Eq. (5) on the end point of the
fit.
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FIG. 7: (Color online) Mean measured gradients of the Casimir force as a function of separation are shown by solid lines. Grey
dots indicate all 40 individual force gradients plotted with a step of 5 nm (1 nm in the inset).
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FIG. 8: (Color online) The histograms for the measured gradients of the Casimir force at separations (a) a = 235 nm and (b)
a = 275 nm. f is the fraction of 40 data points having the force values in the bin indicated by the respective vertical lines of
the histogram. The corresponding Gaussian distributions are shown by the dashed black lines. The solid and dashed vertical
lines show the theoretical predictions from the plasma and Drude model approaches, respectively.



27

250 300 350 400 450 500

0.1

0.2

0.3

0.4

0.5

a (nm)
�F0 (�N
/m)

FIG. 9: (Color online) The random, systematic and total experimental errors in the measured gradients of the Casimir force
determined at a 67% confidence level are shown by the short-dashed, long-dashed and solid lines, respectively. The measurement
scheme with applied compensating voltage is used.
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FIG. 10: Magnitudes of the mean Casimir pressure previously measured23,24 are shown by (a) black and (b) white lines as
functions of separation. Magnitudes of the mean Casimir pressure measured here are indicated as crosses. The arms of the
crosses are determined by errors in the measurement of separations and force gradients.
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FIG. 11: (Color online) (a) Mean measured gradients of the Casimir force as a function of separation are shown by solid
lines. Grey dots indicate all 40 individual force gradients plotted with the step of 5 nm (1 nm in the inset). (b) The random,
systematic and total experimental errors in the measured gradient of the Casimir force determined at a 67% confidence level are
shown by the short-dashed, long-dashed and solid lines, respectively. The measurement scheme with different applied voltages
is used.
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FIG. 12: Comparison between the experimental data for the gradient of the Casimir force (crosses plotted at a 67% confidence
level) and theory (black and grey bands computed using the Drude and plasma model approaches, respectively) within different
separation regions. The experimental data are obtained with the compensating voltage applied to the plate.
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FIG. 13: Comparison between the experimental data for the gradient of the Casimir force (crosses plotted at a 67% confidence
level) and theory (black and grey bands computed using the Drude and plasma model approaches, respectively) within different
separation regions. The experimental data are obtained with different voltages applied to the plate.
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FIG. 14: Maximum allowed amplitudes of oscillations of the AFM cantilever in the linear regime as a function of separation
are shown by the solid line (the plasma model approach) and by the dashed line (the Drude model approach). The allowed
regions of (a,Az)-plane lie beneath the lines.
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TABLE I: The mean values of the gradients of the Casimir force together with their total experimental errors at different
separations (column 1) measured in this work with applied compensating voltage (column 2) and with different applied voltages
(column 3). Column 4 contains the mean gradients of the Casimir force and their total experimental errors obtained from the
previously measured pressures.23,24

Gradients of the Casimir force F ′ (µN/m)

a measurements with measurements with
(nm) applied V0 different applied Vi IUPUI

236 72.56 ± 0.50 72.35 ± 0.54 72.22 ± 0.34

240 68.27 ± 0.50 67.92 ± 0.53 67.91 ± 0.32

250 58.55 ± 0.50 58.62 ± 0.53 58.43 ± 0.29

260 50.57 ± 0.50 50.42 ± 0.52 50.57 ± 0.27

270 43.98 ± 0.50 44.08 ± 0.52 44.01 ± 0.25

280 38.55 ± 0.50 38.38 ± 0.51 38.47 ± 0.23

290 33.63 ± 0.50 33.60 ± 0.51 33.78 ± 0.22

300 29.83 ± 0.50 29.83 ± 0.51 29.79 ± 0.21

350 16.80 ± 0.50 16.92 ± 0.50 16.77 ± 0.18

400 10.28 ± 0.50 10.28 ± 0.50 10.17 ± 0.17

450 6.22 ± 0.50 6.54± 0.50 6.53 ± 0.16

500 4.29 ± 0.50 4.32± 0.49 4.36 ± 0.16

550 3.20 ± 0.50 2.87± 0.49 3.03 ± 0.16

600 2.51 ± 0.50 2.12± 0.49 2.18 ± 0.16

650 1.74 ± 0.50 1.56± 0.49 1.61 ± 0.16

700 1.16 ± 0.50 1.17± 0.49 1.23 ± 0.16

746 1.06 ± 0.50 0.82± 0.49 0.94 ± 0.16


