
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Absence of long-range superconducting correlations in the
frustrated half-filled-band Hubbard model

S. Dayal, R. T. Clay, and S. Mazumdar
Phys. Rev. B 85, 165141 — Published 25 April 2012

DOI: 10.1103/PhysRevB.85.165141

http://dx.doi.org/10.1103/PhysRevB.85.165141


BN11881

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Absence of long-range superconducting correlations in the frustrated 1
2
-filled band

Hubbard model

S. Dayal,1 R.T. Clay,1 and S. Mazumdar2

1Department of Physics and Astronomy and HPC2 Center for Computational Sciences,

Mississippi State University, Mississippi State, MS, 39762
2Department of Physics, University of Arizona, Tucson, AZ, 85721

We present many-body calculations of superconducting pair-pair correlations in the ground state
of the half-filled band Hubbard model on large anisotropic triangular lattices. Our calculations cover
nearly the complete range of anisotropies between the square and isotropic triangular lattice lim-
its. We find that the superconducting pair-pair correlations decrease monotonically with increasing
onsite Hubbard interaction U for inter-pair distances greater than nearest neighbor. For the large
lattices of interest here the distance dependence of the correlations approaches that for noninter-
acting electrons. Both these results are consistent with the absence of superconductivity in this
model in the thermodynamic limit. We conclude that the effective 1

2
-filled band Hubbard model,

suggested by many authors to be appropriate for the κ-(BEDT-TTF)-based organic charge-transfer
solids, does not explain the superconducting transition in these materials.

PACS numbers: 71.10.Fd,71.30.+h,74.20.Mn

I. INTRODUCTION

The two dimensional (2D) Hubbard model has been extensively investigated because at 1
2 -filling it can successfully

describe the antiferromagnetic (AFM) phases found in many strongly-correlated materials. Since AFM phases often
occur in materials displaying unconventional superconductivity (SC), such as the high-Tc cuprates and the organic κ-
(BEDT-TTF)2X (hereafter κ-(ET)2X) charge transfer solid (CTS) superconductors, it has frequently been suggested
that some small modification of the model can yield a superconducting state where the residual AFM fluctuations
mediate an attractive pairing interaction. In the case of the cuprates, this modification involves a change in the carrier
concentration (“doping”); the doped 2D Hubbard model has been intensively investigated with numerous analytic
and numerical methods, but whether or not SC occurs within this model is still controversial.
The AFM state in the 2D Hubbard model can also be destroyed at fixed carrier concentration by the introduction

of lattice frustration. The model on the anisotropic triangular lattice (see Fig. 1) has been used to describe the
κ-(ET)2X family of CTS, where SC occurs at fixed carrier density under application of moderate pressure. The ET
layers here consist of strongly dimerized anisotropic triangular lattices, with the intradimer hopping integrals much
larger than the interdimer ones. Each (ET)+2 dimer contains one hole carrier on the average. This has been used
to justify replacing each dimer unit cell with a single site, and the underlying 1

4 -filled cation band with an effective
1
2 -filled band1.
We investigate ground state superconducting pair-pair correlations within the Hamiltonian,

H = −t
∑

〈ij〉,σ

(c†i,σcj,σ +H.c.)− t′
∑

[kl],σ

(c†k,σcl,σ +H.c.)

+ U
∑

i

ni,↑ni,↓. (1)

In Eq. 1, c†i,σ creates an electron of spin σ on site i and ni,σ = c†i,σci,σ. U is the on-site Hubbard interaction.

We consider a square lattice with hopping integral t along x and y-directions and frustrating hopping t′ along the
x+ y-direction (see Fig. 1). The limits t′/t = 0 and 1 correspond to the square and the isotropic triangular lattices,
respectively. All quantities with dimensions of energy will be expressed hereafter in units of t. We consider only the
1
2 -filled band corresponding to an electron density per site ρ = 1.
The non-superconducting phases of this model, shown schematically in Fig. 1, are relatively well established. As t′

is increased in strength, frustration destroys the q=(π,π) AFM ground state, replacing it with either a paramagnetic
metallic (PM) state or a non-magnetic insulator (NMI) state2,3. Numerical calculations on this model and the
related model with two diagonal t′ bonds in each plaquette have confirmed the presence of the PM, AFM, and NMI
phases2–19. The NMI phase has been suggested as a candidate state3 that explains the apparent quantum spin liquid
(QSL) behavior seen in the strongly frustrated κ-(ET)2Cu2(CN)3

1. As the NMI phase has already been extensively
investigated3,4,6,9,15,16, in the present work we will not consider the properties of this phase any further, but will
rather focus on the possibility of SC within the model.
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FIG. 1: (color online) Lattice structure (see inset) and the ground state phase diagram of the 1

2
-filled band Hubbard model

on the anisotropic triangular lattice for 0 ≤ t′ < 1. Phases labeled are paramagnetic metallic (PM), Néel antiferromagnetic
(AFM), and non-magnetic insulator (NMI). dx2

−y2 superconductivity has been suggested to occur near the boundary of the
AFM and PM phases (see text). Filled circles are finite-size scaled values for phase boundaries from PIRG calculations (see
Section IV). The precise value of Uc2 at t′ = 0.8 is known with less certainty. At t′ = 0.8 the solid circle is an exact upper
bound from the 4×4 lattice, while the dashed circle shows the expected finite-size scaled value. The phase boundary lines
linking the points are only schematic guides to the eye. Dashed vertical lines indicate the parameter regions we investigate for
superconductivity.

Numerous mean-field theories have suggested that unconventional SC occurs adjacent to AFM-PM phase
boundaries7,8,20–26. Similar superconducting states have been suggested for the closely related Hubbard-Heisenberg
model on the same lattice27–31. Because of the proximity of (π,π) AFM order, the suggested symmetry of the SC
order parameter is dx2−y2 . For t′ ∼ 1 the magnetic ordering q shifts to (2π3 , 2π3 ) corresponding to the 120◦ ordering
found in the triangular lattice antiferromagnetic Heisenberg model, and consequently superconducting other order
parameter symmetries have been suggested30. The estimated value of t′ for the κ-ET materials is however smaller
than 1 (see below)32,33, and also no evidence for 120◦ AFM order is found experimentally within the κ-ET family1.
Superconducting pair-pair correlations calculated with numerical methods going beyond mean field theory provide

a more accurate assessment of the presence of SC, provided finite-size effects can be adequately controlled. Two
criteria must be satisfied to confirm SC within the model: (i) the superconducting pair-pair correlations must be
enhanced over the U = 0 values over at least a range of U , and (ii) the pair-pair correlations must extrapolate to
a finite value at long inter-pair distances. We have previously calculated pair-pair correlations for the 4×4 lattice
using exact diagonalization10. No enhancement of the pair-pair correlations by U was found in these calculations,
except for a trivial short-distance enhancement10 (see also below). Our present work allows more careful analyses of
the distance dependence of the pair-pair correlations, as well as the U-dependence of the longer-range components of
these correlations, that were not possible within the earlier small cluster calculation.
Pair-pair correlations for lattices comparable to those in the present work have also been calculated using variational

quantum Monte Carlo (VMC) methods13,15,17,34,35. VMC results however depend to a great degree on the choice
of the variational wavefunction, and there is considerable differences of opinion within the existing VMC literature.
Clearly, studies of pair-pair correlations on large lattices, using many-body methods that do not depend on an a priori
choice of the wavefunction are desirable. A candidate method for calculations of strongly-correlated systems is the
recently developed Path Integral Renormalization Group (PIRG) method36–39. Like VMC, PIRG is also variational
and does not suffer from a fermion sign problem as do standard quantum Monte Carlo methods. Unlike VMC
methods however, instead of an assumed functional form of the wavefunction, PIRG uses an unconstrained sum of
Slater determinants that is optimized using a renormalization procedure36–39. The NMI phase within Eq. 1 was
first identified using PIRG2,3. Previous PIRG calculations2–4,6,16 investigated the metal-insulator transition, AFM
ordering, and properties of the NMI phase in detail, but did not discuss superconducting pair-pair correlations. Here
we revisit the model with PIRG and calculate pair-pair correlations as a function of t′ and U . As explained in Section
III, we use the most accurate version of the PIRG ground-state method, Quantum Projection-PIRG (QP-PIRG),
which combines symmetries with the renormalization procedure38. As explained in Section III, we also performed an
“annealing” procedure to help prevent the method from converging to local minima.
While early tight-binding bandstructures calculated using the extended Hückel method found some κ-ET super-

conductors to have nearly isotropic triangular lattices with t′ ≈ 1, recent ab-initio methods have determined that t′

in the experimental systems lie within the range 0.4 . t′ . 0.832,33. Importantly, in this range of anisotropy the 120◦

AFM order is not relevant. Furthermore, the AFM order is known experimentally to be of the conventional Neél
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pattern40,41. Consequently, we limit our calculations to t′ . 0.8. Specifically, we perform our calculations for three
distinct t′ = 0.2, 0.5, and 0.8, as shown in Fig. 1. The two large t′ values chosen bracket the estimated frustration in
the κ-ET superconductors32,33. We choose a smaller t′ = 0.2 in addition because it has been suggested in some studies
that SC is present even in the weakly frustrated region of the phase diagram17,26,30. The phase diagram (Fig. 1) is
qualitatively different at t′ = 0.2 because the NMI phase does not occur for t′ < 0.52,3,6. While the estimate for
degree of frustration is remarkably consistent between different ab-inito methods32,33, the estimated value of U for
κ-(ET)2X is less certain. We therefore perform our calculations over a range of U starting from U = 0.
The organization of the paper is as follows. In Section II, we introduce definitions of the order parameters we

calculate. In Section III we describe the PIRG method. Section IV presents our data for t′ = 0.2, 0.5, and 0.8,
followed by discussions and conclusion in Section V.

II. ORDER PARAMETERS

To determine whether SC is present near the metal-insulator (MI) transition, in addition to superconducting
correlations we need order parameters to distinguish between metallic and insulating phases. To locate the MI
transition we use two different quantities. The first is the double occupancy D = 〈ni↑ni↓〉. As U increases, a
discontinuous decrease in D occurs at the MI transition3. In addition, we calculate the bond order Bij between sites
i and j,

Bij =
∑

σ

〈c†i,σcj,σ +H.c.〉. (2)

In the following we have labeled the bond order between sites linked by the t′ bond as B′. This particular bond
order is nonzero in the PM phase but tends to zero in the AFM Neél ordered phase because there electrons on sites
connected by t′ have parallel spin projections10.

The operator ∆†
i,j creates a singlet pair on lattice sites i and j:

∆†
i,j =

1√
2
(c†i,↑c

†
j,↓ − c†i,↓c

†
j,↑). (3)

The pair-pair correlation function is defined as

Pα(r) =
1

4

∑

ν

g(ν)〈∆†
i∆i+r(ν)〉. (4)

In Eq. 4 the phase factor g(ν) determines the symmetry of the superconducting order parameter. We consider two
possible pairing symmetries, dx2−y2 pairing (α = d in our nomenclature below) where g(ν) = {+1,−1,+1,−1} and
r(ν) = {x̂, ŷ,−x̂,−ŷ}, and dxy pairing (α = xy) where g(ν) = {+1,−1,+1,−1} and r(ν) = {x̂+ŷ,−x̂+ŷ,−x̂−ŷ, x̂−ŷ}.
In the presence of superconducting long-range order, Pα(r) for the ground state in the appropriate pairing channel

must converge to a nonzero value for |r| → ∞. This is seen clearly for example in the 2D −U Hubbard model42–44. In
the thermodynamic limit the long-distance limit of the pair-pair correlation function, Pα(r → ∞), is proportional45

to the square of the superconducting order parameter, 〈∆α〉2 ∝ |P (α(r → ∞)|. The magnitude of 〈∆α〉 may further
be used to set limits45 on the superconducting condensation energy, gap amplitude, and Tc.

III. METHOD

The PIRG method has been previously used for a variety of strongly-correlated systems including the 2D Hub-
bard model37, 1

2 -filled frustrated 2D Hubbard models2,3,6,16,38, and the 1
2 -filled Hubbard model on the checkerboard

lattice46,47. Details of the method are well described in these references. Here we discuss details of our PIRG imple-
mentation, and present comparisons with exact results which demonstrate the accuracy of the method for calculating
pair-pair correlations.
The PIRG method uses a basis of L Slater determinants, |φi〉. For L = 1 this coincides with the Hartree-Fock (HF)

approximation. In practical calculations, maximum L’s of a few hundred are used. The method is initialized with
the L = 1 HF wavefunction or a similar random starting wavefunction, and the PIRG renormalization procedure37

is used to minimize the energy by optimizing through the action of the operator exp(−τH). One potential problem
with the PIRG renormalization procedure is that the method can become trapped in a local minimum and not reach
the true ground state46. Yoshioka et al. introduced a technique for avoiding local trapping by introducing global
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FIG. 2: (color online) Comparison of PIRG and exact results for the 4×4 lattice with t′ = 0.5. (a) Variance extrapolation of
the ground state energy for U = 4. The symbol at ∆E=0 is the exact energy; the line is a linear fit. (b) Pd(r) versus r. Open
(filled) symbols are exact (PIRG) results. The inset shows relative percent error in Pd(r) as a function of r. (c) Pd(r) at the
largest possible pair spacing on the finite lattice, Pd(rmax), as a function of U . Open (filled) symbols are exact (PIRG) results.
The inset shows the variance extrapolation of Pd(rmax) for U = 4.

modifications to the wavefunction46. Following Ref. 46, we also introduced similar global modifications of the PIRG
wavefunctions (“iteration A” in Ref. 46), which modify determinants in a global manner by acting on the wavefunction
with exp[−τH ] defined by a random set of Hubbard-Stratonovich variables. In addition, we also introduced updates
to the |φi〉 based on adding a random variation to the matrix elements of [φi]j,k. The amplitude of the variations
is decreased systematically in a manner similar to simulated annealing. We found the addition of these two global
updates to significantly improve the accuracy of the results.
We also incorporated lattice and spin-parity symmetries in the calculation38. Reference 38 introduced two different

methods of using symmetry projection: (i) PIRG-QP, where symmetry projectors are applied to the ground state
wavefunction after it has optimized using PIRG; and (ii) QP-PIRG, where symmetry projectors are applied at each
step of the PIRG optimization. Here we have used the second more accurate of these two approaches, QP-PIRG. The
lattice symmetries we used included translation, inversion, and mirror-plane symmetries, a total of 4N symmetries
where N is the number of lattice sites. We also applied the spin-parity projection operator after the PIRG process.
An advantage of QP-PIRG is that much smaller basis sizes L can be used38.

Following reference 37 we define the energy variance ∆E = (〈Ĥ2〉 − 〈Ĥ〉2)/〈Ĥ〉2. ∆E is used to correct for the
finite basis size L. For each set of parameters we performed the annealing and A iterations for successively larger
basis sizes L. Each correlation function was then extrapolated to ∆E = 0 by performing a linear fit. The error bars
reported in our results are the standard errors estimated from the linear fit. The largest L used here for 6×6 and
8×8 lattices was 256. The smallest L results we used in the fitting process depended on the value of U : for U . 2 we
found that even L as small as 4 fit gave a good linear variance extrapolation, while for larger U we only used L & 16
results in the fit.
In Fig. 2, we compare results from our PIRG code with exact diagonalization results for the 4×4 lattice10. Here

L of up to 256 were used. Fig. 2(a) shows the variance extrapolation of the energy for t′ = 0.5. The extrapolated
value for ground state energy is -15.037±0.002 compared to the exact ground state of -15.031. In Fig. 2(b) we plot
the pair-pair correlation Pd(r) as a function of distance for U=4. The inset shows the percent relative error in Pd(r)

as a function of r. The maximum relative error is for r = rmax=2
√
2 and is smaller than 0.4%. Fig. 2(c) shows the

d-wave correlation at the furthest distance, Pd(rmax) as a function of U for 4×4, t′ = 0.5. The inset here shows the
variance extrapolation for Pd(rmax) for U=4. Again, as in Fig. 2(a) the extrapolation of the physical quantity is well
within the statistical error.
Our PIRG code was further verified against quantum Monte Carlo (QMC) results for larger lattices in the t′ = 0

limit where QMC does not suffer from the fermion sign problem at 1
2 -filling. For the 6× 6 lattice, the QMC estimate

for the ground state energy38 of Eq. 1 with U = 4 and t′ = 0 is E= -30.87±0.05. Previous QP-PIRG calculations using
lattice translations and spin-parity during the PIRG projection process, followed by a total-spin S = 0 projection
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FIG. 3: (color online) PIRG results for t’=0.2. Squares and diamonds are for 6×6 and 8×8 lattices respectively. (a) double
occupancy D (b) t′ bond orders (c) long distance dx2

−y2 pair-pair correlation function, Pd(r
⋆) as a function of U (see text). The

inset shows Pd(r
⋆) for the 8×8 lattice near the PM-AFM boundary. (d) Enhancement over non-interacting system, ∆Pd(r, U),

for U = 2.75 as a function of distance. Circles here are exact 4× 4 results. The inset shows the long-range part of ∆Pd(r, U)
for the 8×8 lattice. In all panels lines are only guides to the eye.

obtained38 E= -30.879. The extrapolated energy with our choice of 4N lattice symmetries, spin-parity projection,
and a maximum L of 256 was almost identical, E=-30.89±0.04.

IV. RESULTS

A. t′ = 0.2

At t′ = 0.2 a single transition is expected between PM and AFM phases3,10. In Fig. 3(a)-(b) we plot D and B′ as
a function of U . The transition from the PM to an insulating phase is clearly seen as a discontinuous decrease in B′

and D at U = Uc. Uc is only weakly size dependent at t′ = 0.2—for the 4×4 lattice10 Uc = 2.95± 0.05, while for 6× 6
and 8× 8 lattices we found 2.75< Uc <3.00. We estimate Uc ≈ 2.7 in the thermodynamic limit.
For all of the t′ values we considered, we found that dx2−y2 pair-pair correlations were of larger magnitude than

dxy correlations (in Section IVC below we show an explicit comparison between the two). Fig. 3(c) shows the dx2−y2

pair-pair correlations Pd(r
⋆) as a function of U . The distance r⋆ is defined as the next-to-furthest possible separation

r between two lattice points on the finite lattice; r⋆ = 2.24, 3.61, 5.00 for 4×4, 6×6, and 8×8 lattices, respectively.
Here we use r⋆ rather than the furthest distance rmax because of finite-size effects45 associated with rmax. The 4×4
correlations are considerably larger in magnitude because of the larger r⋆ on that lattice and we have not included
them on Fig. 3(c). As seen in Fig. 3(c), Pd(r

⋆) has a tendency to decrease monotonically with U and is smaller at all
nonzero U compared to U = 0. At Uc Pd(r

⋆) decreases discontinuously.
In addition to the U -dependence, it is also important to examine the distance-dependence of pair-pair correlations.

In Fig. 3(d) we plot ∆Pd(r, U), defined as ∆Pd(r, U) = Pd(r, U) − Pd(r, U = 0), as a function of r for U=2.75.
Positive ∆Pd(r, U) indicates enhanced pairing correlations over the noninteracting limit. We choose U = 2.75 in the
PM state and close to the PM-AFM boundary where the greatest enhancement of pair-pair correlations from AFM
fluctuations might be expected from prior work. Fig. 3(d) includes the exact 4× 4 ∆Pd(r, U) as well. Our results in
Figs. 3(c)-(d) show that as the system size increases, the long-range dx2−y2 pair-pair correlation function approaches
that of noninteracting fermions. We have confirmed similar behavior of ∆Pd(r, U), viz., absence of enhancement for
other values of U (not shown here) in either the PM or AFM regions.
As seen in Fig. 3(d), the only enhancement by U in the pairing correlations is at r = 0. The r = 0 enhancement

occurs because Pd(r = 0) contains a component proportional to the nearest-neighbor spin-spin correlation function;
the enhancement of AFM order by U leads to an increase45 in Pd(r = 0). In Fig. 4 we plot Pd(r = 0) as a function of
U . Precisely at Uc there is a discontinuous increase in Pd(r = 0), even as the system becomes semiconducting, due to
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FIG. 5: (color online) PIRG results for t′=0.5. Circles, squares and diamonds are for 4×4, 6×6 and 8×8 lattices respectively.
Panels (a)–(c) are the same as Fig. 3(a)-(c) except t′=0.5. (d) is the same as Fig. 3(d) except t′=0.5 and U=4.5. In all panels
lines are only guides to the eye.

the increase in the magnitude of AFM spin-spin correlations. Importantly, only pair separations of r > 2 should be
used to judge the enhancement of pairing correlations, because for r ≤ 2 dx2−y2 pairs overlap on the lattice10. Here we
find that Pd(r) for distances beyond nearest-neighbor pair separation always decrease monotonically with increasing

U . As we discuss further in Section V, the spurious increase of short-range correlations is the primary reason that
mean-field calculations find SC near the MI transition.

B. t′ = 0.5

Fig. 5 shows D, B′, and Pd(r) for t
′ = 0.5. Not surprisingly, compared to t′ = 0.2, Uc1 depends here more strongly

on lattice size, decreasing with increasing system size (Uc1 = 5.4 ± 0.1 and 4.6 ± 0.1 in the 6×6 and 8 × 8 lattices,
respectively). Previous PIRG calculations found Uc1 ∼ 4.1 after performing finite-size scaling3. Our results are
consistent with this value.
In contradiction to t′ = 0.2 (see Fig. 3(b)), B′ here is nonzero on the insulating side of the MI transition, suggesting

that the nature of the insulating phase is different. We have also calculated the spin structure factor Sσ(~q) (not
shown here). For U > Uc1, a peak appears in Sσ(~q) at ~q = (π, π). However, S(π, π)/N appears to extrapolate to
zero as N → ∞, based on the three lattice sizes we have considered. This indicates that the system does not have
long-range AFM order at t′ = 0.5 for U > Uc1, consistent with the NMI phase previously identified in this parameter
region2,3. Note that the larger B′ in the NMI phase than in the AFM phase is also consistent with our previous exact
diagonalization calculation (see Fig. 2 in Ref. 10.) The properties of the NMI phase and the subsequent NMI-AFM
transition at even larger Uc2 have both been extensively discussed in the literature before2–4,6,15,16. Here therefore we
focus on the strength of pair-pair correlations as a function of U and distance.
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Fig. 5(c) shows Pd(r
⋆) as a function of U . As at t′ = 0.2, Pd(r

⋆) decreases monotonically with U . At U = Uc1,
Pd(r

⋆) decreases discontinuously and is of very small magnitude in the NMI phase. The magnitude of Pd(r) does not
increase as U is increased further approaching the AFM phase. Fig. 5(d) shows ∆Pd(r, U) as a function of distance
for t′=0.5 for U=4.5. As in Fig. 4, at t′ = 0.5 Pd(r = 0) increases at the MI transition due to the increase in strength
of nearest-neighbor AFM correlations, while long distance correlations are again weaker at nonzero U than at U = 0.

C. t′ = 0.8

Our results for t′ = 0.8, shown in Fig. 6, are similar to those for t′ = 0.5. Here the PM region extends to somewhat
larger3 U . As at t′ = 0.2 and t′ = 0.5 there is no enhancement of the pairing correlations. Pd(r = 0) again shows an
increase at the MI transition. From finite-size scaling we estimated the value for Uc1 = 5.0 ± 0.3 from our data. This
value is identical to earlier results3.
Several authors have suggested that the symmetry of the superconducting order parameter changes from dx2−y2

to dxy or s + dxy in the region of the phase diagram close to the isotropic triangular lattice limit25,30. In Fig. 7 we
compare the dx2−y2 and dxy correlations for U = 4 as a function of r. Except at specific small r where pairs can
overlap each other on the lattice10, we find that dx2−y2 correlations are always stronger than dxy correlations. Plots
of the Pxy(r) versus U also show a monotonic decrease with increasing U , and ∆Pxy(r, U) similarly approaches zero
for large r.

V. DISCUSSION

In Section IV we presented superconducting pair-pair correlations for the ground state of the 1
2 -filled band Hubbard

model on the anisotropic triangular lattice calculated using the PIRG method. Our main results are that (i) in all
cases the superconducting pair-pair correlations at all finite U are clearly weaker than in the noninteracting limit,
except for an enhancement of the very short-range component, and (ii) at large distances the distance dependence
of the pair-pair correlations approaches that of the noninteracting system. These results, in conjunction with earlier
exact diagonalization results10, which show exactly the same trends, strongly suggest that the superconductivity is
not present in the model. Since many of the earlier works did find SC within the same model Hamiltonian, it is useful
to compare these approaches and results with ours. Broadly speaking, two different kinds of methods had predicted
SC within the triangular lattice Hubbard model, mean-field and the VMC. We discuss them separately.
Mean-field approaches: In all cases, mean-field methods find a superconducting phase between the PM and AFM
phases7,8,21,22. A NMI phase is found by some mean-field methods7,8,21 but not others22. However, there are further
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FIG. 7: (color online) Comparison of dx2
−y2 and dxy pair-pair correlations as a function of distance r at t′ = 0.8 and U = 4.

(a) 6×6 lattice (b) 8×8 lattice. In both panels, circles (squares) correspond to α = d (α = dxy). Lines are only guides to the
eye.

inconsistencies—for example, the paramagnetic insulating (PMI) phase in reference 21 in some regions of the phase
diagram unrealistically occurs at a temperature higher than that of the PM phase. In the NMI phase the nearest-
neighbor AFM correlations are strong but AFM long-range order is not present. At fixed t′, increasing U drives the
system from the PM to NMI phases. Upon entering the NMI the dx2−y2 correlation at r = 0 increases in strength
because the r = 0 correlation is proportional to the nearest-neighbor spin-spin correlations. Our present results
show that at the same time as this trivial short-range correlation increases, the strength of longer-ranged correlations

decrease greatly. Mean-field methods cannot capture these longer-ranged correlations and erroneously extrapolate
from the short-distance limit.
VMC: Within VMC a functional form for the wavefunction is assumed at the outset. The three different phases
found for intermediate t′ (PM, NMI, and AFM) require three different assumptions for the functional form of the
wavefunction. This makes determining the true ground state behavior extremely difficult using VMC, especially near
the phase boundaries. PIRG uses instead an unconstrained superposition of Slater determinants which does not suffer
from these problems. The assumption of a functional form is a serious disadvantage as evidenced from the variety
of results from different VMC studies which are not consistent with one another. For example, reference 34 did find
SC in the model, while a later study by the same authors did not13. Liu et al. assume that the wavefunction is
a Gutzwiller projected BCS function and find SC25. The appropriateness of such a wavefunction to describe SC is
however a controversial assumption—Tocchio et al for example did not find SC within the same assumed wavefunction
form15. The occurrence of the NMI phase within VMC methods seems to be as much of a problem as within mean-field
methods—Tocchio et al do not find evidence for NMI at t′=0.6 while PIRG does3,15.
SC has also been found in several models that are closely related to the 1

2 -filled Hubbard model on the anisotropic

triangular lattice. These include the Hubbard-Heisenberg model17,27–31, and the Hubbard model with two diagonal t′

bonds per square plaquette26,35. While we cannot compare directly our PIRG results with these models, in nearly all
cases the methods used to study these models are identical to those that have erroneously predicted SC within the
present model. We have begun a reinvestigation of these models.
We now return to the superconducting phase found in the organic CTS. Our results here cover the entire parameter

region (0.4 . t′ . 0.8) thought to be appropriate32,33 for the κ-phase CTS superconductors within the effective
Hubbard model description for them, and clearly indicate that the 1

2 -filled band Hubbard model is not sufficient to
explain the occurrence of SC in κ-ET. It is important in this context to recall that in many CTS superconductors the
insulator-superconductor transition is not from an AFM phase but from a different kind of exotic insulator. Examples
include κ-(ET)2Cu2(CN)3, which lacks long-range AFM order even at the lowest temperatures of measurement and
has been considered a QSL candidate1, but is superconducting under pressure48, and other CTS superconductors
where the insulating phase adjacent to superconductivity is nonmagnetic and charge-ordered (CO)49. Once again
mean-field theory, now within the 1

4 -field band extended Hubbard Hamiltonian on anisotropic triangular lattices has

suggested the possibility of a charge fluctuation mediated CO–SC transition50. Based on our present work, there are
reasons to doubt mean-field approaches to SC within correlated-electron models in general and these earlier results
should be checked through many-body calculations.
The different natures of the unconventional semiconductors proximate to SC in the CTS confront theorists with

a unique challenge. While mean-field theories suggest a different mechanism for each different semiconductor-



9

superconductor transition, it appears unlikely to us that structurally similar materials, with identical molecular
components in some cases, should require different mechanisms for SC. Given how difficult a problem correlated-
electron SC has turned out to be we suggest that an alternate approach is to determine first how to construct a
theoretical framework within which a unified theory of SC begins to look feasible, and then to search for the same.
We have recently shown how it may be possible to construct such a framework for the CTS51–54. In this picture,
the κ-(ET)2X and other dimerized CTS should be described in terms of the underlying 1

4 -filled band as with the

other CTS superconductors51,52. In the presence of strong dimerization and relatively weak frustration, AFM wins.
Under increasing frustration though, a transition occurs from AFM with uniform charge density on each dimer to a
charge-ordered paired singlet state we have termed the Paired Electron Crystal (PEC)51,52. Experimental examples
of the PEC in 2D CTS include β-(meso-DMBEDT-TTF)2PF6 (reference 55) and β′-EtMe3P[Pd(dmit)2]2 (references
56,57), which have precisely the same CO and bond patterns as in the PEC model51,52, and are superconducting under
pressure. The application of pressure corresponds to a further increase in frustration and gives the possibility of a
paired electron liquid superconductor58, a realization of the charged boson SC first proposed by Schafroth59. Although
more work will be necessary to prove this, this theoretical approach has the advantage that it leads to a single model
for correlated-electron SC in the CTS. Even more interestingly, we have pointed out that there exist several frustrated
strongly correlated inorganic 1

4 -filled superconductors that can perhaps be described within the same model52–54.

Finally, the experimental observation of AFM60 in expanded fullerides A3C60 has led to the modeling of these
compounds in terms of a 3D nondegenerate 1

2 -filled band Hubbard model61. The threefold degeneracy of the lowest

antibonding molecular orbitals in C60 is removed by Jahn-Teller instability60,61. The observation of a spingap in the
antiferromagnetic state validates the nondegenerate description61. The dynamic mean-field theory (DMFT) proposed
for the AFM to SC transition in the fullerides within this 3D effective 1

2 -filled band Hubbard model61 is however

very similar to the DMFT theories of SC in the 2D CTS7. Our results here suggest that a reexamination of the
spin-fluctuation mechanism of SC in the fullerides may also be called for.
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