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Abstract: 

Some models of the 5/2 fractional quantum Hall state predict that the quasi-particles, which 

carry the charge, have non-Abelian statistics: exchange of two quasi-particles changes the wave 

function more dramatically than just the usual change of phase factor.  Such non-Abelian 

statistics would make the system less sensitive to decoherence, making it a candidate for 

implementation of topological quantum computation.  We measure quasi-particle tunneling as a 

function of temperature and DC bias between counter-propagating edge states.  Fits to theory 

give *e , the quasi-particle effective charge, close to the expected value of e/4 and g , the 

strength of the interaction between quasi-particles, close to 3/8.  Fits corresponding to the 
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various proposed wave functions, along with qualitative features of the data, strongly favor the 

Abelian 331 state. 

 

I. INTRODUCTION 

The collective interactions of a two-dimensional electron gas (2DEG) in a strong perpendicular 

magnetic field B , give rise to the fractional quantum Hall effect (FQHE).1  Because of the 

energy gap in the bulk,2 motion of the quasi-particles that arise in the FQHE is generally 

constrained to one-dimensional chiral edge channels.  However, if two opposite channels are 

brought close together, quasi-particles may tunnel between them.  Studies of such tunneling have 

led to measurements of the quasi-particle charge3, 4 and creation of quasi-particle 

interferometers.5, 6 

 

The states comprising the FQHE are determined by the filling factor )//( 0Φ= Bnυ , where n  is 

the electron sheet density and eh /0 =Φ  is the quantum of magnetic flux.  The υ  = 5/2 state7 is 

of particular interest because it is one of only a few physically realizable systems thought to 

possibly exhibit non-Abelian particle statistics.8-13  A number of different ground state wave 

functions have been proposed for the 5/2 state, some with non-Abelian statistics and some with 

prosaic Abelian statistics.  Were the existence of non-Abelian statistics confirmed, it would be an 

exciting discovery of a new state of matter and would possibly enable topological quantum 

computation.14  A great deal of theoretical and experimental work has been done on the 5/2 state 
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recently.15-32  Experimentally, the quasi-particle charge *e  has been found to be consistent with 

the predicted value e/4.24, 25, 31  Numerical simulations indicate a preference for the non-Abelian 

Pfaffian and anti-Pfaffian wave functions over various Abelian wave functions.18, 21, 23, 32, 33  The 

degree of electron spin polarization also provides valuable information about the wave function, 

but experimental results are contradictory.29, 30  Recent experimental results from an 

interferometer have been interpreted as evidence for non-Abelian statistics at υ  = 5/2.26, 27  The 

observation of a counter-propagating neutral mode is also most easily explained by the existence 

of a non-Abelian state.28 

 

We have studied the υ  = 5/2 state in two different quantum point contact (QPC) geometries, and 

present temperature and DC bias dependence of quasi-particle tunneling conductance across each 

QPC in the weak tunneling regime.  We have improved the signal-to-noise ratio by a factor ~2 

compared to previous similar measurements.24  By fitting these results to the theoretical form,34 

we extract the quasi-particle charge *e  and interaction parameter g .  The resulting *e  is in 

agreement with the predicted value of e/4, and the value of g  best agrees with that predicted for 

the Abelian 331 state.  Fixing g  at the values predicted by other proposed states produces fits 

that are qualitatively and quantitatively worse.  In addition, qualitative features of the DC bias 

dependence also favor the 331 state. 

 

II. EXPERIMENTAL DETAILS 
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The device used is the same as one of those studied by Radu et al.,24 and we briefly summarize 

its characteristics here.  The GaAs/AlGaAs heterostructure has a measured mobility of 1 × 107 

cm2/V s and electron density n  = 2.6 × 1011 cm-2.  The mobility is only half that previously 

reported, but the cause of this degradation is unknown.  The sample still exhibits a strong 5/2 

fractional quantum Hall effect, with a quantized Hall plateau and vanishing longitudinal 

resistance.35  Metallic top gates are biased negatively to deplete the underlying two-dimensional 

electron gas and induce tunneling between edge channels.  The gate pattern is shown in Fig. 1(a).  

Two different QPC geometries are created by applying negative voltages to some of the gates 

while keeping the remaining gates grounded.  Geometry A is a short QPC of nominal width ~0.6 

μm, and Geometry B is a long channel of nominal width ~1.2 μm and length ~2.2 μm.  For 

convenience we refer to both geometries as QPCs.  The gates biased to form the two geometries 

are listed in the caption of Fig. 1.  The measurement setup is illustrated in Fig. 1(b).  A DC 

current IDC of up to ±10 nA with a 0.4 nA AC modulation is applied to the source at one end of 

the Hall bar, with the drain at the other end.  Using standard lock-in techniques at 17 Hz, 

measurements are made of the differential Hall resistance (RXY) and longitudinal resistance (RXX) 

at points remote from the QPC and of the differential diagonal resistance (RD) across the QPC.  

Experiments are made in a dilution refrigerator with a mixing chamber base temperature of ~5 

mK.  The temperatures quoted below are electron temperatures, which track the mixing chamber 

temperature well down to ~20 mK.  Lower electron temperatures are calibrated against thermally 

broadened Coulomb blockade peaks in a quantum dot and against quantum Hall features 

showing linear temperature dependence.35 
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In order to preserve the same electron density, and hence filling factor, both inside and outside 

the QPC, we anneal the device with bias voltage applied to the gates at 4 K for approximately 60 

hours before cooling to base temperature.24  Each geometry is annealed by applying -2400 mV to 

the gates listed in the caption of Fig. 1, while leaving the other gates grounded.  After annealing 

and lowering the temperature, the gate voltage VG is constrained to the range of -2400 mV to -

1800 mV.  We find that after annealing the filling factor in the QPC matches that of the bulk of 

the Hall bar.  This is important in order to be confident that the measurements reflect tunneling 

of υ  = 5/2 quasi-particles from one chiral edge state to the other.  The success of annealing is 

confirmed by the observation that RXY (sensitive to the 2DEG far from the QPC) and RD 

(sensitive to the QPC) exhibit the same dependence on magnetic field.35  In particular, the integer 

QHE plateaus begin and end at the same values of magnetic field, and the low field slopes of 

RXY vs B and RD vs B are the same.  This identical device in Geometry B has been previously 

measured in the strong tunneling regime24 and we have repeated these measurements with 

similar results. Here we anneal at a less negative gate voltage enabling us to access the weak 

tunneling regime to much lower temperature. 

 

III. RESULTS 

For each geometry we measure the DC bias and temperature dependence of RD at υ  = 5/2, as 

shown in Fig. 2(a), (b).  The peak positions deviate from IDC = 0 by ~0.2 nA because of 

hysteresis in the sweep direction; all measurements shown in this paper are taken with increasing 

DC bias, and the small offset is subtracted when fitting.  The magnetic field and gate voltage are 
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chosen, following the measurement technique described in Radu et al.,24 to maximize the 

temperature range exhibiting a zero-DC-bias peak and to minimize variations in the background 

resistance.35  The magnetic field is set to 4.31 T, which is the center of the RXY plateau for υ  = 

5/2.  Geometry A is measured at VG = -2100 mV and Geometry B at -2148 mV. 

 

In the limit of weak quasi-particle tunneling, RD is linearly related to the differential tunneling 

conductance gT by 

2/)( XYXYDT RRRg −= ,        (1) 

provided that the sample is in an integer or fractional quantum Hall state.  This allows us to fit to 

the theoretical form for weak quasi-particle tunneling in an arbitrary FQHE state34: 
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B
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−= .       (2) 

The quasi-particle charge *e  and interaction parameter g  are physical constants characterizing 

the FQHE state, while the fit parameter A  accounts for the tunneling amplitude.  F  has a 

complicated functional form, peaked at zero DC bias.35  F approaches zero at infinite DC bias 

and for g  < 1/2 exhibits minima on the sides of the zero-bias peak; these minima are absent for 

g  ≥ 1/2.  Equation (2) predicts that the zero-bias peak height follows a power-law temperature 

dependence and that the full-width at half maximum in DC bias is linear in temperature.  Like 

Radu et al.24 and as seen in Fig. 2(a) and (b), we find a background resistance R∞, which is larger 

than the expected quantized value 0.4 h/e2.  However, this background is independent of DC bias 
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and temperature within the resolution of the measurement, under the measurement conditions 

chosen. 

 

A least-squares fit to Equation (2) of the RD measurements for Geometry B for many 

temperatures is shown in Fig. (2c).  We limit the temperature range for fitting to 20–80 mK for 

Geometry A and to 27–80 mK for Geometry B to ensure that only the weak tunneling regime is 

included.  At lower temperatures the DC bias curves start to exhibit features associated with 

strong tunneling.24, 36, 37  However, we note that the fitting results do not change significantly if a 

different temperature range is chosen.  Within the chosen range, measurements for all 

temperatures are fit simultaneously with the same fitting parameters.  The best fit for Geometry 

A returns *e  = 0.25e and g  = 0.42 and for Geometry B returns *e  = 0.22e and g  = 0.34.  

These values are similar to those obtained in a previous weak tunneling measurement24 ( *e  = 

0.17e, g  = 0.35), but we find *e  much closer to the predicted value of e/4.38 

 

In order to understand the level of confidence we can place in these fit results, we fix ( *e , g ) 

pairs over a range of values and fit to the weak tunneling form, allowing A  and R∞ to vary.  The 

residual of each fit is divided by the measurement noise of ~2 × 10-4 h/e2 and plotted against the 

( *e , g ) pairs in Fig. 3.  Pairs of ( *e , g ) values with a fit residue no larger than the noise fall 

within the “1” contour.  Also indicated are the pairs of ( *e , g ) values corresponding to the 

proposed wave functions listed below. 



8 

 

 

IV. INTERPRETATION AND DISCUSSION 

The simplest interpretation of our data is that the value of g  derived from the fits directly 

reflects the nature of the quasi-particles, and therefore the wave function, of the 5/2 state in our 

system.  This allows us to distinguish between competing proposals by their expected value of g .  

Proposed Abelian states include 33139, 40 with g  = 3/8, and K = 841 with g  = 1/8.  Non-Abelian 

states include the Pfaffian9 with g  = 1/4, the particle-hole conjugate anti-Pfaffian11, 12 with g  = 

1/2, and U(1) × SU2(2)10 with g  = 1/2.  All these states support quasi-particles both of charge 

e/4 and charge e/2.  However, tunneling measurements are expected to be dominated by quasi-

particles of charge e/4.42  Hence we examine the fits to Equation (2) with *e  fixed at e/4 and g  

fixed at a value predicted by one of the proposed states: 1/8, 1/4, 3/8, or 1/2.  Of these four 

options, fits with g  = 3/8 and g  = 1/2 produce the lowest residuals, as can be seen in Fig. 3; fits 

for g  = 1/8 and 1/4 are very poor, both quantitatively and qualitatively.35 

 

Fits for Geometry A with g  = 1/2 and 3/8 are shown in Fig. 4(a) and (b) respectively, and 

similarly for Geometry B in Fig. 4(c) and (d).  The fits with g  = 3/8, corresponding to the 

Abelian 331 state, are clearly the best, following the data closely, including the temperature 

dependence of the peak height and the obvious minima on either side of the main peak.  For g  = 

1/2, the minima on either side of the peak are absent, and peak heights are not well described.  

Our ability to better discriminate between g  = 1/2 and g  = 3/8 than with previous weak 
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tunneling measurements24 results from a factor of about two reduction in the noise.  Reaching a 

lower level of noise is particularly important because it makes the DC bias minima, which are 

important qualitative features of equation (2), clearly distinguishable from the noise.  The 

minima are even more prominent at base temperature, as can be seen in Fig. 2. 

 

In fact, the presence of these minima, which have also been observed in previous strong 

tunneling measurements,24 is an indication that g is strictly less than 1/2.  Expanding the exact 

form of the current transmitted through a QPC in the FQHE around the high DC bias limit36 one 

finds 
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Here, C  is a negative constant, BT  is a temperature scale reflecting the strength of the edge 

channel interaction in the QPC, and DV  is the diagonal voltage.  As DB VT /  increases 

(corresponding to DCI  decreasing from infinity), RD decreases for g  < 1/2, is constant for g  = 

1/2, and increases for g  > 1/2.  Since RD eventually increases as the bias approaches zero, this 

produces a minimum in RD only for g  < 1/2.  This behavior is also reflected in the weak 

tunneling formula, Equation (2).  This analysis neglects higher order terms, which could 

conceivably produce a minimum in RD at g  = 1/2, but to lowest order the presence of minima 

requires g < 1/2. 
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It may be that the value of g  extracted from Equation (2) does not directly reflect the nature of 

the 5/2 state in our system.  Reconstruction of edge channels43 and interactions between edge 

channels may cause the value of g  observed by tunneling experiments to change.44, 45  The 

presence of striped phases, which have been found to be energetically favorable for some 

confinement potentials,17 or random domains of different ground state wave functions15 may also 

complicate matters.  Even the Luttinger liquid theory of quasi-particle tunneling may be an 

incomplete description of experimental systems.  Experimental results of electron tunneling in 

cleaved edge overgrowth samples are not fully described by the predictions of chiral Luttinger 

liquid theory, indicating that perhaps a more nuanced picture is needed to accurately describe 

tunneling experiments.46  Measurements of transmission through QPC devices at in the lowest 

Landau level provide some confidence that Luttinger liquid theory can be applied to quasi-

particle tunneling across a QPC.37, 47, 48  Ideally, one would like to repeat the measurement 

technique of Radu et al.24 at a simple filling fraction, such as υ  = 1/3, and fit the results to 

equation (2).  Unfortunately, the sample studied here is not suitable for such measurements, 

because of the relatively wide width of the QPC and the low electron density. 

 

V. CONCLUSION 

In conclusion, fits based on quasi-particle weak tunneling theory34 favor the presence of the 331 

Abelian wave function in our sample, while excluding other states, including the non-Abelian 

Pfaffian and anti-Pfaffian.  Particularly telling is the presence of minima in the DC bias 

dependence, which requires g  < 1/2.  Given previous studies favoring the Pfaffian and anti-
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Pfaffian wave functions18, 21, 23, 29, 32, 33 or a non-Abelian wave function in general,27, 28 it seems 

possible that different states may be physically realizable at υ  = 5/2.  The device geometry and 

heterostructure characteristics may be important factors in determining which state is favored.  

For example, there is numerical evidence that the strength of the confinement potential 

influences the wave function exhibited in a FQHE system at υ  = 5/2.17  Better understanding of 

the effects of these factors on the 5/2 state will likely be vital for any efforts to further explore 

non-Abelian particle statistics or realize a topological quantum computer.  We recommend that 

similar measurements of *e  and g be performed on other heterostructures and device 

geometries, especially the ones in which evidence of a non-Abelian wave function has been 

observed.27, 28 
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FIG. 1. Device image and measurement setup. 

(a) Scanning electron micrograph of a device fabricated similarly to the one used in this 

experiment.  Gates A1, G3, and G4 are biased negatively for Geometry A, with the other gates 

grounded.  For Geometry B: G1, G2, G3, and G4 are energized, with A1 and A2 grounded.  (b) 

Simplified diagram of the Hall bar mesa and measurement setup.  The mesa is outlined and top 

gates are shaded grey. 
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FIG. 2. (Color) DC bias and temperature dependence of RD, with best fit. 

(a) RD measured in Geometry A with an applied gate voltage of VG = -2100 mV.  (b) RD 

measured in Geometry B with VG = -2148 mV.  For both, the magnetic field is set to the center 

of the υ  = 5/2 RXY plateau (B = 4.31 T) and the sample is annealed at VG = -2400 mV as 

discussed in the text.  (c) Least-squares best fit of RD to Equation (2) for Geometry B, with all 

temperatures in the range 27–80 mK fit simultaneously.  Tunneling conductance peaks at each 
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temperature (labeled on graph) are concatenated to produce a single curve.  Experimental results 

are red and the fit is black.  Ticks indicate 0 and ± 5 nA for each temperature. 
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FIG. 3. (Color) Matrix of fit residual for fixed pairs of ( *e , g ) divided by the experimental 

noise. 

(a) Results for Geometry A.  (b) Results for Geometry B.  For both, pairs of ( *e , g ) 

corresponding to proposed non-Abelian states (green squares) and Abelian states (white circles) 

are plotted; see the text for more details.  Contours of the normalized fit error are included as 

guides to the eye. 
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FIG. 4. (Color) Fits of RD to the theoretical form of quasi-particle weak tunneling with fixed *e  

and g . 

(a) and (b) Fits of RD in Geometry A to Equation (2) with fixed g  = 1/2 (anti-Pfaffian and U(1) 

× SU2(2) wave functions) and g  = 3/8 (331 wave function), respectively.  (c) and (d) Fits of RD 

in Geometry B to Equation (2) with fixed g  = 1/2 and g  = 3/8, respectively.  In all cases *e  is 

fixed to e/4 and all temperatures shown are fit simultaneously with the same fit parameters.  

Tunneling conductance peaks at each temperature (labeled on graph) are concatenated to produce 

a single curve.  Experimental results are red and fits are black.  Ticks indicate 0 and ± 5 nA for 

each temperature. 


