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The general Lagrange-Euler formalism for the three memory circuit elements, namely, memristive,
memcapacitive, and meminductive systems, is introduced. In addition, mutual meminductance, i.e.
mutual inductance with a state depending on the past evolution of the system, is defined. The
Lagrange-Euler formalism for a general circuit network, the related work-energy theorem, and the
generalized Joule’s first law are also obtained. Examples of this formalism applied to specific circuits
are provided, and the corresponding Hamiltonian and its quantization for the case of non-dissipative
elements are discussed. The notion of memory quanta, the quantum excitations of the memory
degrees of freedom, is presented. Specific examples are used to show that the coupling between
these quanta and the well-known charge quanta can lead to a splitting of degenerate levels and to
other experimentally observable quantum effects.

I. INTRODUCTION

Circuit elements with memory, namely, memristive1,2,
memcapacitive and meminductive3 systems are attract-
ing considerable attention in view of their application
in diverse areas of science and technology, ranging from
solid-state memories4–6 to neuromorphic circuits7–12 and
understanding of biological processes13,14. The general
axiomatic definition of memory elements considers any
two fundamental circuit variables, u(t) and y(t) (i.e., cur-

rent I, charge q, voltage V , or flux φ ≡
∫ t

−∞
V (t′)dt′)

whose relation, the response g, depends also on a set,
x = {xi}, of n state variables describing the internal
state of the system. These variables could be, e.g., the
spin polarization of the sample15,16 or the position of oxy-
gen vacancies in a thin film17. The resulting n-th order
u-controlled memory circuit element is described by3

y(t) = g (x, u, t)u(t) (1)

ẋ = f (x, u, t) (2)

where f is a continuous n-dimensional vector function.
It is assumed on physical grounds that, given an initial
state u(t = t0) at time t0, Eq. (2) admits a unique so-
lution. If u is the current and y(t) is the voltage then
Eqs. (1), (2) define memory resistive (memristive) sys-
tems. In this case g is thememristance (for memory resis-
tance). In memory capacitive (memcapacitive) systems,
the charge is related to the voltage so that g is the mem-

capacitance (memory capacitance); while in memory in-
ductive (meminductive) systems the flux is related to the
current with g the meminductance (memory inductance).
These systems are characterized by a typical “pinched
hysteretic loop” in their constitutive variables when sub-
ject to a periodic input (with exceptions as discussed in
Ref. 18). Indeed, we have recently argued that essentially
all two-terminal electronic devices based on memory ma-
terials and systems, when subject to time-dependent per-
turbations, behave simply as - or as a combination of -
memristors, memcapacitors and meminductors3,19. This
unifying description is a source of inspiration for novel

digital and analog applications18,20,21 and allows us to
bridge apparently different areas of research.3

However, despite the wealth of applications and new
ideas these concepts have generated, it is nonetheless im-
portant to stress that so far these memory elements have
been discussed only within their classical circuit theory
definition, with quantum mechanics entering at best in
the microscopic parameters that determine the state vari-
ables responsible for memory3,17,22. However, it seems
that these features are common at the nanoscale where
the dynamical properties of electrons and ions are likely
to depend on the history of the system, at least within
certain time scales23,24. Mindful of the trend towards
extreme miniaturization of devices of all sorts, it is thus
natural to ask whether true quantum effects can be as-
sociated with the memory of these systems and which
phenomena could emerge from the quantization of mem-
ory elements. Of course, examples of memory effects in
quantum phenomena can be found in the specialized lit-
erature (see, e.g., Ref. 25). Here instead, we want to
provide a general framework of study of the quantum ex-
citations (memory quanta) associated to general degrees
of freedom that lead to memory in these systems.
We then first introduce the general Lagrange-Euler for-

malism for these systems. This is the non-trivial exten-
sion of the corresponding formalism for the “standard”
circuit elements. Since it is well known that the La-
grangian formulation of circuit elements offers great ad-
vantages in the analysis of complex circuits26, we expect
that this generalization would be of great value in it-
self. Moreover, our work extends previous studies related
to the formulation of Lagrange and Routh equations for
non-linear circuits involving ideal memristors27 and to
the port-Hamiltonian modeling for the case of memris-
tive components28. In the present context our work also
sheds light on the general relation between the internal
degrees of freedom that lead to memory and the consti-
tutive variables - the charge, current, voltage and flux -
that define the different elements. Along the way we also
define mutual meminductors, namely mutual inductors
with memory, which add additional flexibility and hence
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new functionalities to the field of memory elements.
We finally proceed to quantize the corresponding equa-

tions in the standard way. This leads us to consider
the memory excitations of these systems. In this pa-
per we consider only the quantization of non-dissipative
elements, and we will devote a subsequent paper to the
discussion of quantum effects in dissipative memory ele-
ments. We will provide examples of applications of the
Lagrangian formalism to selected cases and discuss ex-
perimental conditions under which these memory quanta
could be detected.
This paper is organized as follows. In Sec. II we in-

troduce a general scheme of the approach. Sec. III is
dedicated to the Lagrangian formulation of memristive
systems, while Secs. IV and V deal with memcapacitive
and meminductive systems, respectively. We then show
how to write the Lagrangian (Sec. VI) and Hamiltonian
(Sec. VII) of a circuit of memory elements and also give
the work-energy theorem and generalized Joule’s first law
for such a circuit. We introduce the concept of memory
quanta in Sec. VIII focusing on specific examples. Fi-
nally, in Sec. IX we report our conclusions.

II. LAGRANGE APPROACH

In the Lagrange formalism, each memory circuit ele-
ment is associated with m + 1 degrees of freedom (one
related to a circuit variable (q or φ) and m to its inter-
nal state (generalized coordinates, yj , j = 1, ...,m)). For
convenience, we define two multivariate vectors

Y q = (q, y1, ..., ym), (3)

Y φ = (φ, y1, ..., ym). (4)

We note that there are two (in some cases, however, one)
internal state variables xi (entering Eqs. (1), (2)) for each
yj . Quite generally then x = {y, ẏ} (with y here not to
be confused with the output variable y(t) in Eq. (1)).
A model of any particular memory circuit element con-

sists of three components: the kinetic energy, T , the po-
tential energy, U , and the dissipation potential H. The
m+ 1 Lagrange equations of motion are given by

d

dt

∂L
∂Ẏ α

j

− ∂L
∂Y α

j

= QY α
j
, (5)

where L = T − U is the Lagrangian, α is q or φ,
j = 0, ...,m, and the generalized dissipation force QY α

j

is defined as

QY α
j

= − ∂H
∂Ẏ α

j

. (6)

While, generally, models of different memory circuit ele-
ments involve similar terms related to internal degrees of
freedom, the contribution from the circuit variable q or
φ is specific for each type of memory circuit element as
presented in the Table I.

System type variables T U H
V -controlled memristive system Y q HM

V

I-controlled memristive system Y φ HM
I

V -controlled memcapacitive system Y q UC
V

q-controlled memcapacitive system Y φ TC
q

φ-controlled meminductive system Y q TL
φ

I-controlled meminductive system Y φ UL
I

TABLE I: General scheme of Lagrange description of memory
circuit elements. Specific contributions listed in the columns
T , U and H are given by Eqs. (16), (22), (34), (39), (50),
(57).

The kinetic energy T may have a contribution describ-
ing the dynamics of internal degrees of freedom and a
specific contribution according to Table I. The contribu-

tion from internal degrees of freedom, T̃ , can be written
using symmetry arguments. First of all, since dissipative
effects are not included in the kinetic energy, it is time-
reversal invariant, and only even powers of ẏi can exist.
In order for the transformation to canonical momenta be
invertible, however, we must leave only quadratic terms,

and we find T̃ =
∑

ij c̃ij ẏiẏj. This form, being symmet-
ric, can be diagonalized to give

T = T̃ + T β
u =

∑

i

ci ˙̃y
2

i

2
+ T β

u , (7)

where ci are real positive numbers to be determined mi-
croscopically, and T β

u is the specific contribution, if it
exists (see Table I) to the kinetic energy for u-controlled
memory circuit element, β = M,C or L.
The potential energy U and dissipative potential H

also include a specific contribution from Table I and con-

tributions from internal degrees of freedom Ũ and H̃:

U = Ũ(y, u, t) + Uβ
u , (8)

H = H̃(y, ẏ, u, t) +Hβ
u, (9)

where y = {yi}. It is important to consider the control
variable u as an independent parameter that can be re-
placed by an (output) circuit variable (using, e.g., Eq.
(1)) only in the final equations of motion.

III. MEMRISTIVE SYSTEMS

There are two types of memristive systems: voltage-
controlled and current-controlled ones2. From Eqs. (1)
and (2), we define voltage-controlled memristive systems
by the equations

IM (t) = R−1 (x, VM , t)VM (t), (10)

ẋ = f (x, VM , t) , (11)

where VM (t) and IM (t) = q̇(t) denote the voltage and
current across the device, and R is the memristance
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FIG. 1: (a) Schematic of a voltage-controlled memristive
system connected to a time-dependent voltage source. (b)
Schematic of a current-controlled memristive system con-
nected to a time-dependent current source.

and its inverse is the memductance (for memory conduc-
tance). A current-controlled memristive system is such
that the resistance and the dynamics of state variables
depend on the current2,18

VM (t) = R (x, IM , t) IM (t), (12)

ẋ = f (x, IM , t) . (13)

At this point we note that the above equations have
been introduced to define a wide class of systems col-
lectively called memristive2, while the name memristor1

has been assigned to the ideal case of these equations,
when R depends only on the voltage (or current) his-
tory. Although some authors use the term memristor
to represent any system that satisfies Eqs. (10),(11) or
(12),(13) we reserve this term for the ideal case only1.
(We will also see in Sec. VIC that such systems, like
ideal memcapacitors and meminductors, require special
care in the Lagrangian formulation.) We also note that,
often, current-controlled memristive systems can be re-
defined as voltage-controlled ones and vice-versa18. In
addition, according to Thévenin’s theorem29,30, a voltage
source V (t) in series with a resistance R is equivalent to
a current source I(t) = V (t)/R with the same resistance
in parallel. We could then choose to work with either
one of these cases. However, for completeness, in the fol-
lowing we will present the Lagrangian formalism for both
voltage-controlled and current-controlled memristive sys-
tems.

A. Voltage-controlled systems

We consider a voltage-controlled memristive system
connected to a time-dependent voltage source V (t) as
shown in Fig. 1(a). In addition to the term due to in-
ternal degrees of freedom discussed in Sec. II, the total
potential energy contains the usual contribution from the
battery −qV (t), with q the charge that flows in the cir-
cuit. There are many mechanisms for potential energy
arising from the state variables which are affected by the
applied bias — an example of this is the change of state
due to electromigration (see, e.g., Ref. 24). The total
potential energy is thus given by

U = Ũ(y, VM , t)− qV (t) (14)

so that the Lagrangian is

L = T − U =
∑

i

ciẏ
2
i

2
− Ũ(y, VM , t) + qV (t). (15)

Here, VM is considered as an independent parameter.
As it is shown in Table I, the dissipation potential

of voltage-controlled memristive systems includes a cir-
cuit variable contribution HM

V . We write it similarly to
the well known Rayleigh’s “dissipation potential” (for a
constant value resistor) of the type H = Rq̇2/2, which
gives rise to a “dissipation force” Qq = −∇q̇H = −Rq̇31.
Specifically, we will use

HM
V =

R (y, VM , t) q̇2

2
. (16)

At this point we stress that the memristance (as well
as the memcapacitance and meminductance we will dis-
cuss later) may also depend on generalized velocities, ẏ,
which are also included into x. This would simply modify
the Lagrange equations of motion without changing the
overall formalism. To simplify the notation, however, we
will not include this dependence explicitly here, and give
an explicit example of this case in Sec. VB.
For the total dissipation potential we write

H =
R (y, VM , t) q̇2

2
+ H̃ (y, ẏ, VM , t) . (17)

where the last term is to be determined phenomenologi-
cally or from a microscopic theory.
It is straightforward to show that the equation of mo-

tion (5) for Y q
0 = q can be written as

V (t) ≡ VM (t) = R(y, VM , t) q̇. (18)

This equation is of the type (10). The corresponding
equations of motion for the state variables x are

ciÿi +
∂H̃ (y, ẏ, VM , t)

∂ẏi
+

∂Ũ(y, VM , t)

∂yi
= 0, (19)

which show explicitly two possible physical origins of
memristance - due to a dissipative component and/or a
potential energy component.
Equation (19) can be rewritten as two first-order dif-

ferential equations of the form (11) considering both yi
and ẏi as internal state variables. Moreover, in the final
equations we can substitute VM by its expression in terms
of the current q̇. For this purpose, Eq. (10) can be solved
with respect to VM . The same final procedure can also
be used in the case of memcapacitive and meminductive
systems considered below.

B. Current-controlled systems

As a simple example of a closed circuit with a current-
controlled memristive system, we consider a source of
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current I(t) connected to a memristive system (Fig.
1(b)). Here, as indicated in Eqs. (12) and (13), the
output circuit variable is the voltage across the memris-
tive system, φ̇ = VM (t). That is why we use Y φ set of
variables in this case. The kinetic energy, potential en-
ergy, and total dissipation potential in the Lagrangian
formalism are now

T =
1

2

∑

i

ciẏ
2
i , (20)

U = Ũ(y, IM , t)− φI(t), (21)

H = HM
I + H̃ =

φ̇2

2R(y, IM , t)
+ H̃(y, ẏ, IM , t), (22)

where −φI(t) is the battery term. Although
not a necessary step (if their values are known),

R(y, IM , t), Ũ(y, IM , t), H̃(y, ẏ, IM , t) can be obtained

from R(y, VM , t), Ũ(y, VM , t) and H̃(y, ẏ, VM , t), corre-
spondingly. However, the solution may be multiple-
valued in IM so that R(y, ẏ, IM , t) may have multiple
branches with the correct choice of branch depending on
the history of the memristive system.
The equation of motion (EOM) for φ follows from Eq.

(5) for Y φ
0 = φ, taking into account Eqs. (20), (21), and

(22), leading to

φ̇ = R(y, IM , t)IM , (23)

which is just Eq. (12). The EOM for x is similarly found
from Eq. (5), resulting in Eq. (19) except for the substi-
tution of VM by IM .

C. Example

Here we provide a specific physical example to clarify
both the formalism and the different terms that appear
in Eqs. (18) and (19). For this we consider a thermistor,
namely, a temperature-dependent resistor. The mem-
ristive model of thermistor2,18 utilizes a single internal
state variable, the absolute temperature of thermistor,
x = y = Ttherm, and can be formulated as first-order
voltage-controlled memristive system18. Mathematically,
the Lagrangianmodel of thermistor involves the following
kinetic and potential energies and dissipation potentials:

T = 0, (24)

Ũ = 0, (25)

HM
V =

R(y)q̇2

2
, (26)

H̃ = ẏ

[
1

2
Chẏ − V 2

M

R(y)
− (Tenv − y)δ

]
, (27)

where R(y) = R0e
β(1/y−1/T0) is the temperature-

dependent resistance, R0 denotes the resistance at a cer-
tain temperature T0, β is a material-specific constant,
Ch is the heat capacitance, δ is the dissipation constant

(a)

+
_

(b)

FIG. 2: (a) Schematic of a voltage-controlled memcapacitive
system connected to a time-dependent voltage source. (b)
Schematic of a charge-controlled memcapacitive system con-
nected to a time-dependent current source.

of the thermistor2, and Tenv is the background (environ-
ment) temperature.
Using Eq. (5) for a circuit consisting of a thermis-

tor connected to a voltage source V (t) (see Fig. 1(a)),
we recover the equations of the memristive model of
thermistor18

I =
[
R0e

β(1/y−1/T0)
]−1

VM , (28)

Ch
dy

dt
=

[
R0e

β(1/y−1/T0)
]−1

V 2
M + (Tenv − y)δ. (29)

Note that although other forms of potential and kinetic
energy terms could produce the same Eqs. (28) and (29)
this particular one also satisfies the Joule’s first law dis-
cussed in Sec. VII C. This puts severe constrains on the
choice of Lagrangian.

IV. MEMCAPACITIVE SYSTEMS

We now consider memcapacitive systems3 (Fig. 2),
which—unlike memristive systems—store also energy. In
particular, voltage-controlled memcapacitive systems are
defined by Eqs. (1) and (2) with u the voltage, VC(t),
across the memcapacitive system, and y(t) the charge,
qC(t), stored in the device, leading to

qC(t) = C (x, VC , t)VC(t), (30)

ẋ = f (x, VC , t) , (31)

where C is the memcapacitance.
As in memristive systems, the above equations de-

fine a large class of systems, with ideal memcapacitors
those for which the memcapacitance depends only on
the voltage history (or for charge-controlled memcapac-
itive systems, only on the charge history)3. In addi-
tion, it is often important to consider the energy added
to/removed from a memcapacitive system, namely the

quantity UC =
∫ t

t0
VC(τ)I(τ)dτ which helps understand-

ing whether a memcapacitive system is non-dissipative,
dissipative, or active3. Of these, the non-dissipative
and/or dissipative memcapacitive systems are the most
interesting for potential applications, and we will there-
fore focus here on these cases only.
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A charge-controlled memcapacitive system is defined
by the set of equations3

VC = C−1(x, qC , t)qC(t), (32)

ẋ = f(x, qC , t). (33)

A. Voltage-controlled systems

The Lagrange model of voltage-controlled memcapaci-
tive systems is based on Y q set of variables (see Table I).
The specific contribution from the q degree of freedom to
the potential energy is

UC
V =

q2

2C(y, VC , t)
. (34)

Taking into account a voltage source connected to the
system (Fig. 2(a)), the total potential energy is written
as

U =
q2

2C(y, VC , t)
+ Ũ(y, VC , t)− qV (t). (35)

Consequently, the Lagrangian is given by

L = T−U =
∑

i

ciẏ
2
i

2
− q2

2C(y, VC , t)
−Ũ(y, VC , t)+qV (t).

(36)
The dissipative potential contains only the internal state

variables contribution H̃(y, ẏ, VC , t).
The Lagrange EOMs for voltage-controlled memcapac-

itive systems have the form

q(t)

C(y, VC , t)
= V (t) ≡ VC(t), (37)

ciÿi +
∂H̃ (y, ẏ, VC , t)

∂ẏi

+
∂Ũ(y, VC , t)

∂yi
− V 2

C

2

∂C(y, VC , t)

∂yi
= 0, (38)

where in writing the last term in Eq. (38) we have made
use of Eq. (37). Its clear that Eqs. (37), (38) are of the
form of Eqs. (30), (31) In fact, Eq. (38) clearly shows
that the memory may arise from both a conservative po-
tential contribution as well as a dissipative one.
Equation (38) describes an effective dynamical system

and, together with Eq. (30), tells us that, in the presence
of a periodic input of frequency ω, charge dynamics can
be out of phase with the voltage across the memcapaci-
tive system. Indeed, there might be delay in response of
the internal state variables to the applied voltage leading
to the above mentioned effect. Experimentally, it can be
seen as a pinched hysteresis loop in the q−VC plane3,18.

B. Charge-controlled systems

We consider a circuit consisting of a current source and
a current-controlled memcapacitive system (Fig. 2(b)).

Here, as seen in Eqs. (32) and (33), the circuit variable is

the voltage across the memcapacitive system, φ̇ = VC(t),
instead of the current through it, q̇ = IC(t), as in voltage-
controlled systems, c.f. Eqs. (30), (31). Consequently,
our analysis should be based on the Y φ set (Table I).
The kinetic energy, potential energy, and total dissipation
potential in the Lagrangian formalism are now

T = T̃ + TC
q =

1

2

∑

i

ciẏ
2
i +

1

2
C(y, qC , t)φ̇

2, (39)

U = Ũ(y, qC , t)− φI(t), (40)

H = H̃(y, ẏ, qC , t). (41)

The EOM for φ is derived by applying Eq. (5) to Eqs.
(39), (40), and (41), leading to Eq. (32). The EOM for
x is similarly obtained and results in Eq. (38) except for
the substitution of VC by qC .

C. Example

As example of a voltage-controlled memcapacitive sys-
tem we consider a parallel-plate capacitor with elastically
suspended upper plate and a fixed lower plate18. When
charge is added to the plate, the separation between
plates changes as oppositely charged plates experience
an attractive interaction. The internal degree of freedom
of the elastic memcapacitive system is the position of the
upper plate y measured from an equilibrium uncharged
plate separation, d0. The Lagrangemodel of elastic mem-
capacitive system connected to a voltage source consists
of the following kinetic and potential energies and dissi-
pation potentials:

T =
mẏ2

2
, (42)

U = UC
q + Ũ =

q2

2C(y)
+

ky2

2
− qV (t), (43)

H = H̃ =
γmẏ2

2
, (44)

supplemented by the expression for the memcapacitance,
C(y) = C0/ (1 + y/d0). Here, m is the mass of the upper
plate, γ is a damping coefficient representing dissipation
of the elastic oscillations, k is the spring constant, C0 =
εS/d0 is the equilibrium value of capacitance, S is the
plate area, and ε the permittivity of the medium.
The first equation of motion is of the form of Eq. (37).

The second equation (31) is obtained substituting Eqs.
(42)-(44) into Eq. (38). Explicitly, we obtain the classi-
cal harmonic oscillator equation including damping and
driving terms:

d2y

dt2
+ γ

dy

dt
+ ω2

0y +
V 2
C

2md0

C0

(1 + y/d0)
2 = 0. (45)

Here, ω0 =
√
k/m. To emphasize the similarity of Eq.

(45) with Eq. (31) we note that Eq. (45) can be written
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FIG. 3: (a) Schematic of flux-controlled meminductive system
connected to a time-dependent voltage source. (b) Schematic
of a current-controlled meminductive system connected to a
time-dependent current source.

as two first-order differential equations and the internal
state variables are x1 = y and x2 = ẏ.

V. MEMINDUCTIVE SYSTEMS

Let us finally consider meminductive systems3 (Fig. 3).
A flux-controlled meminductive system satisfies the rela-
tions3

IL = L−1 (x, φL, t)φL(t) (46)

ẋ = f (x, φL, t) (47)

with L−1 the inverse meminductance. A current-
controlled meminductive system is defined by the set of
equations3

φL = L(x, IL, t)IL(t), (48)

ẋ = f(x, IL, t). (49)

As in the case of memcapacitive systems, meminductive
elements may represent non-dissipative, dissipative, or
active devices. We are interested only in the first two
types since they are the most important for technological
applications.

A. Flux-controlled systems

Consider a circuit composed of a voltage source con-
nected to a meminductive system as in Fig. 3(a). The
circuit degree of freedom q in flux-controlled meminduc-
tive systems is taken into account by the following con-
tribution to the kinetic energy

TL
φ =

L(y, φL, t)q̇
2

2
. (50)

The contribution to T , U and H from internal state de-
grees of freedom are written in the general form (Eqs.
(7),(8),(9)). Consequently, taking also a voltage source
in Fig. 3(a) into account, the Lagrangian and dissipative
potential are written as

L =
∑

i

ciẏ
2
i

2
+ L(y, φL, t)

q̇2

2
− Ũ(y, φL, t) + qV (t), (51)

H = H̃ (y, ẏ, φL, t) . (52)

The EOM for the q degree of freedom is

d(L(y, φL, t)q̇)

dt
= V (t) ≡ VL(t). (53)

Integrating this equation in time assuming that φ(t =
−∞) = 0 we find

L(y, φL, t)q̇ =

∫ t

−∞

dt′ VL(t
′) = φL(t), (54)

which is Eq. (46).
The EOMs for the state variables are written as

ciÿi +
∂H̃ (y, ẏ, φL, t)

∂ẏi

+
∂Ũ(y, φL, t)

∂yi
− φ2

L

2L2

∂L(y, φL, t)

∂yi
= 0, (55)

which again, since x = {y, ẏ}, can be written in the form
of Eq. (47).

B. Current-controlled systems

When one considers circuits involving current-
controlled meminductive systems (and current sources
instead of voltage sources), one should employ the Y φ set
of variables (see Table I). Let us then consider a simple
circuit composed of a current source directly connected
to a meminductive system (Fig. 3(b)). The contribu-
tion from the circuit degree of freedom φ comes from the
potential energy UL

I term. The kinetic energy, potential
energy, and total dissipation potential in the Lagrangian
formalism are now

T = T̃ =
1

2

∑

i

ciẏ
2
i , (56)

U = Ũ + UL
I − φI = Ũ(y, IL, t) +

φ2

2L(y, IL, t)
− φI(t), (57)

H = H̃(y, ẏ, IL, t). (58)

The EOM for φ is the same as Eq. (48). The EOMs for
yi are similarly derived and result in Eq. (55) except for
the substitution of φL by IL.

C. Example

We here provide an instructive example of an effective
meminductive system consisting of an LCR contour in-
ductively coupled to an inductor (Fig. 4). In this scheme,
the two inductors L1 and L2 interact with each other
magnetically. From the point of view of the voltage
source V (t), the total system can be seen as a second-
order flux-controlled meminductive system described by
the general equations (46)–(47). The charge on the ca-
pacitor C and the current through the inductor L2 play
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C

M

L1
+
_

R

L2

+
_

FIG. 4: Flux-controlled meminductive system based on the
inductive coupling of a coil L1 with a LCR contour. Here, the
mutual inductance M is equal to k

√
L1L2, where 0 ≤ k ≤ 1

is the coupling coefficient.

the role of internal state variables. It is convenient to
select y = qC . Consequently, IL2

= ẏ.
We start by considering the circuit presented in Fig. 4

using the Lagrange formalism for usual circuit elements.
The circuit is described by:

T =
1

2
L1q̇

2 +
1

2
L2ẏ

2 +Mẏq̇, (59)

U =
y2

2C
− qV (t), (60)

Hq = 0, (61)

Hx =
Rẏ2

2
. (62)

The EOMs for x and q are then found to be

L1q̈ +Mÿ − V (t) = 0, (63)

(
L2 −

M2

L1

)
ÿ +

M

L1
V (t) +

y

C
+Rẏ = 0. (64)

One can easily verify that Eqs. (63) and (64) describe
the electric circuit from Fig. 4.
Next, integrating Eq. (63) (the constant of integration

is taken to be zero), we can rewrite it in the form

φ(t) =
L1φ(t)

φ(t)−Mẏ
q̇(t) ≡ L(ẏ, φ(t))q̇(t), (65)

which shows that the meminductance L depends on the
generalized velocity x = ẏ.

D. Mutual meminductance

After the generalization of self-inductance to memin-
ductance, one wonders if mutual-inductance can be gen-
eralized to memory situations as well. We consider two
coupled inductors as in Fig. 4, but now assume the mu-
tual inductance to have memory. Here, we want to de-
scribe that part of the memory that cannot be included

in two (self-)meminductive systems. This memory can be
stored in the medium between the inductors with a state
affected by the two magnetic fluxes of the inductors. It
could also be stored in the geometry of the system by
having, e.g., two elastic coils that can either attract or
repel each other. Since the memory mechanism does not
belong solely to one inductor, the relation M = k

√
L1L2,

applicable to mutual inductance of two coils, does not ap-
ply for mutual meminductance: k is not generally a con-
stant independent of L1, L2, x and possibly some other
parameters.
In analogy with Eqs. (46) and (47), we then define a

flux-controlled mutual meminductive system via the fol-
lowing set of equations:

q̇1 = M−1(x, φM1, φM2, t)φM2, (66)

q̇2 = M−1(x, φM1, φM2, t)φM1, (67)

ẋ = f(x, φM1, φM2, t), (68)

where M(x, φM1, φM2, t) is the mutual meminduc-
tance, φM1 is the magnetic flux defined by φM1 =∫ t

−∞
VM1(t

′)dt′, VM1(t) is the voltage on the first induc-

tor (φM2 and V2M (t) are similarly defined), and q̇1 and
q̇2 are the currents in the first and second inductors re-
spectively.
Regarding the Lagrangian formulation, the additions

to the kinetic energy, potential energy and dissipation
potential as a result of introducing this memory element
are

T =
1

2

∑

i

ciẋ
2
i +M(x, φM1, φM2, t)q̇1q̇2, (69)

U = Ũ(x, φM1, φM2, t), (70)

H = Hx(x, ẋ, φM1, φM2, t). (71)

The corresponding current-controlled mutual memin-
ductive systems are instead defined by the set of equa-
tions

φM1 = M(x, IM1, IM2, t)IM2, (72)

φM2 = M(x, IM1, IM2, t)IM1, (73)

ẋ = f(x, IM1, IM2, t), (74)

where IMi is the current in the i-th inductor, and
M(x, IM1, IM2, t) is the mutual inductance that can be
obtained by plugging in φM1(IM2) and φM2(IM1) in
M(x, φM1, φM2, t). The Lagrangian formulation of this
system is given by

T =
1

2

∑

i

ciẋ
2
i , (75)

U = Ũ(x,MIM2,MIM1, t) +
φM1φM2

M(x, IM1, IM2, t)
,(76)

H = Hx(x, ẋ,MIM2,MIM1, t), (77)

where both Ũ and Hx are the same functions as defined
in the above flux-controlled case.
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VI. LAGRANGIAN OF A GENERAL CIRCUIT

We now have all the ingredients to write down the
Lagrangian for a general circuit network composed of an
arbitrary combination of memristive, memcapacitive and
meminductive systems and their standard counterparts.
These circuits may be powered by an arbitrary set of
voltage sources Vk(t) (Sec. VIA), for which the fluxes
φk(t) are defined as, e.g., in Eq. (54), or by a set of current
sources Ik(t) (Sec. VIB). When both voltage sources and
current sources are present, one can convert the latter to
the former using the Thévenin’s theorem, or the former
to the latter using the Norton’s theorem32, thus ensuring
only one type of power source is present. Below we briefly
outline the recipe to write the Lagrangian of a general
circuit for both cases.

A. Circuits with voltage sources

A general electronic circuit powered by voltage sources
can be described as a combination of l indivisible loops,
i.e., ones that do not contain internal loops. Within the
j-th (j = 1, . . . , l) loop one should consider the charge
qj as the circuit variable and take into account general-
ized coordinates of elements involved in this loop. For
simplicity, we rename the generalized coordinates for the
whole circuit as yi (i = 1, . . . , k).
The current in each branch of the circuit is the sum of

contributions from indivisible loops it belongs to. Using
this fact, we can write the Lagrangian for each element
in the branch. The element’s Lagrangian is taken in the
voltage-controlled form for memristive and memcapaci-
tive systems and in the flux-controlled form for memin-
ductive ones.
The sum of the Lagrangians of individual elements of

the circuit gives the circuit’s Lagrangian, while the sum
of the dissipation potentials gives the circuit’s dissipa-
tion potential. The circuit’s Lagrangian and dissipation
potential depend on qj , q̇j , yi and ẏi and result in l + k
EOMs. The EOM obtained for qj gives Kirchhoff’s volt-
age law (KVL) for the j-th loop because of the linear-
ity of the Euler-Lagrange equations, and because each
component in the loop was shown above to give the cor-
rect voltage term. Kirchhoff’s current law (KCL), on the
other hand, is automatically satisfied by the choice of
loop current variables.

B. Circuits with current sources

When a circuit is powered by current sources, the cir-
cuit variable is the flux φj in the j-th (j = 1, . . . , l) junc-

tion, while φ̇j is the electric potential at the junction.
Using this definition, the flux or voltage across each ele-
ment in the network can be found via the difference of the
fluxes or potentials in the junctions at its ends, enabling

V1

R(q) C C
R

M
L L

FIG. 5: Schematic of flux-controlled inductively-coupled
charging circuits with a DC voltage source

one to write the element’s Lagrangian and dissipation po-
tential in the current-controlled formalism for memristive
and meminductive systems and in the charge-controlled
formalism for memcapacitive ones. As in the voltage-
controlled case, the circuit’s Lagrangian or dissipation
potential is the sum of the circuit element’s Lagrangians
or dissipation potentials, respectively.
If we denote again the internal degrees of freedom of

the whole circuit as yi (i = 1, . . . , k), we have a circuit’s
Lagrangian and dissipation potential that depend on φj ,

φ̇j , yi and ẏi and result in l + k EOMs. The EOM ob-
tained for φj gives KCL for the j-th junction due to the
linearity of the Euler-Lagrange equations, and because
each element ending on the junction was shown above to
give the correct current term. KVL, on the other hand, is
automatically satisfied by the choice of junction potential
variables.
This formalism has a complementary nature and can

be viewed as the dual formalism to that for circuits with
voltage sources. This conclusion will be reinforced in Sec.
VII, where we will show that the canonically conjugate
momenta of the voltage-controlled and current-controlled
formalisms to be fluxes and charges, respectively.

C. Lagrangian multipliers

When a circuit, voltage-controlled or current-
controlled, has additional constraints—missing from the
EOMs—relating state variables to circuit variables, the
form of their dependence should be added to the La-
grangian. This is achieved by the method of Lagrange
multipliers. In particular, the Lagrange multipliers are
convenient for describing ideal memory circuit elements
such as the ideal memristor18, in which the state vari-
able y equals the charge q flowing through the device.
Examples for such constraints appear in Subsec. VID.

D. Examples

Consider two inductively coupled RC circuits as shown
in Fig. 5. Initially, both capacitors are not charged and
there are no currents in the circuits. The circuits are
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coupled via mutual inductance M , which results in peri-
odic charging and discharging of the right side capacitor
as will be seen below. We take a memristor with R(y)
(y = q) qualitatively similar to the one fitted recently to
experiments on TiO2 thin films17, namely of the form

R(y) = Ron +
Roff −Ron

1 + y2/q20
, (78)

where Ron, Roff and q0 are parameters defined for each
memristor. The resistance is seen to decrease from Roff

to Ron as charge flows through the memristor. Denoting
the left and right loop charges as q1 and q2, respectively,
and applying the results of Sections III, IV, and V, we ob-
tain the following Lagrangian and dissipation potentials
for the network,

L =
L

2
(q̇21 + q̇22)−Mq̇1q̇2 + q1V1 −

q21 + q22
2C

−λ(y − q1), (79)

Hq =
1

2
R(y)q̇21 +

1

2
Rq̇22 , (80)

Hx = 0, (81)

where λ is the Lagrange multiplier corresponding to the
circuit holonomic constraint, y = q1 (a different constrain
would lead to a different corresponding term in Eq. (79)).
These expressions lead to the following EOMs for the

total system

Lq̈1 −Mq̈2 +R(q1)q̇1 +
q1
C

− V1 = 0, (82)

Lq̈2 −Mq̈1 +Rq̇2 +
q2
C

= 0, (83)

where the EOM for y, giving λ = 0, and the EOM for
λ, giving y = q1, were substituted. The solution of these
EOMs for certain values of the parameters is shown in
Fig. 6. We note that the insertion of the memristor pro-
duces an almost constant current instead of an exponen-
tially decreasing one in the left loop of the circuit. The
stabilization of the current is achieved by the decline in
the characteristic charging time R(q1)C as the capacitor
is charged. The memristor also modifies the exchange of
energy between the two circuits, giving pronounced os-
cillations in the charge of the right loop of the circuit,
which are absent when the memristor is substituted with
a normal resistor.

As a second example, consider the circuit shown in Fig.
7. The circuit consists of a 3 × 3 network of memristors
connected to a voltage source. Each memristor has resis-
tance R(yi), where yi is the cumulative charge that flows
through the memristor. The indivisible loops charges are
denoted by qi. The EOMs can be readily obtained from
the Lagrangian and dissipation potential of the circuit
that read

L = qV (t)− λ1(y1 − q1)− λ2(y2 − q2)− λ3(y3 − q0 + q1)− λ4(y4 − q1 + q2)− λ5(y5 − q2)

−λ6(y6 − q3 + q1)− λ7(y7 − q4 + q2)− λ8(y8 − q0 + q3)− λ9(y9 − q3 + q4)− λ10(y10 − q4)

−λ11(y11 − q0 + q3)− λ12(y12 − q0 + q4), (84)

H =
1

2
{R(y1)q̇

2
1 +R(y2)q̇

2
2 +R(y3)(q̇0 − q̇1)

2 +R(y4)(q̇1 − q̇2)
2 +R(y5)q̇

2
2 +R(y6)(q̇3 − q̇1)

2 +R(y7)(q̇4 − q̇2)
2 +

R(y8)(q̇0 − q̇3)
2 +R(y9)(q̇3 − q̇4)

2 +R(y10)q̇
2
4 +R(y11)(q̇0 − q̇3)

2 +R(y12)(q̇0 − q̇4)
2}, (85)

where the λi’s are the Lagrange multipliers. These two
functions can be easily generalized for the case of aN×M
network of different memristors, greatly facilitating the
attainment of the EOMs, the solution of which can be
used to solve, e.g., optimization problems such as mazes
in a massively parallel way21.

VII. HAMILTON FORMALISM

The counterpart of the Lagrange formalism is the
Hamilton one, which is also generally the starting point
for quantization. For non-dissipative systems, one can
easily transform the Lagrangian to the Hamiltonian. In
the presence of dissipation instead, this task requires par-
ticular care.
Dissipation is the result of the tracing out of certain

degrees of freedom resulting in an effective (reduced) de-

scription of the system of interest in interaction with
these degrees of freedom. However, the microscopic pro-
cedure of tracing out these degrees of freedom is most
of the time difficult to carry out exactly, and dissipa-
tion is then introduced with physically plausible ”ad hoc”
strategies.

There are several ways to add dissipation at the level
of circuit Hamiltonians which range from complex La-
grangians (resulting in complex Hamiltonians)33 to the
addition of linear dissipative elements modeled by an in-
finite network of capacitors and inductors (see, e.g.,34).
Since the discussion of dissipation in Hamiltonian dy-
namics would require an extensive treatment by itself,
here we limit our analysis to non-dissipative systems, and
(except for the work-energy theorem discussed below)
leave the Hamiltonian formalism of dissipative memory
elements for a future publication.
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FIG. 6: (Color online) Graphs of q1(t) (top) and q2(t) (bot-
tom) for the system described in Fig. 5. The solid line cor-
responds to the behavior with the memristor and the dashed
line to the behavior with the memristor replaced by a nor-
mal resistor of resistance Roff . The parameters used were
V1 = 1V, R = 10kΩ, Roff = 100kΩ, Ron = 100Ω, C = 3pF,
M = L = 0.3mH, q0 = 10−12C. The initial conditions were
set to no charge or current in any of the circuit elements.

A. Canonically conjugate momenta

Consider a non-dissipative network of memory ele-
ments. In order to write the Hamiltonian, we need to
determine the momenta pj canonically conjugate to the
variables qj . These momenta are defined for circuits of
voltage-controlled elements by

pj ≡
∂L
∂q̇j

, (86)

with the same definition for circuits of current-controlled
elements except for q̇j being replaced by φ̇j . Looking
at the expressions for the Lagrangians of the memory
elements discussed above, one easily finds the physical
meaning of pj. In voltage-controlled circuits pj is the
total of the fluxes generated by the inductors in the j-
th loop, while in current-controlled circuits, it is the
charge in the j-th junction. In addition, if we define
the canonically conjugate momentum to the internal de-
gree of freedom yi as zi, we readily find that for both
voltage-controlled and current-controlled circuits

zi ≡
∂L
∂ẏi

= ciẏi. (87)

V(t)

R(y1)

+
_

R(y6)

R(y2)

R(y7)

R(y12)R(y11)

R
(y
3 )

R
(y
8 )

R
(y
9 )

R
(y
4 )

R
(y
5 )

R
(y
1
0 )

q0

q3 q4

q1 q2

FIG. 7: Schematic of a voltage-controlled 3 × 3 network of
memristive systems with a voltage source.

The Hamilton’s equations for voltage-controlled cir-
cuits then read

q̇j =
∂H

∂pj
, (88)

ṗj = −∂H

∂qj
, (89)

with qj replaced by φj for current-controlled circuits.
Using the results for the canonically conjugate mo-

menta, we see that for voltage-controlled circuits Eq.
(88) gives the current in the j-th loop in terms of the
magnetic flux in the inductors in each loop, while Eq.
(89) gives the change in the magnetic flux in the inductors
in the j-th loop in terms of the charges in the loops. For
current-controlled circuits, on the other hand, Eq. (88)
gives the potential in the j-th junction in terms of the
charges in the circuit junctions, and Eq. (89) gives the
current flowing into this junction in terms of the fluxes in
the circuit junctions. The EOMs obtained here - while
representing the same physics - are distinctly different
from the ones in the Lagrangian formalism and therein
lies their value.
With these results in mind, the Hamiltonian is de-

fined as the Legendre transformation of the Lagrangian,
namely

H =
∑

j

pj q̇j +
∑

i

ziẏi − L (90)

for voltage-controlled circuits, and with qj substituted
by φj for current-controlled circuits. Since the kinetic

energy in both cases is quadratic in q̇j (φ̇j for current-
controlled circuits), it is easy to see that Eq. (90) reduces
to H = T + U .
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B. Work-energy theorem

If we consider an arbitrary circuit with a number of
voltage sources Vkj (of the k-th voltage source in the j-
th loop), we can define the work done by these sources,
at any given time in an interval of time dt, on infinites-
imal charges dqj in each of the indivisible loops. The
total work done by all sources (which is not an exact
differential) is then

δW =
∑

k,j

Vkjdqj . (91)

For non-dissipative circuits all this work goes into the
variation of the internal energy dE which can be com-
puted from T + U by subtracting the contribution from
the voltage sources. The work-energy theorem in this
case thus reads

δW = dE . (92)

In the presence of current sources the work done is

δW =
∑

k,j

Ikj(dφk − dφj) , (93)

where Ikj is the current of the source between the k-th
and j-th junctions (or 0 if none such source exists), and
dφk − dφj is the difference in flux on the two sides of the
source. This work accounts for the change dE of inter-
nal energy which derives from T + U by subtracting the
contribution from the current sources to give a balance
formally equal to Eq. (92).

C. Generalized Joule’s first law

In the dissipative case on the other hand we need to
take into account that part of the work done by the volt-
age sources that goes into a ”generalized heat” which
accounts for the heat generated in the resistances (if
present) and the ”heat” generated from the dissipative
components of the state variables.
Mathematically, this amounts to

δW − dE =
∑

j

∂H
∂q̇j

q̇jdt+
∑

i

∂H
∂ẏi

ẏidt (94)

for voltage-controlled circuits. On the other hand, in the
presence of current sources, Eq. (94) needs to be changed
into

δW − dE =
∑

j

∂H
∂φ̇j

φ̇jdt+
∑

i

∂H
∂ẏi

ẏidt. (95)

Eqs. (94) and (95) are the generalized Joule’s first laws

for dissipative systems and are important yardsticks, to-
gether with the Euler-Lagrange EOMs, to test the valid-
ity of a given Lagrangian formulation. We note in partic-
ular, the identification of the energy loss due to memory,
given by the last terms on the right-hand side of Eqs.
(94) and (95), which are not present in the formulation
of standard circuit elements.

VIII. QUANTIZATION

Having shown the Hamiltonian formulation for classi-
cal non-dissipative circuits, we now embark on the quan-
tization of these Hamiltonians, which will be of impor-
tance at low temperatures and mesoscopic/nanoscopic
length scales. Instead of proceeding with a general cir-
cuit, in this case we find it more instructive to first work
out explicit examples. We consider first a voltage source
connected in series with a memcapacitive system and a
meminductive system. Then we look at a current source
connected in parallel with these systems. These two cir-
cuits can be realized experimentally (see e.g., Ref. 35)
and are therefore ideal test-beds for the concept of mem-

ory quanta, namely quantized excitations of the memory
degrees of freedom of these circuits.

A. Example: series LC circuit

We consider a voltage source connected in series with
a memcapacitive system and a meminductive one as de-
picted in Fig. 8(a). The case of such a circuit with no
memory was quantized in previous works26,36 and will
be generalized here. The Hamiltonian for this circuit is
found using Eqs. (7) and (35) for the memcapacitive sys-
tem and Eqs. (50) and (8) for the meminductive one, and
reads

H = T + U =
1

2

∑

i

c−1
1i z

2
1i +

1

2

∑

i

c−1
2i z

2
2i +

q2

2C(y1, V1, t)
+

φ2

2L(y2, φ, t)
+ Ũ1(y1, V1, t) + Ũ2(y2, φ, t)− qV (t), (96)

where the index 1 corresponds to the capacitor and the
index 2 to the inductor. yji is the i-th memory coordinate

of the j-th memory element, and zji is its canonically
conjugate momentum as defined in Eq. (87). q is the
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charge flowing through the circuit, and φ is the flux on
the inductor. V1 is the voltage on the capacitor and V (t)
is the voltage of the source.
Under reasonable assumption of stability of the values

of y1 and y2, we expand Ũ1(y1, V1, t) and Ũ2(y2, φ2, t)
at their minima with respect to y1 and y2, respectively.
Several such minima can exist for y1 or y2 in certain
memory elements37. In this case we should choose one
minimum based on the initial conditions. The definitions
of yi are shifted by constants to make them zero at their
respective minima. This shift does not affect the form
of the other terms in the Hamiltonian. In addition, we
define ∆(C−1)(y1, V1, t) and ∆(L−1)(y2, φ, t) by

∆(C−1)(y1, V1, t) ≡ 1

C(y1, V1, t)
− 1

C0(V1, t)
, (97)

∆(L−1)(y2, φ, t) ≡ 1

L(y2, φ, t)
− 1

L0(φ, t)
, (98)

where for brevity we have defined C0(V1, t) ≡ C(0, V1, t)
and L0(p, t) ≡ L(0, p, t).

Discarding constant terms in Ũi and neglecting higher

order terms in xi, we can write Ũi ≈ ∑
j djiy

2
ji/2, and

the Hamiltonian takes the form

H = Hq +Hx +Hint, (99)

Hq =
φ2

2L0
+

q2

2C0
− qV (t), (100)

Hy =
1

2

∑

ij

c−1
ji z

2
ji +

1

2

∑

ij

djiy
2
ji, (101)

Hint =
∆(L−1)φ2

2
+

∆(C−1)q2

2
, (102)

where the Hamiltonian was divided into a ”charge” part,
Hq, ”memory” part, Hy, and the ”interaction” part,
Hint.
We next introduce the bosonic creation and annihila-

tion operators defined by

a =

√
L0ω0

2h̄
(q +

iφ

L0ω0
) (103)

a† =

√
L0ω0

2h̄
(q − iφ

L0ω0
) (104)

bji =

√
cjiωji

2h̄
(yji +

izji
cjiωji

) (105)

b†ji =

√
cjiωji

2h̄
(yji −

izji
cjiωji

), (106)

where a† and a (b†ji and bji) create and destroy charge

(memory) quanta, respectively.
The frequency of the charge oscillator, ω0, is the circuit

resonance frequency, (L0C0)
−1/2, while the frequencies of

the memory quanta oscillators are analogously given by

ωji ≡
√

dji
cji

. (107)

(a)

+
_

(b)

FIG. 8: (a) Schematic of a series voltage-controlled mem-
ory element LC circuit. (b) Schematic of a parallel current-
controlled memory element LC circuit.

Plugging these relations into the Hamiltonian in Eq. (99)
finally gives the quantized form

Hq = h̄ω0(a
†a+

1

2
)−

√
h̄

2L0ω0
(a+ a†)V (t),(108)

Hx =
∑

ij

h̄ωji(b
†
jibji +

1

2
), (109)

Hint = − h̄L0ω0

4
∆(L−1)(ŷ2, φ̂, t)(a− a†)2

+
h̄

4L0ω0
∆(C−1)(ŷ1, V̂1, t)(a+ a†)2, (110)

where V1 is quantized by solving the equation V1 =
q/C(y1, V1, t) to give V1 = V1(y1, q, t) which translates

to V̂1 = V1(ŷ1, q̂, t) after quantization.
It is now clearly seen that Hq includes only terms cor-

responding to the charge quanta, while Hy includes those
corresponding to memory. Hint couples the two quanta
with a coupling term that has at least three ladder oper-
ators.
A simple example18 that illustrates this result is a cir-

cuit involving a normal inductor of inductance L in series
with a memcapacitor that has its upper plate of mass m
hanging on a spring with spring constant k (Fig. 9). This
memcapacitor could be a representation of, e.g., a nano-
electromechanical system38–40. If the displacement of the
upper plate from its equilibrium position is denoted by y
and its distance from the lower plate at this position is
d0, the capacitance can be easily seen to be given by18

C(x) =
C0

1 + y/d0
, (111)

where C0 is the capacitance at equilibrium. Using the
above formalism to quantize the Hamiltonian and keep-
ing only energy conserving terms, we find Eq. (110) is
reduced to

Hint =
h̄3/2

4
√
2
d−1
0 (LC0)

−1/2(mk)−1/4(a†
2
b+ b†a2). (112)

This type of interaction is of the same kind as the one en-
countered in the quantum treatment of second harmonic
generation in optics41.
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d0

k

L
q(t)

-q(t)

FIG. 9: Elastic memcapacitive system connected to a normal
inductor.

If the circuit can be built to satisfy (k/m)1/2 =
2(LC0)

−1/2 the interaction will produce a splitting of the
degeneracy of the levels that is of first order in Hint and
which may be large enough to be detected experimen-

tally. (See also the Conclusions for an order of magnitude
estimate of when to expect quantum effects to dominate.)

B. Example: parallel LC circuit

As a second example let us consider a parallel memory
LC circuit as plotted in Fig. 8(b). In this circuit a cur-
rent source is connected in parallel with a memcapacitive
system and a meminductive system. The Hamiltonian for
this system can be found utilizing Eqs. (39) and (40) for
the former, and Eqs. (56) and (57) for the latter resulting
in

H = T +U =
1

2

∑

i

c−1
1i z

2
1i+

1

2

∑

i

c−1
2i z

2
2i+

q2

2C(y1, φ, t)
+

φ2

2L(y2, I2, t)
+ Ũ1(y1, C

−1φ, t)+ Ũ2(y2, LI2, t)−φI(t), (113)

with the same definitions as in Eq. (96), except for φ
being the flux in the inductor and q being the charge on
the capacitor. I2 is the current through the inductor and
I(t) is the current of the source.
Proceeding in a completely analogous way to the pre-

vious subsection with the definitions of the ladder oper-
ators in Eqs. (103)-(106) modified by the substitutions
L0 → C0 and q → φ, we find the quantized Hamiltonian
of this system to be

H = Hq +Hy +Hint (114)

Hq = h̄ω0(a
†a+

1

2
)−

√
h̄

2C0ω0
(a+ a†)I(t),(115)

Hy =
∑

ij

h̄ωji(b
†
jibji +

1

2
), (116)

Hint = − h̄C0ω0

4
∆(L−1)(x̂2, Î2, t)(a− a†)2

+
h̄

4C0ω0
∆(C−1)(x̂1, q̂, t)(a+ a†)2, (117)

where I2 is quantized by solving the equation I2 =
φ/L(y2, I2, t) to give I2 = I2(y2, φ, t) which reduces to

Î2 = I2(ŷ2, φ̂, t) after quantization. This Hamiltonian is
very similar to the one obtained for the series LC cir-
cuit. We will now show these two Hamiltonians to be
the basic building blocks for the quantized Hamiltonian
of a general circuit with non-dissipative elements.

C. General circuit

We now proceed to find the quantized Hamiltonian for
a general circuit network of memcapacitive systems, me-

minductive systems and voltage sources. Such a circuit
can be divided into indivisible loops each with charge qk
as noted in Sec. VI. Using the methods of that section
to find T and U , one can write the Hamiltonian for the
network as H = T + U , which, after the substitution of
qk and φk with ladder operators using Eqs. (103)-(106),
reduces, apart from the interaction part, to a bilinear
combination of them which is known to be exactly diag-
onalizable by, e.g., a linear canonical transformation.

With regards to the quantization of the Hamiltonian
of current-controlled circuits, the process is similar. We
denote the flux in each junction of the network with φk

with a corresponding qk being the charge in the junction.
Using the methods of Sec. VI, we write the Hamiltonian
H = T +V and then quantize it by writing φk and pk in
terms of ladder operators using the transformation from
the previous subsection. Like in the voltage-controlled
case, the non-interacting part of the Hamiltonian is again
bilinear and can be diagonalized.

IX. CONCLUSIONS

To summarize, in this work we introduced the general
Lagrangian formulation for the three basic memory el-
ements: memristive, memcapacitive and meminductive
systems and defined a fourth memory element, a mu-

tual meminductive system, for which we also gave the
Lagrange formalism. We showed how to write the La-
grangian for a general circuit, including one with current
sources. The examples given for the Lagrangian formal-
ism demonstrated that writing the Lagrangian and dissi-
pation potential should be the preferred choice for finding
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the EOMs of large memory element networks.
The Hamiltonian formalism for electric circuits was

also generalized to include memory, although only for
non-dissipative elements. As in previous works26, we
have found that the canonically conjugate momentum
of charge is the flux and vice versa. The Generalized
Joule’s first law was given for general circuits including
ones with memory elements. This law can be used to
verify the correctness of a given Lagrangian formulation.
Lastly, we presented a scheme for the quantization of a
general non-dissipative memory element circuit.
The quantum treatment of memory elements, and in

particular the example given in the text of a memcapaci-
tor in series with an inductor (Fig. 9), begs the question
of under which conditions one can measure quantum ef-
fects in these systems. For quantum effects to be easily
measurable, both the thermal fluctuation energy and the
width of the energy levels should be smaller than the os-
cillator energy quantum26, i.e., kBT ≪ h̄ω0 and Q ≫ 1,
where Q = ω0R/L is the quality factor of the oscillator,
R the loop resistance, and L is the inductance. Possible
values for the capacitance and inductance in mesoscopic
circuits can be taken to be 10−15 F42 and 10−10 H43, re-
spectively. If one assumes a temperature of T = 20 mK
and circuit resistance of 10 Ω or less, both conditions
mentioned above are satisfied. As noted for the example

above, the degeneracy condition, satisfiable by a memca-
pacitor44, will lead to an experimentally detectable split-
ting of the degenerate energy levels as a result of the in-
teraction between the memory quanta and charge quanta.
Future research in this field may include extending the

Hamiltonian formalism to dissipative circuits. One way
to do this is, e.g., via a path-integral formulation45 of
memory elements. Along a parallel line, we expect the
Lagrangian formalism discussed here to be of great value
in the analysis of complex networks with memory, which
offer both fundamental and applied research opportuni-
ties.
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