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In a scanning tunneling microscope configuration (STM), we study theoretically the effects of
quantum tunneling of magnetization (QTM) as well as transport-induced spin relaxation on the
electron transport through a single-molecule magnet deposited on a metallic surface. It is shown
that for the STM with a high spin-polarized tip, the inelastic current is completely determined by
the QTM channel at low temperatures and by the spin relaxation channel at higher temperatures,
from which the tunnel splitting and spin-relaxation rate can be directly determined in despite of
the absence of a magnetic field. The two types of different mechanisms can be distinguished from
each other by current and/or noise spectra.

PACS numbers: 72.25.-b,75.50.Xx,72.70.+m,75.45.+j

I. INTRODUCTION

Electronic transport through high-spin nanomagnets, such as Mn12 and Fe8, constituting the basis of molecular
spintronics, has become an intense topic of study1–4 for fundamental physics and potential application in magnetic
data storage or quantum computing. Owing to its high spin and large magnetic easy-axis anisotropy, the nanomagnet
forms a ladder-shaped structure of magnetic levels. These magnetic features can be preserved and even electrically
controllable in a single-molecule-transistor geometry5–7, in which the signatures of magnetic states and magnetic
anisotropy can be identified.
The nanomagnet structures combine the classical properties of magnets with the intrinsic quantum nature. Their

most outstanding feature is quantum tunneling of magnetization (QTM), a macroscopic quantum effect resulting
from the intrinsic transverse anisotropy. The QTM induces the spin resonant tunneling by mixing pairs of degen-
erated magnetic states with opposite spins, separated by a strong anisotropy barrier. The powerfully experimental
evidences for supporting the QTM are the characteristic steps in hysteresis loops and the interference effect of Berry’s
phase on the magnetization at temperature below 1K while the external field is applied to single-molecule magnets
(SMMs)8–10. Recently, probing of the QTM fingerprint on the electronic transport has attracted great interest. The
quantum-tunneling-induced Kondo effect in the SMMs, based on a joint effect of itinerant electrons and the QTM,
was theoretically predicted11,12. Experimentally, great efforts13,14 have been made along this line, even though there
still remains a challenge to it. The spin tunneling was also predicted to be determined by the identification of the
fake resonances in current and noise spectroscopy15. Recently, an interesting project to detect the QTM was the
observation of the Berry-phase blockade of the stationary current in the sequential tunneling for the SMM placed
between oppositely spin-polarized source and drain leads16.
Technologic breakthroughs have permitted to locally probe the magnetic anisotropy of a single SMM or atom

adsorbed on metallic surfaces17–20 by using a scanning tunneling microscopy (STM). Nevertheless, how to extract
the QTM fingerprint directly in electron transport spectroscopy still remains a great challenge. Placing the STM tip
above one SMM, G.-H. Kim and T.-S. Kim21 studied the inelastic electron tunnel spectroscopy, and found that the
QTM can lead to a stepwise increase in the linear response conductance if a longitudinal magnetic field is applied, and
the conductance at each step oscillates as a function of additional transverse magnetic field. It is an interesting idea to
get rid of the external magnetic field and still get a fingerprint of the QTM effect. Our proposal is that such an object
can be realized by employing a spin-polarized STM22–24, which was recently applied to provide direct visualization of
stationary spin states and spin dynamics in nanomagnets. With the interplay of spin-polarized conducting electrons
and the localized molecule magnet, the spin-polarized STM was used to explore the spin-transfer torque of molecular
magnitizations25–28.
In this paper, we apply the spin-polarized STM model to study theoretically the inelastic tunneling spectroscopy

of SMMs deposited on a metallic substrate. In this spin-polarized transport, an exotic spin relaxation mechanism
for the local spin is inevitably introduced. It originates from the exchanged interaction with electrons of spin-flip
tunneling out of and back into the same lead. It can be ignored for normal leads because of the cancelation of the
contributions from spin-up and -down electrons, but it plays a role for magnetized leads25,29,30. An important issue
is how to evaluate this transport-induced relaxation rate since it only indirectly influences the current by changing
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of the magnetic occupation. In our study, it is found that the QTM effect of the SMM can be probed from the
stationary inelastic current by use of the STM with a high-polarized tip. At low temperatures the tunnel splitting
completely determines the magnitude of the inelastic current, favorable to the observation of the QTM effect. At
higher temperatures the spin-relaxation channels govern the inelastic current as a new transport mechanism, which
can be used to detect the spin relaxation rate. The rest of the paper is organized as follows. In Sec. II the theoretical
model is provided for calculations of the tunneling current, and in Sec. III the inelastic current and shot noise are
discussed in detail. A short summary is given in the last section.

II. MODEL AND METHOD

Consider a single SMM deposited on a normal metallic substrate and a magnetic STM tip is placed right above the
SMM17,21. The system Hamiltonian can be written as H = Htip +Hsub +HSMM +HT , where the first three terms
describe the tip, substrate, and SMM as decoupled systems, whereas the last term (tunneling Hamiltonian) introduces

interactions between them. With notation η = t(s) for the tip (substrate), we write Htip+Hsub =
∑

ηkσ εηkσc
†
ηkσcηkσ

where c†ηkσ (cηkσ) is the creation (annihilation) operator of electrons with spin σ, wave vector k, and the energy
dispersion εηk↑(↓) = εηk±hη with the exchange field ht = h for the magnetic tip and hs = 0 for the metallic substrate.

The tunneling Hamiltonian is given by25,29

HT =
∑

ηη′,kk′,σσ′

(Jηη′c†ηkσ
τσσ′ · S

2
cη′k′σ′ +

Jd
2
c†ηkσcη′k′σ) (1)

where Jηη′ characterizes the Kondo-like exchange coupling between the local spin S = (Sx, Sy, Sz) of the SMM and
transport electrons while Jd features the coupling of the direct tunneling between the tip and substrate. The magnetic
easy-axis of the SMM is chosen along the z direction parallel to the tip magnetization, and τ = (τx, τy , τz) denotes
the Pauli spin operator for the transport electrons. This tunneling model describes essentially deep cotunneling, in
which the orbit levels are out of resonance with the Fermi level and thereby the sequential tunneling is exponentially
suppressed.
The spin Hamiltonian of the SMM is

HSMM = −DS2
z −

∑

n=1,2

B2n

2
(S2n

+ + S2n
− ). (2)

In general, the longitudinal magnetic anisotropy D dominates over the second-order and fourth-order transverse
anisotropy B2n. In the absence of the transverse term, a ladder-shaped level spectra are constructed, εm = −Dm2

with m = 0,±1, ... ± S as the magnetic quantum number, forming degenerated states | ± m〉 located separately in
two magnetic wells with opposite spin projection. As a perturbation, turning on the weak transverse anisotropy B2n

terms leads to mixing of the degenerated states | ± m〉 via S± = Sx ± iSy, and lifts the corresponding degenerated
levels by a tunnel splitting ∆m,−m, often referred to as the QTM effect. To obtain analytical formula, we introduce
the two-level Landau-Zener model as done in Refs.21,31. By projecting HSMM in Eq. (2) onto a two-state subsystem
{|m〉, | −m〉}, it can be replaced with an effective Hamiltonian

H̃SMM =

[

εm ∆m,−m/2
∆m,−m/2 ε−m

]

. (3)

This description is valid as long as ∆m,−m is much smaller than level spacing |εmm′ | = |εm − εm′ |, which is usually
satisfied due to the fact of B2n ≪ D.
Under the Born and Markov approximations, the generalized master equations that describe the dynamical evolution

of density matrix elements (ρm = 〈m| ρ|m〉 and ρmm′ = 〈m| ρ|m′〉) for the SMM can be obtained as31,32

ρ̇m =
i∆m,−m

2~
(ρm,−m − ρ−m,m) +

∑

ηη′,m′ 6=m

(W η←η′

m,m′ ρm′ −W η′←η
m′,m ρm), (4)

ρ̇m,−m = −
1

2

∑

ηη′l

(W η←η′

l,m +W η←η′

l,−m )ρm,−m +
i∆m,−m

2~
(ρm − ρ−m). (5)

Here the diagonal element ρm stands for the probability of finding the magnetic state in |m〉. W η′←η
m′,m is the transition

rate of transport electrons going from lead η to η′, accompanied with the SMM spin quantum number changing
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from m to m′, whose evaluating formula will be given in Eqs. (8) and (9). In the incoherent tunneling case of the
time longer than the decoherence time of off-diagonal elements ρm,−m, their time dependence can be neglected, i.e.,
ρ̇m,−m = 0,31,32 so that Eq. (3) is reduced to be

ρ̇m =
∑

ηη′,m′ 6=m

(W η←η′

m,m′ + δm,−m′Γm,m′)ρm′ − (W η′←η
m′,m + δm′,−mΓm′,m)ρm, (6)

where Γm,m′ = ∆2
m,m′/

∑

ηη′l

~
2(W η←η′

l,m + W η←η′

l,m′ ) describes the QTM-related tunneling rate between states |m〉 and

|m′〉. When the bias voltage is applied between the STM tip and the metallic substrate, the stationary electronic
current which flows through the SMM is given by

I = −e
∑

m′,m

ρm′(W s←t
m,m′ −W t←s

m,m′). (7)

We wish to point out here that the tunneling rate Γm,m′ does not manifest in Eq. (7), but has contribution to
the current via the change of ρm. The transition rate is evaluated by use of the Fermi’s Golden rule, yielding

W η′←η
m′,m = W

(el)η′←η
m′,m +W

(in)η′←η
m′,m , with

W
(el)η′←η
m′,m =

π

2~
δmm′

[

(Jd +mJηη′ )2Dη
↑D

η′

↑ + (Jd −mJηη′ )2Dη
↓D

η′

↓

]

F (µη − µη′), (8)

W
(in)η′←η
m′,m =

π

2~
J2
ηη′

[

∣

∣

∣
Sm′,m
+

∣

∣

∣

2

Dη
↑D

η′

↓ +
∣

∣

∣
Sm′,m
−

∣

∣

∣

2

Dη
↓D

η′

↑

]

F (εmm′ + µη − µη′). (9)

Here W
(el)η′←η
m′,m is the transition rate for the elastic tunneling, including the direct and exchange tunneling with spin

conversion as well as the interference between them, where Dη
σ is the density of states of spin-σ electron at the Fermi

level, F (ε) = ε/(1 − e−ε/kBT ) with T as temperature and µη as the electrochemical potential at lead η. It directly

contributes to the elastic current flow for η′ 6= η, but does not affect ρm. W
(in)η′←η
m′,m is the transition rate for the

inelastic tunneling, involving not only the spin-flip electron tunneling of the different leads (t → s or s → t), but

also that of the same leads (t → t or s → s) via spin excitation Sm′,m
+ and spin disexcitation Sm′,m

− processes, where

Sm′,m
± = [S(S + 1)−m(m± 1)]

1/2
δm′,m±1. W

(in)s←t
m′,m and W

(in)t←s
m′,m have contribution to both ρm and the current.

γm′,m = W
(in)t←t
m′,m + W

(in)s←s
m′,m is interpreted as the transport-induced spin relaxation for the SMM spin, stemming

from the contributions of the electrons of spin-flip tunneling out of and back into the same lead. Similar to Γm,m′ , it
contributes to the current via the change of ρm.

III. RESULTS AND DISCUSSION

In this section we perform numerical calculations of the current for synthesized material Ni4
33 with local spin

S = 4, D = 1.33K, B2 = −0.034K, and B4 = 0.003K. The tunnel splitting ∆m,−m is obtained by exactly numerical
diagonalization of HSMM in Eq. (2). Define the spin polarization of leads as χη = (Dη

↑−Dη
↓)/D

η
0 with Dη

0 = Dη
↑+Dη

↓ ,
and so for the nonmagnetic substrate χs = 0. A large bias limit is considered, i.e., eV = µt − µs is much greater
than εmm′ and kBT . In this case, W t←s

m,m′ ≃ 0 can be neglected because of F (−eV ) ≃ 0, and so the stationary

inelastic current is given by Iin = −e
∑

m,m′ 6=m

ρm′Wm,m′ . Here and henceforth W
(in)s←t
m′,m has be relabeled as Wm,m′

for simplicity. In the steady state, ρm can be obtained from Eq. (6) with ρ̇m = 0, which consists of 2m + 1 linear
equations, together with normalization condition

∑

m ρm = 1.
For nonmagnetic tip (χt = 0), the stationary inelastic current is plotted in Fig. 1(a), where Iin is independent of

the value of ∆m,m′ . To see this point clearer, we consider a simply case of S = 1, in which the analytical expression
for Iin is easily obtained as

Iin = e
2(W0,1 + γ0,1)W1,0 + 2(W1,0 + γ1,0)W0,1

W0,1 + γ0,1 + 2(γ1,0 +W1,0)
, (10)

where the symmetry property of Wm′,m = W−m′,−m have been used in consideration of Wm′,m ∝ [S(S + 1) −
m2]F [D(m′2 − m2) + eV ] following from Eq. (9). Obviously, the current is not related to ∆m,m′ and thus it is
impossible to observe the QTM effect in the case of unpolarized tip. Besides, although the spin relaxation rate γm′,m
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modifies the current value quantitatively, it is not requisite for generating Iin. When γm,m′ ≪ Wm,m′ is negligibly
weak, Eq. (10) reduces to 1

Iin
= 1

4e (
1

W0,1
+ 2

W1,0
). In this case, the total resistance can be interpreted as two resistances

in series with transition loops |±1〉 → |0〉 → |±1〉 in each subwell16, as shown in Fig. 1(b).
To probe the QTM and the spin relaxation, we study the spin-polarized inelastic current with χt ≃ 1. The

corresponding current as a function of temperature is indicated by the solid line in Fig. 1(c). As T is increased, the
polarized Iin-T curve exhibits first a current plateau, then a prominent dip, and finally increases rapidly. Such a
temperature dependence of Iin is attributed to the spin relaxation rate γm′,m via ρm, rather than Wm′,m because
Wm′,m ∝ F (eV ) is independent of T in the large bias limit. It follows from Eq. (9) that γm′,m ∝ F (εmm′), being
independent of T at low temperatures (kBT ≪ εmm′) and approximately proportional to T at higher temperatures
(kBT ≫ εmm′). In what follows we will discuss Iin in three temperature ranges.
At low temperatures (T < 1.2K), the spin relaxation rate γm,m′ ≪ Wm,m′ can be negligible. The plateau value

of the resulting current increases monotonously with ∆4,−4, and vanishes at ∆4,−4 = 0, as shown in Figs. 1(c) and
2(a). This QTM dependence can be understood as follows. In the case of χt ≃ 1, i.e., Dt

↓ ≃ 0, the transition rate

of decreasing m vanishes due to Wm−1,m ∝
∣

∣

∣
Sm′,m
−

∣

∣

∣

2

Dt
↓ ≃ 0. Once one spin-up electron passes inelastically through

the SMM, it drives the magnetic state always increased from |m〉 to |m+ 1〉 by Wm+1,m. Without ∆4,−4, the SMM
spin will be finally saturated at state |4〉, which in turn stops the inelastic electron tunneling via spin blockade effect,
resulting to Iin = 0. The finite QTM provides a channel of decreasing m and so maintains the inelastic tunneling.
For S = 1, we obtain ρ−1 = W1,0Γ−1,1/C, ρ0 = W0,−1Γ−1,1/C, and ρ1 = W1,0(W0,−1 + Γ−1,1)/C with normalization
constant C = W0,−1W1,0 +W0,−1Γ−1,1 +W1,0Γ−1,1, and the current as

1

Iin
=

1

2e

(

1

Γ−1,1
+

2

W0,−1
+

1

W1,0

)

. (11)

This clearly shows that if Γ−1,1 ∝ ∆2
−1,1 = 0, the SMM spin will occupy the state |1〉 with ρ1 = 1 and thus Iin vanishes.

Eq. (11) can be interpreted as three resistances in series with a transition loop |1〉 → |−1〉 → |0〉 → |1〉, as depicted in
Fig. 2(b). From Γm,−m ≪ Wm+1,m, it then follows that the QTM tunneling rate becomes a bottleneck of generating
the current at low temperatures. Therefore, we can directly probe the QTM by the measurement of the inelastic
current in this geometry. The present discussion is somewhat similar to that made by González and Leuenberger16,
who proposed the detection of the QTM in sequential tunneling through an SMM placed between two oppositely spin-
polarized leads. In the present work, the probing of the QTM effect can be accessible in the STM system with only
one spin-polarized tip, which might relax technological conditions and be more favorable to experimental observations.
At this low temperature region, the magnetic parameters D and B2n affect the current via the splitting-related rate
Γ−m,m. In Fig. 1(c), the width of current plateau is determined mainly by the longitudinal magnetic anisotropy D,
which describes the energy barrier to overcome in spin reversal of the SMM, while the magnitude of current plateau is
determined mainly by the transverse anisotropy B2n, which is the ability to mix degenerated doublets | ±m〉. Large
anisotropy D can widen the current plateau but meanwhile reduce its value to some extent. Strong enough anisotropy
B2n is desirable because it can generate a large tunnel splitting ∆m,−m and a pronounced current signature. In
addition, when the tunnel splitting is tuned by an applied magnetic field16, we also can observe the Berry-phase
blockade since if ∆m,−m = 0, Iin will be completely suppressed due to Γm,−m ∝ ∆2

m,−m.
At higher temperatures (T > 3.5K), the current magnitude no longer depends on ∆m,−m (i.e., the magnetic

parameters D and B2n), e.g., in Fig. 1(c) the solid line for ∆m,−m = 0.01K and the dotted line for ∆m,−m = 0 almost
coincide with each other for T > 3.5K. With increasing temperature, while Γ4,−4 decreases rapidly, γm,m′ is gradually
enhanced. Instead of the QTM mechanism, the spin relaxation becomes a dominant mechanism to decrease m, which
is reached by opening channels of |m〉 → |m− 1〉. Figure 2(c) shows that the current is determined by the spin
relaxation rate γ3,4 from state |4〉 to |3〉. The current for S = 1 at higher temperatures (or γm,m′ ≫ Wm,m′ ,Γm,−m)
is given by

1

Iin
≈

1

2e

(

1

γ0,1
+

γ0,−1 + γ−1,0 + γ1,0
γ0,1W1,0 + γ−1,0W0,−1

)

, (12)

which is difficult to be described simply in the resistance picture as done in Fig. 1(b) and Fig. 2(b). Even so, it is
evident that γ0,1 plays a determinative role in the current generation; Iin will be vanishing if γ0,1 = 0. This is greatly
different from the unpolarized current in Eq. (10). One can recall that γm,m′ affects Iin by changing ρm of SMM
states. Such an indirect effect is usually weak and difficult to be detected in transport measurements25. Interestingly,
Eq. (12) establishes a decisive relation between the spin relaxation and the inelastic current. It is expected that this
result can provide a means to evaluate the transport-induced spin relaxation rate in the SP-STM configuration.
At 1.2K< T < 3.5K, the deep dip of Iin [solid line in Fig. 1(c)] is as a consequence of competitions between Γm,−m

and γm,m′ , which have opposite temperature dependence. It is a crossover regime of the QTM mechanism and the
spin relaxation mechanism.



5

To further understand the mechanisms of the QTM and the spin relaxation and to distinguish them from each
other, we calculate the shot noise spectrum, S(ω) = 2

∫∞

−∞
dteiωt[〈I(t)I(0)〉 − 〈I〉2], employing the widely applied

combination-generation approach34–37. The Fano factor F = S(0)/(2eI) vs T is plotted in Fig. 2(d), where the
corresponding current (dashed line) is indicated for reference. Here F > 1 exhibits a super-Poissonian statistics for
the QTM process. This bunching effect associated with the QTM is similar to the dynamic spin blockade in Refs.36,37,
where the tunneling of spin minorities (slow channel) modulates the tunneling of spin majorities (fast channel). In
the present case, even though there is only one spin channel, the tunneling electrons can still be modulated by
the QTM process. When the SMM state is saturated to be |4〉 by the spin-up electron tunneling, the molecule
spin acts on the electrons via spin blockade effect so as to in turn hamper the electron tunneling. For the electron
subsystem, it is a longer time waiting during the SMM magnetization tunneling from state |4〉 to |−4〉, since time
1/Γ4,−4 ≫ 1/Wm,m′ . However, once this slow process is finished, a number of electrons flow through the SMM within
a shorter time interval, giving rise to the bunching effect of electrons. For the molecule subsystem, it is manifested
by the consecutive transitions |−4〉 → |−3〉 ... → |4〉. Unlike the QTM mechanism, the spin relaxation processes
at higher temperatures are accompanied by a Poissonian behavior of F = 1, which is a consequence of stochastic
thermal excitations. In the crossover regime, there exhibits a significant super-Poissonian peak, which arises from the
competition of Γ4,−4 and γ3,4 with comparable magnitude.
Finally, we want to address the elastic current, given by

Iel =
πe2V

2~

[

(J2
d + J2

ts

〈

S2
z

〉

)
(

Dt
↑D

s
↑ +Dt

↓D
s
↓

)

+ 2JdJts 〈Sz〉
(

Dt
↑D

s
↑ −Dt

↓D
s
↓

)]

, (13)

with
〈

S2
z

〉

= Σmm2ρm and 〈Sz〉 = Σmmρm. For large bias under consideration, its introduction provides only a
current background, but does not change the above results qualitatively. This current can be significantly suppressed
if the setup is made either with Jd → 0 or with the oppositely polarized tip and substrate. In the latter, the inelastic

component is determined by Dη
↑D

η′

↓ , but the elastic component by Dη
↑D

η′

↑ . This spin-conserving transport turns to
be stochastic processes, obeying the Poissonian statistics.

IV. SUMMARY

In summary, we theoretically study the fingerprint of QTM of nanomagnets in the nonequilibrium transport mea-
surement by employing a STM with a spin-polarized tip. We find that for a high-polarized tip, the QTM plays a
decisive role in the low-temperature inelastic current and thus we can observe the QTM dynamics unambiguously,
from which the tunnel splitting can be directly determined. At higher temperatures, we find that the same configu-
ration can be applied to evaluate the transport-induced spin relaxation rate. The same results can be easily obtained
for the STM geometry with full polarized substrate. These results might provide an approach to extract the unknown
magnetic parameters of the SMMs even though in the absence of the applied magnetic field. To provide more trans-
parent physics, we analytical analyze the case of S = 1. We further monitor the current noise spectroscopy, which
is of super-Poissonian type for the QTM process but is of Poissonian type for the thermally-excited spin relaxation.
This distinct behavior gives an another manner to distinguish the two types of different nonequilibrium dynamics
mechanisms.
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FIG. 1: (Color online) Inelastic current Iin in unit of I0 = πe2Dt
0D

s
0/8~ as a function (a) of ∆4,−4 and (c) of temperature

T . (b) Schematic view of spin transitions of S = 1 nanomagnet due to the exchanged coupling with unpolarized conduction
electrons. The other parameters are Jss = 0.002K, Jtt = 0.3K, Jts =

√

JttJss and χs = 0.

FIG. 2: (Color online) Iin/I0 as a function (a) of ∆4,−4 and (c) of γ3,4. (b) Schematic view of spin transitions of S = 1
nanomagnet due to exchanged coupling with fully polarized conduction electrons. (d) Variations of Fano factor (solid line) and
corresponding current (dashed line) with T ; F = 1 for horizontal dotted line. The other parameters are the same in Fig. 1
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