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Using a theoretical analysis of the ion beam sputtering dynamics, we demonstrate how ion bom-
bardment on an initially sloped surface can create knife-edge-like ridges on the surface. These ridges
arise as nonclassical shock-like solutions that are undercompressive on both sides, and appear to
control the dynamics over a large range of initial conditions. The slope of the ridges is selected
uniquely by the dynamics, and can be up to 30 or more depending on the orientation dependence of
the sputtering yield. For 1keV Ar+ on Si(001), the scale of the ridge is ≈ 2nm. This is much smaller
than the most unstable lengthscale and suggests a method for creating very steep, very sharp fea-
tures on a surface spontaneously, by pre-patterning the surface to contain relatively modest slopes
on the macroscale.

I. INTRODUCTION

Fabricating nanoscale features on a surface is increas-
ingly important, but many methods suffer throughput
limitations too restrictive to permit them to be widely
implemented on a large scale. It is therefore of interest
to find techniques stemming from self-organization prin-
ciples, whereby macroscale features dynamically give rise
to complex small scale structures1. A promising method
is ion bombardment2–4. This erodes a surface at dif-
ferent rates depending on the slope of the surface, so
intricate two-dimensional structures can emerge. Cur-
rently, focused ion beam bombardment is used to micro-
machine tall, steep features5,6, and to sculpt nanopore
single-biomolecule detectors7,8, while uniform ion bom-
bardment of a flat surface is used to create semiconduc-
tor quantum dots from the linear instabilities that are
excited9–11. The utility of these techniques is, however,
limited. Focused ion beams are costly both in time and
energy, while uniform irradiation of a flat surface cannot
achieve very steep nor very sharp structures because of
saturation and wavenumber constraints on the linearly
unstable modes.

Here we predict that it is possible to create very sharp,
steep features from uniform ion bombardment, by start-
ing with a surface that is pre-patterned to have modest
slopes on the macroscale. This allows the dynamics to
become nonlinear, without imposing a large cost: such
a pre-patterning is relatively cheap to achieve, for ex-
ample using optical standing waves. If the initial slopes
are larger than a critical value, the surface spontaneously
develops much larger slopes under uniform ion bombard-
ment (see Fig. 1). Specifically, we show that it evolves
to a knife-edge-like ridge, whose shape is a fixed func-
tion of the material, ions, and energy but is independent
of the initial patterning. One could imagine creating a
large-scale pattern with these robust nanoscale ridges, to
obtain a material that is currently too costly to probe
experimentally.

The knife-edge ridge is a particular non-classical trav-
eling wave solution to the governing equations, and to
understand why and when it arises we must investigate

the full landscape of traveling wave solutions. We pro-
ceed as follows. In Section II we introduce the govern-
ing equations, and review the definitions of classical and
nonclassical traveling wave solutions. In Section III we
compute the entire set of traveling wave solutions for a
given material and energy, show that it supports an iso-
lated steep, sharp, non-classical solution that looks like a
knife-edge, and discuss how this generalizes for arbitrary
materials. Section IV investigates the dynamics of the
height evolution and how these can be understood from
the set of traveling wave solutions; in particular we show
that a wide range of conditions leads to the knife-edge
solution. Section V shows how the knife-edge solutions
vary with different materials and energies, and Section VI
discusses the effect of an approximation we make to sim-
plify the analysis. Finally, we offer concluding remarks
in section VII.

max |b| < bc0:

max |b| > bc0:

FIG. 1. Schematic of surface height evolution. When the
maximum slope of the initial patterning (left) is less than a
critical value (top), there is little slope amplification. When
the slope of the initial patterning is greater than a critical
value (bottom), the slope is amplified considerably and the
knife-edge ridge forms.
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II. GOVERNING EQUATIONS AND
TRAVELING WAVE SOLUTIONS

Our analysis begins with the classical macroscopic de-
scription to ion beam sputtering2, in which the height
h(x, t) of the surface is described by a nonlinear par-
tial differential equation, representing the combined ef-
fects of atom sputtering, atom redeposition, and addi-
tional smoothing physics such as surface diffusion or ion-
enhanced viscous flow. We consider surface morphologies
that vary in one direction only. When the radius of cur-
vature of the surface is much larger than the lateral scale
over which an ion deposits its kinetic energy, the height
evolves according to12

ht + Y (|∇h|) = D(|∇h|)hxx +B0

√
1 + b2

∂2κ

∂s2
. (1)

Here Y (b) is the yield function, which gives the average
velocity of erosion of the surface as a function of its slope
b = |∇h| (or equivalently the angle of the incoming ion
beam), D(b) describes the second-order effects of sput-
tering and redistribution, κ is the surface curvature, and
∂
∂s = 1√

1+b2
∂
∂x is the arc-length derivative. The final

term represents surface diffusion or viscous flow confined
to a thin surface layer, and the factor

√
1 + b2 accounts

for the evolution of the height in the direction parallel to
the incoming ions.

Since we are interested in dynamical regimes producing
the smallest scale structures, we consider the limit where
the dominant smoothing mechanism is fourth order, so
the D(b) term is negligible in comparison. This simplifies
the analysis and allows us to consider a smaller range of
parameters; in addition this term is not well-constrained
by measurements so it is difficult to incorporate quanti-
tatively in a theoretical paper at the present time. The
validity of this approximation is likely ion energy depen-
dent, and we discuss it further in section VI.

To analyze Eqn. (1), it is convenient to use the
slope b = hx as the dynamical variable. After non-
dimensionalizing lengths by L = (B0/Y0)1/3, times by

T = L/Y0, and the yield function as Ỹ (b) = Y (b)/Y0
where Y0 = Y (0), we obtain

bt + Ỹ (b)x = − ∂2

∂x2

(
1√

1 + b2
∂

∂x

(
bx

(1 + b2)3/2

))
. (2)

The left-hand side has the mathematical structure of a
nonlinear conservation law, which arises in many physical
contexts and typically results in nonlinear waves such
as shocks or rarefaction waves13. The local advection
velocity is given by Ỹ ′(b), which varies with b and so
causes the slopes to steepen; this effect is counteracted
by fourth-order smoothing. This steepening can lead to
a sharp jump between some slope bl on the left and some
slope br on the right, which can propagate as a traveling
wave.

Our numerical simulations (described below) indicate
that such traveling wave solutions control the long-time

dynamics of (2), and provide an organizing principle for
discovering initial surface shapes leading to knife-edge
solutions. It is therefore useful to start our study by
characterizing the pairs (bl, br) between which such trav-
eling solutions can exist. We seek solutions to (2) of
the form S(η) = S(x − ct) with boundary conditions
S(−∞) = bl, S(∞) = br, S

′(±∞) = 0. After integrating
from +∞ → η, we obtain a third-order boundary value
problem for the traveling wave:

c(S−br)−(Y (S)−Y (br)) = B0

(
1√

1 + S2

(
S′

(1 + S2)3/2

)′)′
,

(3)
with boundary conditions (S, S′, S′′)|−∞ = (bl, 0, 0),
(S, S′, S′′)|∞ = (br, 0, 0). The speed c is determined by
integrating (2) from −∞ to +∞ to give

c =
Y (br)− Y (bl)

br − bl
. (4)

Strikingly, not all pairs (bl, br) can admit a traveling
wave solution. The reason for this can be heuristically
understood by a dimension-counting argument. A trav-
eling wave solution is a trajectory (S(η), S′(η), S′′(η)) in
3-dimensional space, connecting the left-hand endpoint
(bl, 0, 0) to the right-hand endpoint (br, 0, 0). For a solu-
tion to exist, the set of paths leaving the left-hand point
(the unstable manifold, denoted US(−∞)) must inter-
sect the set of paths which enter the right-hand point
(the stable manifold, denoted S(∞)), and the intersection
set must be at least one-dimensional. Whether or not
this can happen depends on the dimensions of US(−∞),
S(∞). These are calculated by linearizing the ODE ob-
tained from (2) about each of the boundary points at
±∞, and looking for exponentially growing modes ∝ eλη.
We find that λ3 ∝ c − Y (bl(r)), so US(−∞) is two-
dimensional when c < Y (bl) and one-dimensional other-
wise, and S(∞) is two-dimensional when c > Y (br) and
one-dimensional otherwise.

There are three possible families of solutions. When
both US(−∞), S(∞) are two-dimensional, a solution is
the intersection of two surfaces in R3; this can lead to
an intersection curve. Solutions of this type are classical
shocks, and satisfy the Lax entropy condition Ỹ ′(bl) >

c > Ỹ ′(br), so that the solution behind the jump moves
faster than it and the solution in front of the jump moves
more slowly: the shock is compressed from both sides.

When either US(−∞) or S(∞) is one-dimensional, a
solution exists when a curve and a surface intersect in
such a way that the intersection contains a curve; this
is almost always impossible. However, if we introduce
another parameter, such as by varying bl or br, then this
extra dimension means it may become possible to find a
solution. This will violate one of the inequalities in the
Lax entropy condition, hence such solutions are typically
called undercompressive14,15. Because we must vary a pa-
rameter to find a solution, the set of values which admit
undercompressive solutions are a curve in (bl, br)-space.
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FIG. 2. Yield function (5) used as a case study. Markers in-
dicate undercompressive shock b0, doubly-undercompressive
shock b∗, and the smallest slope bc∗ above which b∗ emerges.

FIG. 3. Red shading: boundary conditions (bl, br) yielding
traveling wave solutions to (2). Background shading indi-
cates the type of solution possible: compressive (dark), un-
dercompressive (medium), doubly-undercompressive (white).
Dashed line on boundary of red regions indicates uncertainty
in exact location of boundary. Selected solutions (for slope
b = hx) with given boundary conditions: top (b0, 0), middle
(1,-1), bottom (b∗,−b∗).

The final possibility is that both US(−∞) and S(∞)
are one-dimensional, so we must vary two parameters to
find a solution. Such solutions will be undercompressive
from both sides, so we call them doubly undercompressive,
and they will be isolated points in (bl, br)-space.

III. TRAVELING WAVE LANDSCAPE

We numerically search for the values of (bl, br) which
admit traveling wave solutions (see section VIII A for
methods), using as a model the yield function for 1keV
Ar+ ion bombarded Si(001). In non-dimensional form

this is given by

Y (θ)

Y (0)
= (cos θ)−f exp{−Σ((cos θ)−1 − 1)}, (5)

where16 cos θ = (
√

1 + b2)−1, Σ = f cos θopt, f = 2.36,
and θopt = 69.5, (see Fig. 2). Figure 3 plots the so-
lutions we have found for |bl|, |br| ≤ 8. There are five
two-dimensional regions of compressive solutions (red
patches), four curves of undercompressive solutions (red
lines), and exactly one doubly undercompressive solution
(red star). Becuase there is symmetry in the traveling
wave equation under time-and space-reversal, this figure
is symmetric about the line bl = −br.

The doubly undercompressive solution, at (bl, br) =
(b∗,−b∗) where b∗ = 4.7, corresponds to a sharp change
in slope which is anti-symmetric about 0 (Fig. 3, right),
so the height of the surface looks like a knife-edge. The
change happens over a distance x′ = 3.7, so the radius of
curvature at the tip is M−1 = 2.5−1. Madi et. al16 esti-
mate B0 = 0.062nm4/s and Y0 = 3.7× 10−4nm/s, which
implies a dimensional radius of curvature of L/M =
(B0/Y0)1/3/2.5 = 2.2 nm. This is several times smaller
than the most unstable wavelength of 9.8 nm. Experi-
mental realization of this solution would therefore pro-
vide a novel method to create very small-scale, sharp
features.

We should note that the approximation (1) breaks
down when the radius of curvature of the surface be-
comes equal to the length scale over which an ion de-
posits its energy. This length scale is at a maximum of
1.6nm for a flat surface, decreasing to 0.55nm for a sur-
face with slope b∗

12,16. As these scales are approaching
the radius of curvature of the doubly-undercompressive
solution, additional physics may be required to quantita-
tively describe the dynamics after it has formed.

The traveling wave landscape will change with the
yield function, which varies with the substrate, ions, and
energy. We have investigated a variety of experimentally
measured yield functions and found that the qualitative
features of the traveling wave landscape, such as pos-
sessing a single doubly undercompressive solution, are
similar to Figure 3, but that quantitative features, such
as the slope of the solution, will change. Therefore we
focus on the above yield function as a model to carry out
our investigation, and comment how it will vary for other
materials in section V.

IV. NUMERICAL SOLUTIONS TO THE
GOVERNING EQUATIONS

We have investigated ways of forming this knife-edge
solution by solving the PDE (2) numerically, searching
for initial conditions where the system spontaneously
evolves to the knife edge. (See Section VIII C for a de-
scription of our numerical procedure.) We will compare
our results to the traveling wave solutions found in sec-
tion III. Because these solutions becomes shocks in the
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limit B0 → 0, we use the words “shock” and “solution”
interchangeably.

A. Fixed-slope boundary conditions

We first consider initial conditions in which the slopes
at the edges are constant. Our simulations demonstrate
that if the slopes at the edges are fixed to values in a red
region for which there exists a compressive shock, the
solution evolves to the corresponding traveling wave.

If we start with boundary values for which there is not
a traveling wave, then the solution in intermediate re-
gions creates at least two shocks, at least one of which will
be undercompressive. For example, if we start with the
pair (bl, br) = (1.6, 0) for which there is no compressive
shock, the solution after a long time forms a compressive
shock (1.6, 2.3) and an undercompressive shock (2.3, 0).
Both move rightwards, but the compressive shock moves
more slowly, so the region of high slope b = 2.3 gets larger
with time, see figure 4 (left).

This particular undercompressive shock, (which we call
b0 = 2.3), connecting an undetermined value bl on the left
to a flat surface br = 0 on the right, is important because
it arises spontaneously whenever a surface is initially pat-
terned to have a compact region with large enough slopes,
surrounded by a flat surface. We have determined via
traveling wave solutions that the maximum value of bl
for which there is a compressive wave connecting it to
br = 0 is

bc0 = 1.257, (6)

and we have found numerically that it arises whenever
bl > bc0. It was first pointed out theoretically in Chen
et al12, who also observed it experimentally in 30keV
gallium on silicon. The pair (b0, 0) is marked with a blue
cross in figure 3, and the particular solution shown in the
sidebar.

A similar behaviour occurs for other pairs; for ex-
ample (bl, br) = (3,−1) evolves to a compressive shock
(3, 4.3) moving leftwards and an undercompressive shock
(4.3,−1) moving rightwards. In height coordinates this
is an asymmetric ridge moving to the right. See figure 4
(middle).

Qualitatively different behavior occurs for a pair such
as (3,−2). In this case the dynamics selects a combi-
nation of three shocks: in the middle is the doubly un-
dercompressive shock (4.7,−4.7), which has speed c = 0,
and traveling away on either side are compressive shocks
(3, 4.7) and (−4.7,−2). The surface evolves to a station-
ary knife-edge that gets taller with time. This three-wave
structure with the doubly undercompressive shock in the
middle is very robust – a wide range of boundary condi-
tions give rise to it.

B. Calculus of traveling wave solutions

The above investigation suggests a form of calculus can
be applied to figure 3 to determine the long-time solution
to the PDE selected by a given pair of boundary values
(bl, br).

Let us return to the point (bl, br) = (1.6, 0). This is in
a dark-grey region of figure 3, where there is no traveling
wave solution, so it must evolve to intermediate values
Y1, Y2, . . . to form several shocks as (1.6, Y1), (Y1, Y2),
(Y2, 0). To determine the possible values of Y1, Y2 we do
the following. Put 3 hypothetical shocks on the figure
at X1 = (1.6, 0), X0 = (1.6, 1.6), X2 = (0, 0). Figure 5
shows this construction. The shocks from left to right
connect as X0, X1, X2. Now, we want to move the points
to put each of them in a red region, but in such a way
that they still represent a sequence of shocks: the second
value of Xi equals the first value of Xi+1, and the first
value of X0 and second value of X2 are fixed to satisfy the
boundary conditions. The points can move as follows:
if X1 moves up (down), then X0 moves left (right) by
an equal amount, and if X1 moves right (left), then X2

moves up (down) by an equal amount.

It can be seen by examination that the only way that
X1 can move to keep X0, X2 in a red region is right or
up, and that X1 must lie on the nearest curve of under-
compressive solutions. It can lie anywhere on the curve
from (1.6, 0.7) to (2.3, 0) and still keep X0, X2 in a red
region. So why does it choose the extreme point, where
X0 = (1.6, 2.3), X2 = (0, 0)?

To answer this consider the speeds of the resulting
shocks. Because the undercompressive shocks contained
on the curve in question are compressive from the right,
characteristics enter the shock from this direction, so any
non-constant solution to the right of X1 will eventually
be subsumed by it. Therefore X2 must lie on the diago-
nal. Indeed, computing the speeds for the other extreme
point, X1 = (1.6, 0.7), X0 = (1.6, 1.6), X2 = (0.7, 0),
shows that c(X1) = 0.9 and c(X2) = 0.5 (see (4)), so
X1 will catch up to X2 and the latter cannot exist as a
long-time solution.

We have found this behaviour generically follows
through for the points to the left of the curve of un-
dercompressive solutions in the lower right-hand quad-
rant. However, for boundary values below the minimum
of the curve, such as the point (3,−2), there are no longer
feasible solutions for X1 on the undercompressive curve.
In this case X1 moves to the doubly-undercompressive
solution (4.7,−4.7). Because this is undercompressive
from both sides, characteristics move away from it on
either side so there can be two shocks surrounding it:
X0 = (3, 4.7), X2 = (−4.7,−2).

It can be seen by examining figure 3 that the the
doubly-undercompressive solution arises for a large set
of boundary conditions, a finding that is consistent with
our numerical experiments.
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FIG. 4. Solutions to the PDE (2) for different boundary conditions. Left: bl = 1.6, br = 0. Middle: bl = 3, br = −1. Right:
bl = 3, br = −2. Initial condition indicated as a dotted line, solution b(x) after a long time is a solid line. The relative speeds
of the steep features of each solution are indicated by the relative sizes of the adjacent arrows.

FIG. 5. Constructing a triplet of feasible shocks (X0, X1, X2).
The diagram shows pairs of boundary conditions (bl, br) yield-
ing traveling wave solutions to (2) (equivalently (3)), in red.
Grey shading indicates the type of solution possible: dark
grey is compressive, medium grey is undercompressive, white
is doubly-undercompressive.

C. Dynamically creating the doubly
undercompressive solution

The fact that knife-edge arises for a large set of bound-
ary conditions suggests a method for creating sharp fea-
tures experimentally: by patterning the surface initially
to contain slopes that steepen to the doubly undercom-
pressive solution. We expect this solution to arise when
the magnitude of the initial slope is large enough, as
shown in Figure 1. In this section we determine a cri-
terion on the initial slope that guarantees the doubly un-
dercompressive solution will emerge for fixed boundary
conditions, and then we demonstrate numerically that

FIG. 6. Time-evolution of anti-symmetric initial conditions,
with boundary slopes held fixed at (bl,−bl). Time advances
from left to right. Top: boundary condition bl = 1 < bc∗. Two
compressive shocks form and approach each other. When they
collide, they form a compressive shock that doesn’t change
with time. Compare with solution (2) in Fig. 3. Middle:
boundary condition bl = 1.8 > bc∗. Two undercompressive
shocks form and approach each other (each is trailed by a
compressive shock). When they collide, they form the doubly-
undercompressive shock, and two compressive shocks that
travel away. Bottom: boundary condition bl = 3 > bc∗. This
also forms two undercompressive shocks that collide and form
the same doubly-undercompressive shock. Only half of each
simulation is shown as the curves are anti-symmetric about
x = 0.

the dynamically evolving case can be partially under-
stood using the solutions for fixed boundary conditions.

To determine a lower bound on the initial slope, we
first consider a simplified problem that is anti-symmetric
about x = 0, with fixed boundary conditions bl = −br.
By computing traveling wave solutions along the diagonal
bl = −br in figure 3, we determine that the maximum
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compressive shock occurs at bl = bc∗, where

bc∗ = 1.28. (7)

Next, we solve the governing PDE numerically using
an initial condition containing two equal but oppositely-
sloped regions separated by a flat region in between:
we can think of this as identical shocks moving in op-
posite directions that collide. As predicted by analy-
sis in sections IV A and IV B, these initial conditions
lead to a compressive shock when bl < bc∗, but to
the doubly-undercompressive shock plus two compressive
shocks when bl > bc∗. Figure 6 shows the time evolution
of one initial condition when b < bc∗, and two initial con-
ditions with different slopes when b > bc∗ – both of these
conditions approach the same doubly undercompressive
solution.

What is striking about this is that it provides an am-
plification of the slope of the surface – to a universal
value that depends only on the surface properties. This
phenomenon is the major discovery of this paper.

An argument can be made that, at least transiently,
one need only consider the symmetric case, and in doing
so we relax the criterion on the initial slope even further.
When the sloped regions are initially far apart, they effec-
tively see a flat surface ahead, so given sufficient initial
slopes, they develop the undercompressive shock b0 at
their leading edges. When these shocks meet, they ini-
tially follow the dynamics appropriate to shocks of slope
b0 that collide. Since b0 > bc∗, this automatically develops
into the doubly undercompressive shock.

Therefore, we predict that the doubly undercompres-
sive shock will emerge dynamically when

max{initial magnitude of slope} > bc0, (8)

(on each side), provided

b0 > bc∗, (9)

where bc0 was the minimum value required to develop the
undercompressive shock. Condition (9) is a feature of
the traveling wave landscape that depends on the yield
function. We have found it to hold for all the func-
tions of Yamamura type that we have investigated (see
section V). However, it need not be true for general
yield functions or smoothing terms: as a side investiga-
tion we have solved the traveling wave problem with a
linearized fourth-order term −B0∆∆b, and found that
only certain yield functions satisfy the inequality. There-
fore curvature-dependent evolution is critical to achieving
steep features.

We next demonstrate that the doubly undercompres-
sive shock can arise dynamically, without fixing the
boundary conditions but by pre-patterning the surface.
We have found that criterion (8) applied to the initial
patterning is sufficient to create the doubly undercom-
pressive shock dynamically, although the length of time
for which it exists will depend on other features of the

FIG. 7. Dynamics of colliding steep features at initial, inter-
mediate, and near-final times. Top: slope, bottom: height.

initial condition such as the length and initial separation
of the sloped regions. Fig. 7 shows the dynamics for
one possible experimental setup. The initial surface is a
wide ridge, whose sides have slopes ±3, tapering to a flat
surface at the edges of the domain. Initially the sides
move toward each other, creating the undercompressive
shock from ±b0 to 0 at their leading edges. When they
approach there is a sharp jump in slope from +b0 to −b0.
Since b0 > bc∗, the system evolves to the doubly under-
compressive shock: the slopes at the jump steepen to
±b∗, forming a steep, knife-edge shape, while the loca-
tion of the jump doesn’t change. When the whole ridge
has moved in the knife-edge decays rapidly to zero. It is
notable that the doubly undercompressive shock evolves
quickly enough to exist stably over a period of time de-
spite the dynamically evolving conditions.

A schematic of the height evolution of a pre-patterned
surface illustrating criterion (8) is shown in figure 1.

V. OTHER MATERIALS

Thus far we have computed features of the traveling
wave landscape, such as b∗, b0, bc0, bc∗, for a single yield
function. However, the traveling wave landscape will
change with the yield function, which varies with the
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FIG. 8. Solid line: slope b∗ of the doubly undercompres-
sive solution for yield functions of form (5), with f = 2.
Dashed line: coefficient M determining radius of curvature
(B0/Y0)1/3/M of this solution. Inset: selected doubly under-
compressive solutions in height variable.

substrate, ions, and energy. We have solved for selected
features of the landscape numerically for the family of
yield functions compiled by Yamamura17, who showed
that many experimentally measured yield functions can
be represented using (5) and fitting for f , θopt.

As we vary these parameters within experimentally ob-
served bounds, the qualitative features of figure 3 are
similar to the case study, but the numbers change. They
are most sensitive to θopt, varying only a little with f . To
illustrate the range of variation, figure 8 plots the slope b∗
of the doubly undercompressive solution and its nondi-
mensional radius of curvature M versus θopt at f = 2,
and shows that the steepest, sharpest features occur at
the largest values of θopt. For example, 4keV H on Ni
has θopt = 84.2◦, where the slopes are predicted to be
b∗ = 29.

This opens up an interesting possibility – to choose
or to engineer a yield function specifically to obtain the
desired radius of curvature. Changing the material in this
way opens the window for making very sharp structures.

VI. SECOND-ORDER TERM D(b)

Our analysis above hinges on the assumption that the
second-order term can be neglected. This is a valid ap-
proximation to make when the dynamics select either
scales small enough that the fourth-order term domi-
nates, or slopes large enough that D(b) is small, but in
actual experiments this may or may not be the case. Here
we briefly consider the effect of adding a second-order
term.

We include second-order effects in (2) by adding a term

of the form δD̃(b)bxx, where δ = D(0)
LY0

= D(0)

B
1/3
0 Y

2/3
0

is

a non-dimensional parameter governing the size of this
term for a flat surface, and D̃(b) = D(b)/D(0). We
first solve for features of the traveling wave problem with

constant second-order diffusivity, D̃(b) = δ. As δ in-
creases, bc∗, b

c
0 increase and b0, b∗ decrease, until eventu-

ally they collide and the non-classical shocks no longer
exist. This is consistent with results for a fourth-order
thin film model15.

In a more realistic model, we have solved the PDE
(2) numerically with a second order term obtained from
experiments in Madi et. al16, whose dimensionless form
is

D(b) = δ
1− b2

1 + b2
exp{−Σ(

√
1 + b2 − 1)} (10)

The numerically observed value of b∗ changes extraordi-
narily little with δ, by less than 1%. Presumably this is
because D(b)� D(0) when b is large, which is the situa-
tion of interest. However, bc∗ increases with δ and bc∗ > b0
when δ ' 0.5, so that colliding two undercompressive
shocks no longer leads to the doubly undercompressive
shock. As δ increases the dynamics become increasingly
turbulent, and for δ ' 1 we have not found evidence of
the doubly undercompressive shock.

We have not attempted to estimate δ for given materi-
als because the field is in a bit of a paradoxical situation
with respect to the size of this term in the parameter
regime in question. On one hand, Chen et. al12 observed
that at 30keV gallium on silicon, there were undercom-
pressive shocks – which can only happen when δ is small.
At the time that paper was written, it was believed that
the second order term was caused by a Sigmund-like sput-
ter erosion-based mechanism. In the intervening time,
Norris et. al18 and Madi et. al16 have demonstrated that
for 1keV argon on silicon, the dominant roughening and
smoothing mechanism is from the ion impact-induced re-
distribution of those atoms which are not sputtered away,
for which there is currently no first principles theory. Be-
cause of this, quantifying D(b) for various systems and
understanding how it changes with various parameters is
still in process16,18–21, so we are unable to make specific
recommendations about when the approximation δ � 1
is valid.

We do however note that Chen22 contains images show-
ing that sharp, razor-blade like structures can emerge
on magnesium sputtered with 30keV gallium when pre-
fabricated pits expand and collide. Combined with the
fact that undercompressive shocks were observed exper-
imentally in Chen et al.12, makes us optimistic that
the doubly-undercompressive shock will also be demon-
strated experimentally. A simple test would be to start
with a shallow ridge and see if it steepens to a sharper
ridge; if it does, then the doubly-undercompressive shock
can serve as an organizing principle for explaining self-
steepening mechanisms on surfaces.

VII. CONCLUSIONS

We have shown that there is a wide class of initial
conditions that cause an ion sputtered surface to evolve
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to a knife-edge-like shape, with very steep slopes and
a radius of curvature much smaller than the minimum
wavelength of the instability leading to sputter rippling.
Our analysis hinges on the existence of travelling wave
solutions to the governing nonlinear partial differential
equation, and the fact that when the smoothening mech-
anism is fourth order (arising for example from surface
diffusion or surface confined viscous flow) these solutions
are a discrete set. The knife-edge-like solution occurs
as an isolated point in the space of boundary conditions
and arises from initial slopes that are larger in magni-
tude than a material-dependent number bc0. Because the
slopes of the knife-edge are b∗ � bc0, the initial slopes can
be amplified considerably by the dynamics.

These calculations suggest an entirely new arena for

creating self-organized nanometer-scale structures with
an ion beam: by pre-patterning a surface so it evolves to
structures with steep, sharp features when ion sputtered
under appropriate conditions. Our calculations predict
that one can achieve arbitrarily steep, sharp structures
by choosing the materials and energies appropriately.

Although our analysis was restricted to structures that
vary in only a single dimension, we expect it will be pos-
sible to extend this to two dimensional structures. Ul-
timately, one would like to answer the inverse problem:
find a range of prepatterned surface shapes that evolve
to a given design under uniform irradiation.
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vard MRSEC.
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VIII. APPENDIX

A. Numerical procedure for traveling wave
solutions

Traveling wave solutions to (2) were computed using
a collocation method, as implemented by the function
bvp4c provided by Matlab. This takes an initial guess
for the solution and the grid it is defined on, and it-
eratively solves a set of nonlinear algebraic equations to
better approximate the true solution on an updated grid,
with boundary conditions23,24. If this produces a con-
vergent result, whose residual is smaller than a desired
tolerance level, we consider a solution to exist for that
particular choice of bl, br. The method also allows us to
consider boundary values which vary by including them
as extra variables in the problem. This lets us look for
undercompressive solutions, and gives us the particular
values of bl, br as part of the solution. In implementing
the method we choose the length of the interval to be 80
non-dimensional units. To improve the likelihood of find-
ing a solution we use a continuation procedure, starting
with a pair (bl, br) for which solution is easy to obtain,
and using this to produce an initial guess for a pair (b′l, b

′
r)

slightly perturbed from the original.
To find a doubly undercompressive solution, we restrict

to solutions that are anti-symmetric about 0 and solve (3)
on (−∞, 0) with right-hand boundary condition S(0) =
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FIG. 9. Contours of dmin at levels 0.01, 0.5, 5, in black, grey,
light grey. Red regions are the traveling wave solutions found
by collocation.

0, S′′(0) = 0. By allowing the left-hand value bl to vary
we obtain a single solution bl = b∗.

Boundaries of regions where solutions exist are esti-
mated by fixing br at increments of 0.25 and using con-
tinuation on bl. When incrementing bl by an amount
smaller than the tolerance level of the boundary prob-
lem solver fails to produce a solution, we should be near
the boundary of the region containing solutions. We ex-
ploit the symmetry of the problem by combining results
from mirror regions to obtain an improved estimate of the
boundaries. Some of the red patches are possibly larger;
these are indicated with a dashed line on the boundary
in figure 3.

We have verified these results using a shooting method,
as described in section VIII B. In particular, this provides
evidence that b∗ is the only doubly-undercompressive so-
lution.

B. Shooting method for traveling wave solutions

We used a shooting method to verify the results from
our collocation method describe above. In this vein
we attempt to compute the minimum distance between
the unstable manifold of the left-hand point US(−∞),
and the stable manifold of the right-hand point S(∞)
(see text), in a plane dividing the two points P =
{(S, S′, S′′) : S = bp}. Here bP is a point in between
bl and br, typically bP = 1

2 (bl + br). As in Bertozzi et

al.14, we refer to P as a Poincare section.

Let us define the following:

d∗min = min. distance between US(−∞) ∩ P , S(∞) ∩ P
dmin = numerically estimated value of d∗min

(11)
Note that a solution to the boundary-value problem ex-
ists when d∗min = 0.

To compute dmin, we integrated (3) using an explicit
ODE integrator, starting at a distance of δ (= 10−5) from
(bl(r), 0, 0), on the tangent space to the unstable (stable)
manifolds at these points. If the dimension of the partic-
ular invariant manifold is one, this requires two integra-
tions. If the dimension is two, then the space of initial
conditions can be parameterized with a single variable θ
as δ(u1 cos θ+u2 sin θ), where u1, u2 are linearly indepen-
dent, normalized vectors spanning the tangent space to
the manifold at (bl(r), 0, 0), and we compute the trajec-
tories for a finite number of evenly-spaced θ-values.

We keep track of where each trajectory intersects P ,
and compute the minimum distance between the two sets
of points on the Poincare section, as well as the points
which achieve, or come close to, this minimum value.
We then refine the grid about these points (if at least
one of the manifolds has two dimensions) and integrate
the new trajectories, continuing in this manner until the
minimum distance converges to some value dmin or is less
than some tolerance level (10−5).

When both manifolds are one-dimensional, this pro-
vides a robust way of measuring how “close” the two ini-
tial value problems come to each other, and hence how
close we are to an actual solution of the boundary-value
problem, given bl, br can vary. When at least one of the
manifolds is two-dimensional, this method does not nec-
essarily converge to the true value d∗min – occasionally the
manifold changes so rapidly with θ along the Poincare
section that it is extremely difficult find the value that
comes closest to the other manifold, so that dmin > d∗min
and in particular actual intersections, where d∗min = 0,
may be missed. Hence, we cannot unequivocally deter-
mine existence or non-existence with this method, but
when combined with the collocation method it provides
a way to gain confidence in certain claims.

We computed dmin on a grid with spacing 0.25. Figure
9 shows the contours of dmin, as well as regions where we
have found solutions with the collocation method. The
figure shows good correlation between regions where we
have found solutions (red shading, lines, or star), and re-
gions with low dmin (dark gray). In particular, it appears
that b∗ is the only doubly undercompressive solution, as
comparison with figure 3 shows no other local minima of
dmin in regions where traveling waves would be doubly
undercompressive.

C. Numerical method to solve PDE (2)

Our numerical method is semi-implicit in time and
computes spatial derivatives based on second-order cen-
tered differences. The boundary conditions are b(0) = bl,
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b(L) = br, b
′′(0) = 0, b′′(L) = 0, where L is the length

of the domain. The time increment was calculated by
weighting the solution at the future time step by a factor
θ and the solution at the present time step by a factor
1− θ and solving the resulting nonlinear equations using
Newton’s method; usually only one iteration was needed

and the results were not sensitive to θ.
The semi-implicit time step produces a stable scheme,

however the discretization creates numerical diffusion
which is proportional25 to ∆t, and this changes the val-
ues of the undercompressive shocks. Therefore we chose
∆t small to control numerical diffusion.


