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The zero-energy Landau level of bilayer graphene is shown to be anomalously sharp (delta-function
like) against bond disorder as long as the disorder is correlated over a few lattice constants. The
robustness of the zero-mode anomaly can be attributed to the preserved chiral symmetry. Unex-
pectedly, even when we apply a finite potential difference (i.e., an electric field) between the top and
the bottom layers, the valley-split n = 0 Landau levels remain anomalously sharp although they are
now shifted away from the zero energy, while the n = 1 Landau levels exhibit the usual behavior.

PACS numbers: 73.43.-f, 73.22.Pr, 71.23.-k

I. INTRODUCTION

The existence of the zero-energy Landau level is a most fundamental property of the electronic states in graphene in
magnetic fields, which hallmarks the unconventional quantum Hall effect observed in monolayer graphene.™? Specif-
ically, the zero-energy Landau level in mono-layer graphene exhibits an anomalous robustness against the disorder
induced by ripples, an intrinsic disorder in graphene, which leads to an unconventional criticality of Hall transition
at zero energy.>* For the robustness of zero modes, the chiral symmetry,® defined in terms of the chiral operator I'
that anti-commutes with the Hamiltonian H, i.e., {I', H} = 0 with I'? = 1, is an essential ingredient.’ For monolayer
graphene, we have Dirac cones at K and K’ points in the Brillouin zone, for which the effective Hamiltonian has the
chiral symmetry. In such a system, it has been demonstrated by the present authors that the zero-energy (n = 0)
Landau level is robust against the disorder that respects the chiral symmetry as long as the disorder is correlated
over a few lattice constants.”® Experimentally, the n = 0 Landau level narrower than the other n # 0 Landau levels
is reported for monolayer graphene,” which is consistent with the conceived robustness specific to the zero-energy
(n = 0) Landau level.

The notion of the chiral symmetry is so universal that it has further been shown!® that the chiral symmetry,
usually considered for the vertical Dirac cones, can be generalized to accommodate tilted Dirac cones, such as those
encountered in certain organic metals.'' '3 The generalized chiral symmetry, too, protects the zero-energy Landau
level as far as the Hamiltonian as a differential operator is elliptic, where we can extend the argument of Aharonov
and Casher for counting the number of zero modes in the presence of disorder.!* The existence of the generalized
chiral symmetry can indeed be translated to a condition that the index theorem'® holds for generic tilted Dirac cones.
Hence the chiral symmetry is directly related to the robustness of zero modes for the massless Dirac fermions.

Now, in the physics of graphene, the case of bilayer graphene is an interesting test bench for examining various
graphene properties. Specifically, McCann and Falko have shown that there exist four-fold degenerated (per spin)
zero-energy Landau levels, which lead to a quantum Hall effect characteristic to bilayer graphene.!® The degeneracy
comes from the valley (K and K’) degrees of freedom and two (n = 0 and n = 1) Landau indices. Although the
robustness of these zero-energy Landau levels is also predicted as a consequence of the index theorem,'”!® it is not
clear whether there is also a direct relationship between the chiral symmetry and the anomalous robustness of zero
modes, since the parabolic band dispersion in the bilayer graphene, as opposed to the linear one in the monolayer
graphene, might well invalidate the arguments. For instance, the two (n = 0 and n = 1) ingredients in the zero-energy
level may, naively, behave differently, since they have distinct wave functions.

The difference should become even greater when we apply an electric field perpendicular to the graphene sheet,
which introduces an energy gap. Thus a further interest is to see what happens to the zero-energy Landau level when
the energy gap is introduced. Experimentally, it is desirable to clarify quantitatively the robustness of the zero modes
in bilayer graphene, since experimental results in high mobility samples are now available.!?2° An opening of the
energy-gap in bilayer systems is important in an applicational context as well.?! 23

The purpose of the present paper is to explore these very questions, for which we have performed numerical studies
based on the lattice model. We shall show that both the n = 0 and the n = 1 Landau levels in bilayer graphene
are robust against bond disorders as long as they are correlated over a few lattice constants. We analyse the result
in terms of the chiral symmetry for the bilayer system. Unexpectedly, it is further found that, even in the presence
of a potential difference (an electric field) between the top and the bottom layers, the n = 0 Landau levels remain



robust although they are shifted away from zero energy, while the n = 1 Landau levels exhibit the usual behavior.
This phenomenon is analyzed in terms of the effective theory at K and K’ points.

II. LATTICE MODEL

In order to investigate the robustness of the zero modes against disorder in bilayer graphene, we adopt the following
tight-binding lattice model with the Bernal (A-B) stacking.'® We assume that each layer can be described by the
honeycomb lattice, while the interlayer coupling, 1, connects a site (B1) on the B sublattice of the bottom layer
and a site (Ag) on the A sublattice of the top layer just above By (Fig.1, left). This simplest model accounts for the
parabolic dispersion with zero gap at K and K’ points of bilayer graphene (Fig.1, right). For the randomness, we
consider a bond disorder that is spatially correlated. This is described by a random component, 6t(r), for the hopping
amplitude in each layers as t(r) =t 4 dt(r), that is gaussian-distributed with a variance o and is correlated in space
with a correlation length 1 as (5t(r)dt(r)) = (6t2) exp(—|r — r'|?>/4n?). It is to be noted that in this tight-binding
lattice model the chiral symmetry is exactly preserved even in the presence of disordered components in hopping
amplitudes t and ~;,7'? which is due to the bipartite structure of the lattice. Spin degrees of freedom are suppressed
for simplicity.

A randomness is expected to be induced in the hopping amplitudes as a consequence of ripples?? in a monolayer
graphene. In the case of bilayer, the disorder should be correlated between the two layers if the two layers have
a common ripple. On top of this, however, here we also examine the case where the disorder in two layers are
uncorrelated to clarify the generality of the topological protection of the Landau levels in bilayer graphene.

The effect of the magnetic field is taken into account by the Peierls substitution ¢t — te=27(") such that the
summation of the phases along a loop is equal to the magnetic flux enclosed by the loop in units of the flux quantum
¢o = (h/e). The nearest-neighbor distance of the honeycomb lattice is denoted by a, while the external uniform
magnetic flux enclosed by the hexagon of the honeycomb lattice by ¢.

IIT. ZERO-MODE LANDAU LEVELS

Let us first discuss the robustness of the zero-energy Landau levels. The density of states p(F) = —(ImGy(E +
ie)/m); with Gy (E +ig) = (i|(E — H + i)~ ]i) is evaluated by the Green function method.?* Figure 2 displays the
density of states for the case where the disorders in the two layers are perfectly correlated. We find that the zero energy
Landau level becomes anomalously sharp as soon as the spatial correlation length 1 exceeds a few nearest-neighbor
distances a, which is the same behavior as in the case of the monolayer graphene. This means that both of the n =0
and the n = 1 Landau levels at zero energy remain delta-function like in the presence of finite-range bond disorder,
which confirms the prediction based on the effective Hamiltonian at low energies.!” We also examine the case where
the disorder in two layers is uncorrelated to find that the density of states coincides with those in the correlated case,
which reveals an insensitivity to the disorder correlation between two layers (Fig.3).

IV. ELECTRIC FIELD EFFECT

In a bilayer graphene we can introduce an energy gap by applying an electric field perpendicular to the graphene
sheet,?? for which the dispersion in zero magnetic field is shown in Fig.4, inset. While the electric field obviously
breaks the inversion symmetry of the system, we should note that it also breaks the chiral symmetry for the effective
Hamiltonian around K and K’. To examine what happens to the robustness of the Landau levels around £ = 0 in such
a case, we evaluate the density of states when the potential difference 2A is introduced between the two layers, where
the four-fold degenerated zero-energy Landau levels split into four.!® The present numerical result, displayed in Fig.4,
shows that, among the split four Landau levels, the n = 0 Landau levels that are located at energies £ = +A again
become anomalously sharp as soon as the disorder is correlated over few lattice constants, while the n = 1 Landau
levels are broadened by the disorder despite the fact that they are located closer to E = 0. An interesting observation
then is that the energies of these anomalously sharp Landau levels can be tuned by the electric field. We can also note
that the n = 1 Landau levels, while not as sharp as the n = 0 Landau levels, are significantly sharper than higher
Landau levels. We have also confirmed that the results are insensitive to whether the disorder is correlated between
the two layers or not (Fig.5).



V. EFFECTIVE THEORY

The effective Hamiltonian, acting on the envelop functions (\I/KQ, \Ifgl , \I/K1 , \Ifgz) at K-point, for bilayer graphene
is given, in the presence of a perpendicular electric field, as!6:25-26

A Y1 0 w Fw;

v A wvpm 0

H == )
0 ovpml —A 0
vpma 0 0 A
where mp = py¢ — ipye with p, = —ihd + eAy(e > 0), and vp the Fermi velocity of a monolayer graphene. Here

£(=1,2) labels the two layers, while A, represents the effective gauge field in each layer, which includes the random
gauge field induced by the random hopping as well as the contribution by the external (uniform) magnetic field. The
operator m, satisfies a commutation relation, [ﬂ'g,w;f] = 2heBy, with By = (V x Ay),. Note that the gauge fields A;
and Ao, and consequently the effective magnetic fields B; and By at K point, can be different when the bonds have
different disorders between the two layers.

An important point is that the random component in the gauge field induced by the bond disorder gives rise to
effective magnetic fields that have opposite signs between K and K’ points.?? Still, the effective Hamiltonian is chiral-
symmetric, since it satisfies THI' = —H as long as A = 0, where the chiral operator I is given, for a bilayer, in terms

of a Pauli matrix o, as
o, 0
=(30).

The zero modes for the valley K with no electric field (A = 0) are, in analogy with the case without disorder,?® given
by

0 9o
0
vk = 1 and WE_ =
0 (() ) 1 _;y_;wl
0 0

with wlwél) =0, mY; = 1/)(()2) and 7721/)(()2) = 0. Note that these zero modes are also eigenstates of the chiral operator
T.

Extending the argument by Aharonov and Casher!? to bilayers, we express the gauge field as A, = (—0,¢¢, O:¢¢)
with the layer indices £ = 1,2 in the Coulomb gauge with 924, + 8§Ay = (0. The operator 7 is then expressed as

o = —2ih[0,+ +2m(0, ) /o] with z = (x+14y)/2. The solution to 7@1/1(()@ = 0 is given by 1/)(()2) = fi(z) exp(—2mpe/ o),
where fy(z) a polynomial in z.'* In general, the solution 1; takes the form 1; = fa(2) exp(—2mp1/¢o)F(2,2*) with
0.+ F(z,2*) = exp(2m(p1 — p2)/¢o). If the bond disorders in two layers are the same (¢1 = ©2), the function F(z, z*)
is reduced to z*.18 It is straightforward to apply these arguments to the effective Hamiltonian for the valley K’ 16:25,26
and this provides a proof that the four-fold degenerated zero-energy Landau levels exist irrespective of presence or
absence of the disorder in gauge fields.

When the electric field is switched on (A # 0), the above chiral symmetry is broken. We can still show, however,

that the state ¥X_, remains to be an exact eigenstate of the Hamiltonian with the eigenvalue ef = —A, so that an
absence of broadening due to disorder as in the case of A = 0 is demonstrated. The state ¥X_, on the other hand, is

not an exact eigenstate for A #£ 0. It is therefore natural to expect that the broadening occurs for the Landau levels
corresponding to WX_, | as is actually seen in our numerical results (Figs. 4 and 5). We can also note that even for
such states, the broadening itself is likely to be significantly smaller than those for higher Landau levels, which comes
from the anomalous character of the unperturbed Landau level ¥X_, (Fig. 4).

The eigenvalue EF for the state WX_, can be estimated, in the absence of disorder, from the perturbation with

respect to A, which gives
272
E¥=(1-———"2——)A 1
! ( 2v%heB + 712) ’ )
where B = By = B denotes the uniform external magnetic field. Relations to the tight-binding parameters are given
by vrp = (3/2)at/h and ¢ = (3v/3/2)Ba?. The energy EX is then estimated as EX ~ 0.7A for ¢ = (1/50)¢y and
1/t = 0.2, which accurately agrees with the present numerical result (Fig.5). The same argument for the effective
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Hamiltonian at K’ point leads to the Landau levels at E(If/ =—Ef =Aand EX = —FEXK ~ —0.7A. We also examine
the positions of the n = 1 Landau levels for various values of the interlayer coupling v; to confirm that their positions
are in good agreement with the perturbational result (Eq.(1)) for the range 0 < v; < t (Fig.5, inset).

The peak heights of these valley-split Landau levels depend on the effective magnetic field for each valley. Since the
effective fields induced by ripples at K and K’ have the opposite signs with the same magnitude,?® the degeneracies of
the Landau levels can be different for K and K’, although their sum should be a constant.'® In our numerical results,
however, no significant difference in the peak heights for the valley-split Landau levels is seen (Figs.4 and 5). This
can be attributed to the fact that the present density of states is an average over the sample. Our sample-size is much
larger than the correlation length of bond disorder and the periodic boundary condition is adopted along the strip
geometry.” It is therefore expected that the local fluctuation of the magnetic field due to the bond disorder (ripples)
is canceled.

VI. SUMMARY AND CONCLUDING REMARKS

We have demonstrated, both numerically and analytically, that the zero-energy Landau levels of bilayer graphene
become anomalously sharp when the bond disorder is correlated over a few lattice constants. The anomaly is shown
to be insensitive to the disorder correlation between the top and the bottom layers, which suggests a relevance of the
chiral symmetry to the present anomaly as in the case of the monolayer graphene. Another new finding is that the
anomaly at the n = 0 Landau level persists even in the case where the chiral symmetry for each valley is broken by the
potential difference between two layers. The splitting of the pair of sharp Landau levels is controlled by the electric
field, and their peak heights reflect the effective magnetic field strength at each valley. The anomalous sharpness of
these levels found here may help to detect experimentally the local fluctuation of the effective magnetic field arising
from ripples as unbalanced peak heights of these Landau levels in the local density of states.

In the present paper, we have focused on the bond disorder (ripples) that preserves the chiral symmetry and its
anomalous effect on zero-energy Landau levels. On the other hand, a potential disorder, which breaks the chiral
symmetry, will destroy the sharpness of the zero-energy Landau level even when the disorder is spatially correlated
over a few lattice constants.” Hence the present effect can be relevant only to a bilayer graphene free from potential
disorders (such as those suspended from substrates). In actual graphene, the scale of ripples is expected to be of the
order of 10 nm,2"?® which is much larger than the lattice constant @ = 0.142 nm. The bond disorder induced by
such ripples should therefore be correlated over a sufficiently long scale for the present sharpness of the zero-energy
Landau levels to be valid.

Finally, we mention the factors not considered here. First, the trigonal warping of the band dispersion arises when
the transfer integral, often called 3, between By and A12?Y is considered in bilayer graphene. In the presence of v3,
we have four Dirac cones at zero energy instead of the parabolic bands touching at one point.'® The change in the
dispersion, however, can be relevant on small energy scales, for which a phase transition driven by the electron-electron
interaction on such scales has been discussed for high quality samples.3? 32 How the present anomalously sharp zero
energy Landau levels are influenced by the trigonal warping, and also by the electron-electron interaction, is therefore
an important future problem remains to be seen.
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FIG. 1: (Color Online) For a bilayer graphene we show the A-B stacking with the interlayer coupling 1 (left panel), and the
band dispersions (right). K = (27/3v/3,27/3)a™" and K' = (—27/3v/3,27/3)a™! are the corners of the Brillouin zone.

Density of States

FIG. 2: (Color Online) Density of states of bilayer graphene in a magnetic field plotted for varied correlation length, 7, of the
bond disorder. The result is for a system with 10° sites, a magnetic field ¢/¢o = 1/50, the degree of disorder o/t = 0.115,
inter-layer transfer v, /t = 0.2, and ¢/t = 0.0006. Energy dispersion in zero magnetic field around the K point is also shown
with the same energy scale. Inset: Schematic figure of correlated ripple with a scale of 3a.
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FIG. 3: (Color Online) Density of states of bilayer graphene for the case of correlated disorder between two layers (dotted
curves) and that for uncorrelated disorder (solid curve) are shown with an offset 1.0 for uncorrelated disorder. The other
parameters are the same as in Fig.2.
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FIG. 4: (Color Online) Density of states of bilayer graphene in the presence of a potential difference A/t = 0.1. The other
parameters are the same as in Fig. 1. Energy dispersion in zero magnetic field around the K point is also shown in the bottom

inset.
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FIG. 5: (Color Online) The four Landau levels split by the electric field around zero energy of bilayer graphene when the
disorder correlation length in each layer is n/a = 2. Here A/t = 0.1 and the other parameters are the same as in Fig. 2.
The results (solid curve) for the case where the disorder is uncorrelated between two layers is plotted on those (dotted curve)
for the case of the common disorder between the two layers, where the two curves almost coincide with each other. A small
width of the n = 0 levels is an artifact of a finite imaginary energy € in the Green function. Inset: The energies of the n = 1
Landau levels in the presence of disorder (dots) as a function of the interlayer coupling :. Solid (dotted) curves represent the
perturbational results (Eq. (1)) for K(K’) .



