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It was recently pointed out that topological liquid phasésiiag in the fractional quantum Hall effect (FQHE)
are not required to be rotationally invariant, as most el wavefunctions proposed to date have been.
Instead, they possess a geometric degree of freedom condiag to a shear deformation that acts like an
intrinsic metric. We apply this idea to a system with an amggzic band mass, as is intrinsically the case
in many-valley semiconductors such as AlAs and Si, or inrggt systems like GaAs in the presence of a
tilted magnetic field, which breaks the rotational invacen We perform exact diagonalization calculations
with periodic boundary conditions (torus geometry) forizas filling fractions in the lowest, first and second
Landau levels. In the lowest Landau level, we demonstrateRQHE states generally survive the breakdown
of rotational invariance by moderate values of the band raais®tropy. At 1/3 filling, we generate a variational
family of Laughlin wavefunctions parametrized by the mettegree of freedom. We show that the intrinsic
metric of the Laughlin state adjusts as the band mass ampsotr the dielectric tensor are varied, while the
phase remains robust. In the= 1 Landau level, mass anisotropy drives transitions betweeonipressible
liquids and compressible states with charge density waderimmy. Inn > 2 Landau levels, mass anisotropy
selects and enhances stripe ordering with compatible west®srs at partial 1/3 and 1/2 fillings.

PACS numbers: 73.43.Cd, 73.21.Fg, 71.10.Pm

I. INTRODUCTION LLs when the hard-core component of the effective interac-
tion is significantly softer than Coulorh More recently,
) ) _ . experiments on AlAs (see Ref. 19 for an overview) have sug-
Two-dimensional electron systems (2DES) placed in & highyesteq interesting physics may arise from the interplay be-
magnetic field exhibit a wide variety of strongly correlated {yeen quantum Hall ordering and spontaneously broken in-
phases, which have been the subject of numerous theoreticlna| symmetrid. Furthermore, transport experiments on
and experimental investigations since the first obsemaifo 5, a5 undertilted field have sho#kthat it is possible to have,
fractionally quantized Hall conductivity Examples of such 44 the same time, the quantization of resistance and aojsotr
phases of matter are the Laughlin stéfaiescribing partial  y-ansport, suggesting a possible coexistence of an inaesspr
fillings v = 1/3,1/5 of the lowest { = 0) Landau level (LL), e liquid with a compressible (“nematic”) phdde

as well as their generalizations to other odd-denomindtor fi 11,0 etical understanding of the FQHE was pioneered by

ings in the framework of hierarcfyand composite fermion | 5,ghiin's method of many-body trial wavefunctidnsodel
theor_y‘. These pha;es are topolo_glcally ordelred and POSS€FRavefunctions can be formulated using the conformal field
quasiparticle excitations with fractional statistics. bt fill- 0415 and conveniently evaluated in finite-size systems via
ing of the first excitedp = 1 LL, an even more exotic paired

; : X exact diagonalization of the parent HamiltoniihsIn ad-
state, the Moore-Read Pfaffiamight be realized, which pos- ition excitation spectra containing quasiparticles&jholes
sesses non-Abelian excitations — the Majorana ferniibns

above the ground state can be studied. Such analytical and nu
Besides the incompressible liquids, some fillingsalso ~ merical studies are made much easier by exploiting symmetry

lead to compressible phases without quantized conductancand the corresponding quantum numbers to characterize the

This is the case with the simplest of all fractions = 1/2in ground state and excitations. To this end, rotational sytryme

n = 0 LL — which is a Fermi liquid of composite fermiohs has been very usefift ocassionally, periodic boundary con-

that only supports an anomalous Hall effedBenerically for ~ ditions have also been uséd®.

anyv, apart from the incompressible liquids, the natural can- However, as it was recently pointed &ttrotational sym-

didates are compressible phases that break translatigmal s metry is not fundamental to the appearance of FQHE. In a the-

metry, such as charge density waves (CDWsJhose were oretical treatment of the FQHE, it is important to distingui

in fact proposed to describe the ground state of 2DES beforgeveral “metrics” that naturally arise in the problem. Thadth

FQHE was observéfl Whenv is very small (undeit /7),a  mass tensor yields a metric that defines the shape of the LL

correlated Wigner crystal indeed becomes energeticafigsu orbitals. A second metric derives from the dielectric tenso

rior to a Laughlin-type staté*2 Furthermore, when > 2, of the semiconducting material, and defines the shape of the

several varieties of states with broken translational sgmm equipotential contours around an electron. Rotationarinv

try become energetically favorable. Around half filling of ance means that these two metrics are congruent, however in

n > 2 LL, the ground state becomes a charge density wave ia real sample they might be different from one another, thus

one spatial direction or a “strip&-15 away from half filling,  lifting the rotational invariance.

two-dimesional crystalline order sets in, resulting in alib It turns out, however, that a given FQH state also possesses

ble” phasé*'51” Some of these phases also occunir: 2 an intrinsic metric that is derived from the two types intro-
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duced above. FQH fluids can be described as condensateleren, = p, — $A,(r),a = z,y represents the dynamical
of composite bosor which are topological objects that ex- momentum, ang is the2 x 2 mass tensor parametrized by
plain the quantization of the Hall conductance and the emerthe anisotropyy and the angle of the principal axis Note
gence of fractionally-charged quasiparticles. Howevpara that the Hamiltonian is covariant with respect to spatiahs-
from topology, composite bosons also have a geometrical ddermations, but does not couple time and space coordinates.
gree of freedom — the intrinsic metric that controls tiseape. ~ The mass tensor is unimoduldst g = 1. In the isotropic
In a rotationally invariant case, the intrinsic metric isiagto  case whery is the unit matrix, we can obtain the single-
the metric in the Hamiltonian; more generally, as we exjici  particle energies (Landau levels) by choosing, for example
demonstrate below, the shape of composite bosons can be desymmetric gaugel, = By/2,A, = —Bz/2. In this
fined even in systems without rotational invariance. The-fluc case, the dynamical momenta become= _m% 4 %y
tuation of the intrinsic metric plays an important role foet i in terms of the maanetic Ielzan th
geometrical field theory of the FQHE and determines the 203, " 9 9
energetics of quasiparticles, collective modes etc. Géimar {5 = +/h/eB. The Hamiltonian can be transformed into di-
tions of the Laughlin wavefunction to the broken-rotatiena agonal formkK = % (aTa + %) with the help of ladder op-
symmetry case have been proposed for liquid crystal and nesratorsy oc 7, + im, andat oc 7, — im,. However, for each
matic Hall phase®, and very recently Laughlin and Moore- value ofa'a, there is residual degeneracy equal to the number
Read wavefunctions (as well as their parent Hamiltonianspf the magnetic flux quantd,. This degeneracy is resolved
have been formulated for the anisotropic cdse by a second pair of operatobsb! that commute withu, af

The motivation for studying the effect of anisotropy in and depend on thguiding center coordinates of the electron,
FQHE is twofold. On the one hand, anisotropy probes thepa — .o _ %W%_ Operators' create the (unnormalized)
variations of the intrinsic metric of FQH fluids, a fundamen- gjngle particle eigenstates of the lowest LL,
tal physical quantity that relates to the geometric desorip

_ -+ 0
andm, = —zﬁa—y -

of FQHE. Secondly, we explore the possible effects reqyltin ;1:17@5:0(2) - 216—2*2/4423’ 2)
from tuning the rotational-symmetry breaking by an extérna
parameter. Note that the rotational invariance is expfibito- with z = = + iy being the complex coordinate of an electron

ken in real samples due to the presence of impurities, whicin the plane (andt* denoting its complex-conjugate). The
are essential for the emergence of FQH plateaus. Furthegquantum numberis an eigenvalue of the angular momentum
more, it is possible to induce the breaking of rotationahimv L. and the single particle stategsare localized on concentric
ance by tilting the magnetic fielY or by using systems with rings around the origin.

anisotropic bands, e.g. many-valley semiconductors likesA To illustrate the effect of mass anisotropy, we take the-prin
or Si in the presence of uniaxial stress. The former methodipal axes of the mass tensor to be alongitla@dy directions

is performed routinely and belongs to the most popular tech¢¢ = 0), with different masses along the two directions+£
niques for studying the FQHE; the latter method is relevantt 1). Via simple rescaling — =/+/a, y — y+/«, and therefore
AlAs® and some new classes of materials where FQHE mighintroducinga o /o, + ﬁwy anda' o /am, — —=m,, we

be studied. We provide brief arguments how the tilting of thecan immediatealy write down the single particle orbitals fo
field can be mapped to an effective variation of the metrid, an this case:

then focus on the second method.

This paper is organized as follows. In Sec. Il we introduce T
and motivate the model for a FQH system with band mass Va
anisotropy. In Sec. lll we discuss the intrinsic metric of th
Laughlin state. We define a family of the Laughlin wavefunc-Notice that the probability density; |* is no longer localized
tions characterized by the varying shape of their elemgntaron a circle, but rather an ellipse far # 1. Therefore, on a
droplets. Intrinsic metric is determined variationally bgti-  single particle level, the effect of mass anisotropy is tetsh
mizing the overlap between this family of wavefunctions andor squeeze the one-body orbitals along certain directjumos,
the exact Coulomb ground state. In Sec.lV we perform exacgibly rotating the principal axis (fap # 0).
diagonalization of finite systems at several filling facttos As we mentioned in Sec. |, certain semiconductor materials
explore quantum phase transitions that occur as a funcfion @re likely to have non-trivial metric defined by the anispiro
the anisotropy. Our conclusions are presented in Sec.V. Alternatively, the effective mass tensor can be experialgnt
tuned by tilting the magnetic fiefd Tilting is known to
produce complicated effects because it induces the cayplin
between electronic subbands and LL mixing, and a detailed
analysis will be presented elsewhere. To express forntadly t
connection between tilt and mass anisotropy, let us add-a par
Consider an electron moving in the plane with the perpengjie| field component to the systei and pick the gauge

dicular magnetic field3Z = V x A(r). The Hamiltoniancan A — (0, BLz — Byjz,0). The one-body Hamiltonian is then
be written in the following, manifestly covariant form: given by

l 1 (22 ay?
s = (Z+uva) ) g

1. MODEL

1 1 e e 1
K%? = %gabwawb. Q) H-= I (pi + (py + EBJ_.T — EBHZ)Q —i—pi) + §mo.)0227
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where it is assumed that normal confinement (perpendiculavherej = 0,..., N, — 1, X; = 2xj/b, normalization factor
to the Hall surface) is given by a harmonic well. This Hamil-is A/ = by/m/a2"n!, and the sum ovek extends over all
tonian can be mapped to two harmonic oscillators, with charintegers. We have sé = 1. The wavefunction for theth

acteristic oscillator frequenci&s LL involves a Hermite polynomial,. For simplicity, we
1 - assumed the case of a rectangular torugaadliag [«, 1 /o],
2 2 2 2 2 . h .
wyg = 5[(% +w?) £ (wr — w;)sec(20)], (4)  but Eq.(7) can be generalized to an arbitrary shape/anjsptr

using Jacobi theta functions.
wherew, = ,/wg + “ﬁ is the harmonic frequency of the  Many-body states, like in the isotropic case, can be classi-
fied using a crystal quasimomentli§t® defined in a Brillouin

normal confinement andy; = eBj/m. The mixing of . : o o :
the cyclotron frequency and the confinement frequency jZone. With a suitable definition of the Brillouin zone, incom
parametrized bytan20 — 2w w||/(w2 ~ w?). Defining pressible states always occurtét= 0, and are characterized

by the gap in their excitation spectrum. The Hamiltonian for

by = /1/eB. andl; = 1/\/mw;, i = 1,2, the eigenstates 7 ejectrons is given by the sum of the kinetic term and the
of the Hamiltonian are given by Coulomb interaction

Uy g (1) o< €®epC 1) [cos O(z + 12k) — sinfz 1
ni,na (n1 [ i 20 N } et — ZK?#) + Z ) (8)
x5, 2) [sinf(z + [Gk) + cosbz],  (5) - oy |r; —rjle
wherey;, is the usual harmonic oscillator wavefunction for Note the explicit appearance of two distinct metrics in the
leveln;. If we focus on the ground-state{ = n, = 0), and  gpove equation. As discussed above, one of these metrics
define);—; » = wi/w., we can express its in-plane wavefunc- narametrizes the shape of the cyclotron orbits#). How-
tion as ever, because 2DES is embedded in a three-dimensional di-
_ ; 1 electric host material, which is characterized by its own di
T—y iky o 27.2\2 . L ’ ;
00 *(r) oc e exp { 2@%‘3‘1(“7 +6ok7) } ’ electic tensot, there is a second metric that defines the shape
of equipotential lines around an electron, denoteftbyr,|..

where These two metrics are physically distinct, however the prop
Q= f\l A2 _ erties of the system are determined only by the relativediff
A1 sin? 6 4+ Ap cos? 0 ence between the mass tensor and the dielectric tensogand f
Therefore, the metric can be immediately read off: simplicity we can set_the Iatt_er to unity. In_ot_her words, \8e a _
sume that Coulomb interaction is isotropic in space, hetsce i
g = < 1/00‘1 0(4)1 ) . Fourier transform is/(q) = 1/q = 1/,/42 + ¢2 (to model
finite-width effects, we use the softened formi6fq), fol-
More generally, parametrizing the in-plane magnetic figld b lowing the Fang-Howard prescription). Projected to a sin-
B = (Bjcos¢, Bsing), the effective metric associated gle nth LL, the interaction part of the Hamiltonian becomes
with the tilt can be shown to be given by H=Y, %]j2j3j4c;10;20j30j4, where
= ( cosh 20 + sinh 26 cos 2¢ sinh 20 sin 2¢ ) ,
- sinh 26 sin 2 cosh 20 — sinh 20 cos 2¢ )’ 1 1
¢ ¢ (6) lej2j3j4 = % 2 V(q)‘cn (§q§)
wherecosh 20 = %(a+ 1). Therefore, the effect of tilting on o~ 345 gl (X5, —st)(g; P S 9)
the LLL single-particle levels can be captured by the vaiat LTI g
of the mass tensor. whereq; = 9*q.q» (e.g. in case of a diagonal mass tensor,

In order to study a finite, interacting system &t elec- qg =ag + qg/a) and”,, is the Laguerre polynomial. The
trons, it is convenient to choose a compact surface to regprimed §-functions are to be takefmod Ng), and the sum
resent the 2DES. As we emphasized in Sec.l, the preseneger q extends over the reciprocal space (the prime on the
of mass anisotropy destroys rotational invariance, and ongum indicates that the diverging= 0 term is cancelled by
must use periodic boundary conditidh&i.e. put the 2DES  the positive background charge).
on the surface of a torus. The unit cell can generally be Apart from the many-body translational symmetry, discrete
chosen as a parallelogram with sidesand b whose area symmetries can be used to further reduce the Hilbert space.
S is quantized because of the magnetic translations algebr&everal types of Bravais lattices are possible, depending o
S = |a x b| = 2n/%N,. The single-particle states compati- the angled between the sides of the torusandb, and the
ble with periodic boundary conditions are given in the Landa aspect ratiola|/|b|. Both of these can be tuned as free pa-

gauge by rameters. In the presence of anisotropy, however, the fighe
1 X ke e L (X h 5 symmetry is only given by the rectangular lattice, even when

Gn(T) = Vi > eiXatha)y=ag(Xsthate) la| = |b|. Tuning the angle enables to perform the area-
k preserving deformations of the torus, which is useful in re-

I Xj+kat+a 7 solving the collective modes of FQH states in finite systems,
" Va ’ and probing quantities such as Hall visco¥ity
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Herez = x + iy stands for the usual complex representa-

2

tion of the coordinates in the plane, and can also be expiesse

5 in terms of spinor coordinates providing a mapping to the

-2.05 | spherical geometl. However, the Laughlin state can also

L ‘ i be extended to the torus geoméfywhere continuous rota-
21F 5" it T — 1 tion symmetry is broken down and survives at most in form
w ' A of a discrete subgroup. In this case’~"/™ is defined by
i , ; . L
215 | S its short-distance correlations which assume the form ef th

(odd) Jacobi); theta function of; — ;3.

ol i As a trial wavefunction,="/* provides an excellent de-

scription of the physical system at= 1/3 in the limit of

‘ ‘ ‘ ‘ ‘ ‘ ‘ strong cyclotron energy with respect to the Coulomb repul-
02 03 04 05 06 07 08 09 1 sion in the 2DES planéiw. > €?/elp, when excitations to
higher LLs are prohibited. In this limit, the operaters: act
trivially and the only dynamical degrees of freedom are the
FIG. 1. (Color online). Energy spectrum in units &/cls as a  (NON-commuting) guiding centers. Up to the normalization,
function of anisotropya for the square unit cell and = 0 LL we can then view the wavefunction (10) as follows

Coulomb interaction a = 1/3. The system isV. = 7 electrons

and¢ = 0. Due to the square unit cell, the spectrum is symmetric pr=/m (bT _pt )m 0 11
ndera M) o [T (bl = 0i)) 10),  (1D)

Anisotropy

1<j

il ici in34
In this paper we only consider spin polarized eIectronsWhereb;' (g).expllmltly depend on _the metrig™. For. gen
and neglect the so-called multicomponent degrees of fraedo eralg, b; (;‘0 IS obtaln.ed by a. BOQQI'UbOV transfor.ma'uon from
which can be the usual spin or bilayer/valley degree of freethe bi, bf in the rotationally invariant case. Equivalently, the
dom. This means that the filling factors we refer tawas v wavefunction can be expressed by a unitary transformation
correspond tdn + v in experiments, where integerdenotes  Yr(9) = exp(—ifagA*?)¥ L (0), whereg,s is a real sym-
the additional degeneracy that comes from several “flavafrs” Metric tensor and\*” = 3 3= { R, R} is the generator of
electrons. area-preserving diffeomorphisiis The expression for the
transformation matrix and the first-quantized expressamn f
the wavefunction in Eq.(11) is given in Ref. 30.

I1l. ANISOTROPY IN THE LOWEST LANDAU LEVEL : The freedom in choosingy implies that the usual
ROBUSTNESSAND THE INTRINSIC METRIC OF THE rotationally-symmetric Laughlin wavefunction is a repes
LAUGHLIN STATE tative of a class of wavefunctions. However, being a topolog

ical phase, the physics of the Laughlin state does not depend
In Fig. 1, we present the energy spectrum of the Coulomt®n any given metric or lengthscales. Various wavefunctions

interaction atv = 1/3 as a function of anisotropy (we assume \Ilzzl/m (g) differ from one another microscopically in terms
¢ = 0). The system is placed on the torus with a square uniof the shapes of their elementary droplets. For a FQH state
cell, and energies are expressed in units’gt/z. Averyflat  atfiling v = p/q (p, ¢ are not necessarily co-prime), an el-
minimum around isotropy point and the existence of a robusementary droplet is a unit of fluid containingparticles in
gap suggest that the ground state of the Coulomb interactioan area that enclosedlux quanta. The incompressible state
atv = 1/3 is remarkably stable to variation in anisotropy. is a condensate of such elementary droplets. For example,
As we show below, in this range of, the ground state is de- atv = 1/3 we have a single particle occupying each three
scribed by a generalized Laughlin wavefunction. Moreoverconsequtive orbitals and preventing more particles frompo
the set of lowest neutral excitations, forming a magnetosro ulating this region. In the language of root partitions amel t
branch, are also stable and separated from the rest of the spgack polynomiaf®, the Laughliny = 1/3 state is defined by
trum. Within this manifold, some level crossings occunds  aroot patterri00100100100100. . ., and therefore its elemen-
changed, but this only corresponds to the redistributicthef tary droplet ist00. Note that these simple patterns only serve
levels within a roton branch. Beyond ~ 0.5, the ground- as labels for correlated wavefunctions that cannot be thioug
state energy rises, indicating an instability and the axant of as a simple crystal of electrons pinned at each third alrbit
destruction of the Laughlin phase. and repelling each other via electrostatic forces.

In rotationally-invariant situations, the incompressihy- For a model wavefunction, the “gauge” freedondja’ im-
uids atfillingsy = 1/m of n = 0 LL (m being an odd integer) plies that the shape of elementary droplets changes with var
are described by the Laughlin wavefuncioln the geometry ing g, but the basic physical properties remain invariant unless

of an infinite plane, the Laughlin state is given by the anisotropy magnitudebecomes too large or too small. If
« is such that the maximum effective separation between elec-
\Ijzzl/m = H(zi — zj)me” S zhzn /Al (10) trons along some direction is of the order/@for smaller, the

i<j FQH liquid correlations are expected to break down and CDW
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FIG. 3. Dependence of the intrinsic meteion the mass metria.,

FIG. 2. (Color online). Overlap between the Coulomb groutades ~ (COUlomb metric is set to identity).

atrv = 1/3 for fixed anisotropyoy = 2, ¢ = 0 and the family of
Laughlin states parametrized by varyingy. The systemigV. = 9

electrons on a hexagonal torus. of Laughlin states generated by varying¢. The overlap

(| we0=290=0) | is plotted as a function af and¢. We

tat iahtbe f q i N | fth_observe that the principal axis of the Laughlin state isredid
states might be favore (we wi present Some exampies®Tinl iy that of the Coulomb state (maximum overlap occurs for
in Sec. IV). On the other hand, a generic state involves a com;

it £ two diff t metri th lot i ¢ = ¢o = 0). Interestingly, the maximum overlap doest
petition of two difierent metrics — the cyclotron metrig,, occur fora = ay, but for some value of the anisotropy that is
and the Coulqmb metrige, the_ref(_)re_|t IS be_st app_rommated a “compromise” between the dielectric= 1 and a cyclotron
by the Laughlin state with an intrinsic metrcthat is gener-

v diff £ both q Intrins: trice is th onea = 2. The value of the anisotropy that defines the in-
ally dirrerent from bothg,, andge. INNNSIC MENCy IS e i metric depends linearly on the band mass anisotropy

one that minimizes the variational energy, (Fig. 3). This result illustrates the ability of the Laughéitate
to optimize the shape of its fundamental droplets and maxi-
E, = @L(g)'H(gm’gC”\I}L(g», (12)  mize the overlap with a given anisotropic ground state of a
(r(9)¥L(g)) finite system.

An alternative way to obtain the intrinsic metric is to an-
alyze the shape of the lowest excitation — the magneto-roton
mode, which was successfully described by the single-mode
rotationally-invariant case, the ground state of the Cmllo approximatiod’. In a rot_altionally—invariant case, this mode
interaction atv = 1/3 is known to have a remarkably high N@S @& minimum ak ~ £,". In the presence of anisotropy,
overlap with the Laughlin wavefunction. The overlap is de-the minimum occurs at differemt| in the different directions

fined as a scalar product between two normalized vectors, arlfi9- 4)- This leads to an alternative definition of the imri
in this particular case it is typically greater than 97%. fehe  SIC metric based on the shape of the roton minimum in the

fore, we expect the intrisic metric chosen to maximize the?D momentum plane. We numerically establish that this defi-
overlap also to minimize the correlation energy (12). To ob-nition agrees well with our previous definition of the ingio
tain the anisotropic Laughlin states, we perform exactatiag Metic- In Fig. 4 we plot the energy spectrum of an anisotropi
nalization of the ¥; Hamiltonian” on the torus. This Hamil- Coulomb interaction at = 1/3 as a function of the rescaled
tonian gives¥; /% as a unique and densest zero-energyomMentumy 9kaks, whereg is the guiding center met-
ground stat®. Note that any translationally-invariant inter- ¢ that maximizes the overlap with the family of Laughlin
action can be expanded in terms of the Laguerre po|ynomiwavefuncnons (Fig. 3). W|t.h _the usual def|n|t|on of the mo-
als,V(q) = 3., Vi Lo (q?), where the coefficients,, are ~ Mentumlk|, several roton minima appear. Different magneto-
the Haldane pseudopotentfs Truncating this expansion roton branches collapse onto the same curve if we plot them
at the first termy; £,(q?), singles out the strongest (“hard- as a function of\/ g%k, k,. This is reasonable, because the
core”) component, which defines the Laughlin state at fillingmagneto-roton mode is well approximated by single-mode
v = 1/3. As the pseudopotential Hamiltonian is just a pro-approximation up to the roton minimd# which is defined
jection operator in the relative angular momentum space, thentirely in terms of the properties of the ground state. The
metric in V1 £, (q?) is the same as that originating from the anisotropy of the ground state structure factor (deterchinye

To find the intrinsic metric in the microscopic calculation,
we use a slightly different criterion thgt should maximize
the overlap with the exact ground statef{g,, gc). In the

cyclotron orbits. the shape of elementary droplets) dictates the positiohef t
In Fig. 2 we pick the ground state of the Coulomb in- foton minimum.
teraction with fixed mass anisotropyy, = 2,¢9 = 0 (the The analysis of this section in principle applies to other

metric of the dielectric tensor is implicitly assumed to belLL states at fillingsy = p/(2p + 1),p = 2,3, ..., though it
a = 1,¢ = 0), and we evaluate the overlap with a family is more involved because of the “multicomponent nature” of
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levels aroundx = 1 belongs to the bubble phé§efor a>12a
smaller subset of these levels, together with some exa@tadd, form
another quasidegenerate multiplet that belongs to a gifipse. At

v = 1/2, the ground state is a stripe already foe= 1'%, and its gap
and splitting within the multiplet change ass increased.

FIG. 4. (Color online). Energy spectrum &f. = 9 electrons at
v = 1/3 with the effective mass anisotropy,, = 2 along thez-
axis. When plotted as a function @fk2 + kZ (green crosses), two
branches of the magneto-roton mode are present (blue dote=d
are guide to the eye). If the spectrum is plotted as a funation

v/ 9%k, ks, the two branches collapse onto the same curve. . .
the ground-state multiplet, and an increase of the gap legtwe

this multiplet and the excited states. For yet larger vahfes
«, it appears that some of these excited states may become
the ground state, however this occurs for very laigehen
this finite system effectively becomes one-dimensionakund
anisotropy deformations.
In case ofv = 2 + 1/3 state, it has been argued that the
isotropy point is described by a two-dimensional CDW order
. ] . known as the bubble phade A bubble differs from a stripe
We have found that = 1/3 in the LLL is particularly ro-  in having a larger degeneracy and a two-dimensional mesh
other prominent FQH states. In higher LLs, due to a numbefhe one-dimensional array in case of a stripe). The spread
of nodes in the single-particle wavefunction, the regiothef  of the quasidegenerate levels was also found to be somewhat
phase diagram where incompressible states occur becomes jBrger than in case of stripes. All of these features aresvi
creasingly narrower, and compressible phases such assstripip Fig.5 (left) fora = 1. The bubble phase remains stable to
and bubbles take over. In this Section we discuss the effécts some extent when is reduced: for very smalk it is even-
anisotropy on FQH states in higher LLs, focusing on fillingstyally destroyed and replaced by a simple CDW. On the other
v = 1/3 and1/2. Because of closer energy scales, we findhand, when is increased, a smaller subset of momenta be-
that moderate changes in the anisotropy induce phase-trangiomes very closely degenerate with some of the excited lev-
tions between compressible and incompressible phases.  g|s. This second-order (or weakly first order) transition re
sults in a stripe phase. As for the= 1/2 case, this stripe
becomes enhanced asis further increased. Therefore, in
A. n>2Landaulevels: stripesand bubbles n > 2 LLs mass anisotropy generally produces stripes, even
when isotropic ground states have a tendency to forming a

Inn = 2 LL and higher, isotropic FQH states are energet-bubble phase.
ically less favorable than stripe and bubble phases atdillin
v =n+1/2andv = n + 1/3, respectively. In Fig. 5 we

these states and typically a smaller excitation gap.

IV. HIGHER LANDAU LEVELS: QUANTUM PHASE
TRANSITIONSDRIVEN BY ANISOTROPY

show the energy spectrum (in units &f//) as a function B. n=1Landaulevel: incompressibleto compressible

of anisotropya (we set the angle) to zero). Energies are transitions driven by anisotropy

plotted relative to the ground state at eaghand we chose

the relatively modest system size$.(= 8 and 10 electrons) Inn = 1LL, v = 1/3 state is significantly weaker than

to facilitate comparison with the existing isotropic daiahe itsn = 0 LL counterpart, having an experimental gap an or-
literaturé®1”. The aspect ratio is set to the optimal values forder of magnitude smaller and roughly the same as the gap of
the appearance of stripes or bubbles (see Refs. 16 and 17). v = 1/2 state. This has been anticipated in early numerical

As we see on the right panel of Fig. 5, mt= 1/2 the  calculations that found the ground state of the Coulomb in-
presence of mass anisotropy reinforces the stripe witiein-  teraction projected te = 1 LL to be at the transition point
creased. This leads to a more pronounced quasi-degenéracyletween compressible and incompressible piases



-3.94 —— excitation spectrum is the same asiin= 0 LL. For smaller

systemsgV} is estimated to be arouridle? /el 5, while 5V}

is around).04e? /el . Larger systems suggest that these two

points might merge in the thermodynamic limit, when only a

small modification of the interaction might be needed for the

Laughlin physics to appear at=1/3 in n = 1 LL. Alterna-

tively, we can consider the Fang-Howard ansatz that mimicks

the finite-width effects. In this case, the width/ef or smaller

is sufficient to drive a phase transition between the conspres

ible state and the Laughlin-like state, in agreement wisiaits

on the sphere and using an alternative finite-width af%atz

0F DX OB BB T 12 1& (B T8 3 In summary, the ground state at= 1 + 1/3 very likely
Anisotropy belongs to the Laughlin universality class. We note that the
collective mode in this case displays significantly more-wig
gles than in the LLL (some wiggles exist in casewf 0 LL

FIG. 6. (Color online). Spectrum df. = 8electronsat = 1+1/3  Coulomb state, but they are less pronounced). For large mo-

with thicknessw = 2¢p. Inset: same spectrum plotted relative to the menta, the magneto-roton mode also appears to merge with

grqund state at each Unit cell has a rectangular shape with aspectipe continuum of quasiparticle-quasihole excitationsis T

ratio 3/4. likely a finite-size artefact, although we cannot rule ottt

represents an intrinsic featuremwf= 1 + 1/3 state, in which

case it might have an observable signature in optical experi

ments that distinguishes it from= 1/3 state.

Because of the fragility af = 1+ 1/3 state, we expect that
mass anisotropy might have more dramatic consequences than
inthe LLL. In Fig. 6 we plot the energy spectrum as a function
8 of anisotropy. One notices that the isotropy pointf 1) does
not bear any special importance — indeed, the system appears
more stable in the vicinity of it where it can lower its ground
state energy or increase the neutral gap. On either sideeof th
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(b) Anisotropy 1.3 . 05 isotropy point, however, the system remains in the Laughlin
' o4 universality class; e.g. at = 0.8 anda = 1.3 the maximum
So(@ 04 02 overlap with the Laughlin state &% and80%, respectively
o2 8'1 (these overlaps, although modest compared to the stanafards

n = 0 LL, can be adiabatically further increased by tuning the
V1 pseudopotential). Note that the quoted maximum overlaps
are achieved by the Laughlin state withsomewhat different
from « of the Coulomb state, analogous to Fig.2.

The new aspect of Fig.6 is the transition to a compressible
FIG. 7. (Color online). Gu_iding_-center structure facﬁzf_(q) for state with CDW ordering forr < 0.4. In that region of pa-
v =1/3 state inn = 1 LL with thicknessw = 2/ and anisotropy - ameter space, the system is very sensitive to changes in the
3 B ?‘g \E\?%c'r:ﬁ; ?ﬁ{ﬁg?;i%nﬁlmissgrzgfg (c?;sfgr(tt)r)]e'rsvt/itzxtkz ., boundary condition —the sharp degeneracies seen in restang
the response function (a) represent the onset of compilégsimd lar geometry in Fig.6 are not Ob.VIOUS in case of h'.gher sym-
CDW ordering. metry, square or hexagonal_, unit cell. As_ an addltlonaldlag
nostic tool for the compressible states, it is useful to wers
a guiding-center structure factor,

Although idealized numerical calculations with pure (pro- _ 1 iqR; —iqR;\ _ / iqRi\/ —iqR;
jected) Coulomb interaction work exceedingly wellrin= 0 So(a) = Ny Z<e c )= e e ) (13)
LL, more realistic models are required to describe phases in
n =1 LL. In particular, the inclusion of finite width effe®  where the expression for the Fourier components of the
and varying a few strongest Haldane pseudopotentials in neguiding-center densityp(q) = va e'rR: has been used.
essary to determine the phase diagram. We find that varyinjote thatSy(q) is normalized per flux quantum rather than
the V; pseudopotential leads to the following outcomes: (i)(conventional) per particté. In Fig.7(a) we show the plot of
generically, foréV; < 0, the system is pushed deeper into aSy(q) evaluated for the state with = 0.4 in Fig.6. Two
compressible phase; (ii) fart; > 0, finite-size calculations sharp peaks in the response, similar to those previousty ide
on systems up t&V, = 9 electrons permit the existence of two tified inn > 2 LL states®, are the hallmark of CDW order.
regimes: for) < §V¢ < V4 < 6V, the ground state is in They are to be contrasted with the smooth response in case
the Laughlin universality class, but the lowest excitat®not  of an anisotropic state in the Laughlin universality class f
the magneto-roton; fafV; > 6V, the ground statand the o = 1.3, Fig.7(b).

2%
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by sharp transitions towards crystal phases. These ti@amsit

0.03 are likely second order because they do not appear to involve
any level crossing, but rather lifting of the degeneracyhinit
0.025 a ground-state multiplet.
0.02
i V. CONCLUSION
N; 0.015
w We have presented a method to study the effects of

0.01 anisotropy on FQH phases in finite-size systems. We found
that the prominent FQH states (as in the lowest Landau level)
are robust to variations of anisotropy, due to the adjustmen
of the intrinsic metric describing the shape of their elemen
tary droplets. As we demonstrated using the example of the
Laughliny = 1/3 state, this metric is usually a compromise
between the metric dictated by the cyclotron motion and the
metric originating in the dielectic environment of the 2DES
FIG. 8. (Color online). Spectrum aV. = 14 electrons av = In this sense, it is unlike the non-interacting Landau level
1 + 1/2 with thicknessw = 2Ip, as a function of anisotropw. ~ Problem, or the problem of weak localizattn where the
Energies are plotted relative to the ground state at eacind the  anisotropy can be completely “gauged away” (i.e. removed)
unit cell has a rectangular shape with aspect atia by length rescaling. Instead, it is more akin to the problem
of shallow donors in many-valley semiconductSrandeed,
such compromise picture leads to a quantitatively acculete
As a second example in = 1 LL, we consider half fill-  Scription of the variation of the critical density of the rakt
ing where the Moore-Read Pfaffian sfate believed to be insulator transition (an intrinsically many-body phenaras)
realized in some regions of the phase diagram. This stat three-dimensional doped many-balley semiconduttcse
has a non-Abelian nature, which is reflected in the nonon€ may wish to ascertain to what extent this can lead to
trivial ground state degenerdcwhen subjected to periodic guantitative predictions in the FQHE case. In higher LLs,
boundary conditions. Far = 1/2, the eigenstates of any anisotropy induces quantum phase transitions, likely of se
translationally-invariant interaction possess a twofcgdter- ~ Ond order, to compressible phases with broken symmetry.
of-mass degenera®y On top of this, Moore-Read state Anisotropy is an important aspect of FQHE as it represents
has an additional threefold degeneracy. Conventionaily, t & mechanism that probes the intrinsic metric of incompress-
many-body Brillouin zone is defined for = 1, = 2 and  ible fluids in the geometrical picture of the FQHE. In addi-
has a sizeN2 (N being the GCD ofN, and N,), which ~ tion, because our calculations show the possibility of phas
forces the degenerate groundstates to belong to a Brillouiffansitions in the: > 0 Landau levels as a function of mass
zone comerK = (N/2,N/2) and centers of the sides, anisotropy, it motivates experimental studies on systeitts w
K = (0, N/2); (N/2,0). Itis also possible to define a “quar- Poth moderate mass anisotropy (€.g. AlAs anSi; 3 —5),
tered” Brillouin zone such that the three degenerate states aS Well as systems with large mass anisotropy (e.g. Ge,
all mapped to zero momentdfn The threeK sectors are @ ~ 20), where behavior may be different in the upper Lan-

equivalent for a hexagonal unit cell, however in an anigriro  dau levels from the anisotropic GaAs. In these systems, as
system the degeneracy is always lifted. in GaAs, anisotropy could be furher tuned using tilted figlds

thereby adding to the richness of the FQHE phenomena.

0.005

ok

Anisotropy

In Fig.8 we plot the spectrum of the Coulomb interaction
as a function of anisotropy (states belongingKKosectors
where the Moore-Read state is realized, are indicated). As
earlier, we assume finite width ef = 2/g in order to in-
state the Pfaffian correlatios Note that our calculation

only uses two-body (Coulomb) interaction, therefore inheac _ 1his work was supported by DOE grant DE{802140.
finite system the Moore-Read state will mix with its particle Following the completion of this work, a related manuscript

hole conjugate pair, the anti-Pfaffi#n The mixing between has appearéd th_a_t studies in more detail the anisotropy ef-
the two states can be controlled by including higher42Ls fects atv = 1/3filling.

For 0.5 < a < 1.3, we find a three-fold quasi-degenerate

multiplet, suggesting the presence of Moore-Read stateeat t

isotropy point and in the neighborhood of it. In finite sysgem

there is some splitting of the degeneracy that might be redluc

upon tuning thé/;, V3 pseudopotentials. Also, upon tuning

the anisotropy around = 1, there are crossings within the

multiplet of degenerate ground states without apparerst clo

ing of the gap. The region of the Moore-Read state is defined

VI. ACKNOWLEDGMENTS



1 D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. 14&it.
1559 (1982).
2 R. B. Laughlin, Phys. Rev. Let§0, 1395 (1983).

30

and C. Wexler, Phys. Rev. 6, 205307 (2002).
R.-Z. Qiu, F. D. M. Haldane, Xin Wan, Kun Yang, and Su Yi,
arXiv:1201.1983.

3 The Quantum Hall Effect, 2nd ed., edited by R. E. Prange and S. ! J. Xia, V. Cvicek, J. P. Eisenstein, L. N. Pfeiffer, and K. We§t/

M. Girvin, Springer-Verlag, New York, 1990.

4 J. K. Jain, Composite fermions, (Cambridge University Press,
2007).

5 G. Moore and N. Read, Nucl. Phys.380, 362 (1991).

® N. Read and D. Green, Phys. Rev6B 10267 (2000).

"B.I. Halperin, P. A. Lee, and N. Read, Phys. Rev4dB 7312
(1993).

8 F. D. M. Haldane, Phys. Rev. Lei3, 206602 (2004).

® M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer,cai.
W. West, Phys. Rev. Let82, 394 (1999); R. R. Du, D. C. Tsuli,
H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West,
Solid State Commuril09, 389 (1999); K. B. Cooper, M. P. Lilly,
J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Reg0B
R11285 (1999).

10'H. Fukuyama, P. M. Platzman, and P. W. Anderson, Phys. Rev.
19, 5211 (1979).

11 p K. Lam and S. M. Girvin, Phys. Rev. 3, 473 (1984).

12 K. Yang, F. D. M. Haldane, and E. H. Rezayi, Phys. Re\6B
081301(R) (2001).

13 A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Phys. Rev.
Lett. 76, 499 (1996).

14 M. M. Fogler, A. A. Koulakov, and B. |. Shklovskii, Phys. Re®.
54, 1853 (1996).

15 R. Moessner and J. T. Chalker, Phys. Re@435006 (1996).

18 E. H. Rezayi, K. Yang, and F. D. M. Haldane, Phys. Rev. 183t.
1219 (1999).

17 F. D. M. Haldane, E. H. Rezayi, and K. Yang, Phys. Rev. 185t.
5396 (2000).

18 E. H. Rezayi and F. D. M. Haldane, Phys. Rev. L&t, 4685
(2000).

32

33

35
36

37

38

Phys. Rev. Lettl05, 176807 (2010).

Y. P. Shkolnikov, K. Vakili, E. P. De Poortere, and M. Shaygga
Phys. Rev. Lett92, 246804 (2004); O. Gunawan, Y. P. Shkol-
nikov, E. P. De Poortere, E. Tutuc, and M. Shayegan, Phys.
Rev. Lett.93, 246603 (2004); Y. P. Shkolnikov, S. Misra, N. C.
Bishop, E. P. De Poortere, and M. Shayegan, Phys. Rev.9%tt.
066809 (2005); T. Gokmen, Medini Padmanabhan, E. Tutuc, M.
Shayegan, S. De Palo, S. Moroni, and Gaetano Senatore, Phys.
Rev. B 76, 233301 (2007); T. Gokmen, Medini Padmanabhan,
and M. Shayegan, Phys. Rev. Let@1, 146405 (2008); T. Gok-
men, Medini Padmanabhan, and M. Shayegan, Phys. R8¢, B
235305 (2010).

Daw-Wei Wang, Eugene Demler, and S. Das Sarma, Phys. Rev. B
68, 165303 (2003).

F. D. M. Haldane, arXiv:0906.1854; N. Read and E. H. Rezayi,
Phys. Rev. B34, 085316 (2011).

F. D. M. Haldane and E. H. Rezayi, Phys. Re\BB 2529 (1985).

B. Andrei Bernevig and F. D. M. Haldane, Phys. Rev. L&g0,
246802 (2008).

S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev.
Lett. 54, 581 (1985); S. M. Girvin, A. H. MacDonald, and P. M.
Platzman, Phys. Rev. 83, 2481 (1986).

B. Yang, Z. Hu, Z. Papit, and F. D. M. Haldane, arXiv:120531
(2012).

Z.Papic, N. Regnault, and S. Das Sarma, Phys. R80, B01303
(2009).

Z. Papic, F. D. M. Haldane, and E. Rezayi, (in preparation).

M. Levin, B.l. Halperin, and B. Rosenow, Phys. Rev. L&8,
236806 (2007); S.-S. Lee, S. Ryu, C. Nayak, and M.P.A. Fjsher
Phys. Rev. Lett99, 236807 (2007).

19 M. Shayegan, E.P. De Poortere, O. Gunawan, Y.P. Shkolnikov*? Waheb Bishara and Chetan Nayak, Phys. Re\80B 121302

E. Tutuc, and K. Vakili, Int. Journal of Mod. Phys. &, 1388
(2007).

20 D. A. Abanin, S. A. Parameswaran, S. A. Kivelson, and S. L.
Sondhi, Phys. Rev. B2, 035428 (2010).

2L J. Xia, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Natur
Phys.7, 845 (2011).

22 M. Mulligan, C. Nayak, and S. Kachru, Phys. Rev88 085102
(2010).

2 F.D. M. Haldane in Ref. 3.

24 F. D. M. Haldane, Phys. Rev. Lefi1, 605 (1983).

% D. Yoshioka, B. I. Halperin, and P. A. Lee, Phys. Rev. LB,
1219 (1983).

26 F.D. M. Haldane, Phys. Rev. LeB5, 2095 (1985).

27 F. D. M. Haldane, Phys. Rev. Left07, 116801 (2011).

2 g, C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev. 62tt.
82 (1989).

2 K. Musaelian and R. Joynt, J. Phys. Cond. M&ttL105 (1996);
O. Ciftiaand C. Wexler, Phys. Rev.@, 045306 (2001); O. Ciftja

43

44
45

46
47

(2009); Arkadiusz Wojs, Csaba Téke, and Jainendra K., Jain
Phys. Rev. Lett105, 096802 (2010); Edward H. Rezayi and
Steven H. Simon, Phys. Rev. Let06, 116801 (2011).

Michael. R. Peterson, Th. Jolicoeur, and S. Das Sarma, Reys.
Lett. 101, 016807 (2008); Michael R. Peterson, Th. Jolicoeur, and
S. Das Sarma, Phys. Rev.78, 155308 (2008).

P. Wolfle and R. N. Bhatt, Phys. Rev.3, 3542(R) (1984).

W. Kohn, in Solid State Physics, edited by F. Seitz and D. Turn-
bull (Academic, New York, 1957), Vol. 5, p. 257; see also G. A.
Thomas, M. Capizzi, F. DeRosa, R. N. Bhatt, and T. M. Rice,
Phys. Rev. B3, 5472 (1981).

R. N. Bhatt, Phys. Rev. B4, 3630(R) (1981).

Hao Wang, Rajesh Narayanan, Xin Wan, and Fuchun Zhang,
arXiv:1203.1982 (2012).



