
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Hubbard model corrections in real-space x-ray
spectroscopy theory

Towfiq Ahmed, J. J. Kas, and J. J. Rehr
Phys. Rev. B 85, 165123 — Published 16 April 2012

DOI: 10.1103/PhysRevB.85.165123

http://dx.doi.org/10.1103/PhysRevB.85.165123


BG11808

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Hubbard model corrections in real-space x-ray spectroscopy theory

Towfiq Ahmed, J. J. Kas, and J. J. Rehr
Dept. of Physics, Univ. of Washington Seattle, WA 98195

(Dated: March 29, 2012)

The Hubbard model is implemented in real-space multiple scattering (RSMS) Green’s function
calculations of x-ray spectra based on a rotationally invariant LDA+U formalism. Values of the
Hubbard parameter U are estimated using the constrained RPA method. Our treatment also in-
cludes a model self-energy which incorporates the interaction of the photo-electron with excitations
such as plasmons; this model is based on an electron gas Green’s function and a many-pole model
of the screened Coulomb interaction W . This combined treatment leads to an efficient approach
to account for correlation on localized as well as delocalized electrons, and the effects on x-ray
spectra. Moreover, the RSMS formalism is also applicable to general aperiodic systems including
nano-particles, molecules, and surfaces. Results are presented for the spin and angular momentum
projected density of states of MnO, NiO, and La2−xSrxCuO4 (LSCO), for the K-edge x-ray spectra
of O atoms in MnO and NiO, and the unoccupied electronic states and O K-edge spectra of undoped
LSCO. The method is found to yield reasonable agreement with experiment.
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I. INTRODUCTION

Density functional theory (DFT) together with quasi-
particle corrections has been remarkably successful in de-
scribing the electronic structure and band-gaps of weakly
interacting s-p bonded systems. For such systems, quasi-
particle corrections are often well described in terms of
Hedin’s GW self-energy,1,2 where G refers to the one-
particle Green’s function and W the screened Coulomb
interaction. Such corrections are especially important in
treatments of excited states, e.g., in various x-ray spec-
tra. However, the GW approach is generally inadequate
to describe the band gap and other electronic properties
in materials with well localized 3d or 4f electrons.3,4 On
the other hand, the strong Coulomb interactions in these
systems are often approximated using a Hubbard-model,3

in which the on-site electron-electron repulsion is rep-
resented by the spin- and orbital-occupancy dependent
potential parametrized by “Hubbard parameters” U and
J . Combining the local density approximation (LDA)
of DFT with the Hubbard model leads to the LDA+U
method. In practice, the Hubbard correction is added to
the original Kohn-Sham LDA Hamiltonian while an ap-
proximate mean-field term is subtracted to avoid double-
counting.5 Formally the Hubbard interaction can be re-
garded as a static approximation to the self-energy of cor-
related systems.6 In calculations of excited state proper-
ties, however, one also needs dynamic self-energy effects
due to delocalized excitations, i.e., plasmons etc., which
can be approximated by model GW calculations. A re-
lated approach has been proposed by Jiang et al,6,7 where
a GW self-energy is calculated from an LDA+U starting
point and the infamous double counting terms largely
cancel. Their approach also yields good approximations
for the band-gap of several d and f electron systems.6,7

In another prescription, Bansil et al developed a self-
consistent GW+U scheme based on the tight-binding ap-

proximation and a single-band Hubbard model.8,9 Their
method is found to qualitatively explain several pre-edge
spectral features in high Tc cuprates.10,11

The approach developed here is based on the LDA+U
formalism of Anisimov et al.,5 together with a many-pole
model self-energy, that treats all excitations as plasmonic
in nature. This model is not expected to contribute ap-
preciably to the correlation effects on localized states,
so we simply add the two contributions to form an effec-
tive self-energy correction ∆ΣU (E). The implementation
of our Hubbard-corrected self-energy into the real-space
multiple scattering (RSMS) Green’s function formalism
is relatively straightforward, and yields an efficient ap-
proach which is applicable to both weakly and strongly-
correlated materials. Our RSMS/∆ΣU approach is ad-
vantageous for calculations of x-ray spectra over a broad
spectrum, especially since it does not rely on structural
symmetry or periodicity requirements.

Using this extension of our RSMS codes, we investi-
gate the effects of correlation on the angular momentum
projected density of states (lDOS), the x-ray absorption
spectra (XAS), and the x-ray emission spectra (XES)
of several materials. Other codes which can incorpo-
rate Hubbard corrections to excited state spectra include
WIEN2K,12 SPRKKR,13 and Quantum ESPRESSO.14

Our implementation of the Hubbard correction is similar
to that in SPRKKR, although in that code U is taken as
a parameter.13 We also estimate U using the constrained
RPA method implemented in our RSMS codes. Calcu-
lations of the Hubbard U have also been carried out by
others, using both constrained LDA (cLDA15–20), and
constrained RPA (cRPA21,22) approaches. Both of these
methods have been systematically compared by Aryase-
tiawan et al.23

Our RSMS/∆ΣU method is tested on several d-
electron systems including MnO, NiO, and the undoped
high Tc cuprate La2−xSrxCuO4 (LSCO). In these mate-
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rials, the electronic structure and band gaps are strongly
influenced by the Hubbard interaction. We find that our
approach yields reasonable agreement with bulk-sensitive
probes such as XES and XAS which are used to measure
band gaps between occupied and unoccupied states.24 We
compare our results with related calculations for MnO
and NiO using the GW@LDA+U treatment of Jiang et

al.6 Treatments of Ti oxide compounds using LDA+U
within the multiple scattering formalism have also been
reported by Krüger,25 although, in that work a gap in
the d-states was forced by splitting the occupied and un-
occupied states by an experimental gap correction.

II. THEORY AND METHODOLOGY

In this section we describe our implementation of the
∆ΣU (E) method as an extension of the RSMS Green’s
function formalism.26,27 Our implementation generally
follows the strategy used in the FEFF9 code, and thus
permits calculations of both electronic structure and x-
ray spectra that account for atomic correlation effects.
Hartree atomic units (e = h̄ = m = 1) are implicit unless
otherwise specified.

A. RSMS Method

We begin with a brief outline of the RSMS formalism
used in this work. In this approach physical quantities
of interest are expressed in terms of the quasi-particle
Green’s function G(r, r′, E). For example, the physical
quantity measured in XAS for photons of polarization ε̂
and energy ω is the x-ray absorption coefficient µ(ω),

µ(ω) ∝ −
2

π
Im 〈φc| ǫ̂ · rG(r, r

′, ω + Ec) ǫ̂ · r
′|φc〉 , (1)

where Ec is the core electron energy and |φc〉 is the core
state wave function. The FEFF9 code also calculates
closely related quantities such as the spin and angular

momentum projected density of states (lDOS) ρ
(n)
lσ (E)

at site n,

ρ
(n)
lσ (E) = −

1

π
Im

∑

m

∫ Rn

0

Gσ,σ
L,L(r, r, E) r2 dr, (2)

where Rn is the Norman radius around the nth atom,28

which is analogous to the Wigner-Seitz radius of neutral

spheres. The coefficients Gσ,σ′

L,L′ characterize the expan-

sion of the Green’s function G(r, r′, E) in spherical har-
monics,

G(r, r′, E) =
∑

L,L′,σ

YL(r̂)G
σ,σ
L,L′(r, r

′, E)Y ∗
L′(r̂′), (3)

where L = (l,m) denotes both orbital and azimuthal
quantum numbers. In these formulae, the quasi-particle

Green’s function for an excited electron at energy E is
given formally (matrix-indices suppressed) by

G(E) = [E −H − Σ(E)]−1 , (4)

where H is the Hartree Hamiltonian

H =
p2

2
+ V, (5)

and V is the Hartree-potential. For convenience in our
calculations, the Hamiltonian is re-expressed in terms
of a Kohn-Sham Hamiltonian HKS = H + Vxc where
Vxc is a ground state exchange-correlation29 functional,
and the self-energy is replaced by a modified self-energy
Σ(E) − Vxc which is set to zero at the Fermi-energy
E = EF . In this work we use the von Barth-Hedin LSDA
functional Vxc[n(r),m(r)],29 where n(r) = n↑ + n↓ is the
total electron density and m(r) = n↑ −n↓ is the spin po-
larization density. In practice, it is useful to decompose
the total Green’s function G(E) as

G(E) = Gc(E) +Gsc(E), (6)

where Gc(E) is the contribution from the central (ab-
sorbing) atom and Gsc(E) is the scattering part. Full
multiple scattering (FMS) calculations can be carried
out by matrix inversion, i.e., with G = [1 − G0T ]−1G0,
where G0 is the bare propagator and T is the scat-
tering T -matrix, which are represented in an angular-
momentum and site basis: G0 = G0

nL,n′L′(E)[1 − δn,n′ ]
and T = tσnLδL,L′δn,n′δσ,σ′ . Finally, tσnL is the single site
scattering t-matrix, which is related to partial wave phase
shifts,

tσnL = eiδ
σ

nL sin(δσnL). (7)

Within the spherical muffin-tin approximation, Gc(E)
can be expanded in terms of the regular RL(r, E) and ir-
regular HL(r, E) solutions of the single site Schrödinger
equation.30 In the FEFF code a typical calculation of the
electronic structure (ground or excited state) starts with
a self-consistent calculation of the electron density and
Kohn-Sham potentials.28 Once the self-consistent poten-
tial is obtained, the Green’s function is constructed and
used to calculate XAS and other quantities of interest.
Of particular interest in this paper is the spin-dependent
density matrix for the n-th site

nσσ′

nlm,nlm′ = −
1

π

∫ EF

dE

∫

cell

ImGσσ′

nlm,nlm′(r, r, E) d3r,

(8)
where the n denotes the cell defined by the Norman
sphere centered about the nth atom, r, r′ are relative to
the center of the cell Rn, and σ is the spin-index, and we
explicitly designate the azimuthal quantum numbers m
and m′. For a more detailed description of the multiple
scattering RSMS method see Refs. [30,31].
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B. GW Many-pole Self-energy

Quasi-particle effects are key to an accurate treat-
ment of excited state spectra,26 and hence require a good
approximation for the electron self-energy for extended
states. Current approximations for the self-energy typ-
ically begin with Hedin’s GW approximation (GWA),2

which is formally given by

ΣGW = iGW, (9)

where G is the one electron Green’s function, W = ǫ−1v,
is the screened-Coulomb interaction, and v the bare-
Coulomb interaction. The FEFF9 code uses several ap-
proximations for the self-energy with the aim of providing
efficient calculations of the energy dependent shift and
broadening of spectral features over a wide energy range.
The default, which is appropriate at high energies, is the
Hedin-Lundqvist plasmon-pole model,2,32 based on the
homogeneous electron gas and a single-pole approxima-
tion to the dielectric function, which works well at ener-
gies above the plasmon energy ωp. An extension which
improves the self energy at lower energies is a many-
pole model (MPSE), where the the dielectric function
is represented as a weighted sum of poles matched to
calculations of the loss function in the long wavelength
limit.33 Efficiency is retained by assuming a simple plas-
mon dispersion relation for all poles in the representation
of the dielectric function, and by using an electron gas
Green’s function. Thus our MPSE calculations are per-
formed in a two step process: (i) The first step is to
obtain a suitable approximation to the energy loss func-
tion L(ω) = −Im[ǫ(q = 0, ω)−1]; and (ii) The second is
to extend the q = 0 result to finite momentum trans-
fer by representing it as a weighted sum of poles, which
together conserve the overall oscillator strength,

L(q, ω)−1 = −Im[ǫ(q, ω)−1] = π
∑

i

giω
2
i δ[ω

2 − ωi(q)
2].

(10)
Using this representation, and the electron gas approxi-
mation for the Green’s function, the self-energy is a sim-
ple weighted sum of dynamic electron gas plasmon pole
self energies, and a Hartree-Fock exchange term

ΣMP (k,E) = Σd(k,E) + ΣHF (k),

Σd(k,E) =
∑

i

giΣd(k,E;ωi). (11)

The above formula is used to calculate an average quasi-
particle correction ∆ΣMP (k(E), E; ρint), where the den-
sity used in the model is averaged over the interstitial
(outside the muffin tins). More details of the MPSE
model can be found in Ref. [33].
Although these models significantly improve quasi-

particle calculations of unoccupied states at intermediate
energies, they do not necessarily yield accurate band-gap
corrections, and they do not have an appreciable effect
on the localized states near the Fermi energy. Formally

the two effects can be added by assuming that the Hub-
bard corrections are equivalent to the static Coulomb-
hole/screened exchange (COHSEX) approximation for
the localized states,6 and then treating only the dynamic
self-energy corrections to the localized states with the
model self-energy, i.e.,

Σ ≈ ΣCOHSEX + [ΣMPSE − ΣMPSE
COHSEX]. (12)

Here the first term is approximated using the Hubbard
model while the second is calculated using our many-pole
model. Delocalized states are treated with the many-
pole model alone. However, since our many-pole model
gives only small quasi-particle corrections to the local-
ized states, we have neglected the last term ΣMPSE

COHSEX

in our calculations. Thus in our implementation of the
Hubbard corrected self-energy, an effective spin and or-
bital dependent total correction ∆ΣU (E) is constructed
as a simple addition of the plasmon-pole or many-pole
self energy correction ∆Σ(E) and a Hubbard correction
V U
lm with calculated U , in order to correct the localized

states near the Fermi level. Although such a construction
can be done using self-consistent methods,34 here we use
only a single-step calculation. Thus we define our total
self-energy correction ∆ΣU as

V (r, E) = V LDA
σ (r) + ΣU (E), (13)

∆ΣU
lmσ(E) = V U

lmσ +∆ΣMP (E), (14)

where each term has double counting subtracted. The
orbital and spin-dependent Hubbard contribution to the
potential V U

lmσ is calculated as described in the next sec-
tion. We stress that the above prescription is an ap-
proximation; formally7 one might expect some double-
counting between the Hubbard terms and the many-ple
self-energy. However, the effect of ΣMP (E) is most im-
portant at energies comparable to plasmon excitations
while the behavior near the band-gaps is dominated by
the Hubbard terms.

C. Calculation of U from cRPA

In our cRPA formulation23 of the Hubbard parame-
ter U we start with the standard expression of the RPA
screened Coulomb interaction given by

W = ǫRPA(r, r′, ω)−1v, (15)

where the RPA dielectric constant is

ǫRPA(r, r′, ω) = 1− vχ0(r, r′, ω). (16)

and the non-interacting response function is

χ0(r, r′, ω) =
occ
∑

i

unocc
∑

j

ψi(r)ψ
∗
i (r

′)ψ∗
j (r)ψj(r

′)

×

[

1

ω − ǫj + ǫi + i0+
−

1

ω + ǫj − ǫi − i0+

]

. (17)
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For correlated materials with narrow 3d or 4f bands,
the response function can be divided into χ0 = χ0

d + χ0
r.

Here χ0
d contains only 3d − 3d interaction, and can be

obtained by limiting the summation to i, j ∈ ψd, and χ
0
r

is the response due to the remainder of the states. The
effective Coulomb interaction in the narrow 3d bands can
thus be identified22 with the Hubbard parameter U :

U(r, r′, ω) = [1− vχ0
r(r, r

′, ω)]−1v, (18)

In the static limit (ω = 0), we retain only the components
of the effective interaction on the same atomic site by

U =

∫ Rn

0

d3rd3r′ |φ3d(r)|
2
U(r, r′) |φ3d(r

′)|
2
, (19)

where φ3d is the localized 3d orbital of the embedded n-
th atom with muffin-tin radius Rn. Following Stott and
Zaremba,35 we write the χ0(r, r′, ω = 0) in terms of the
retarded single particle Green’s function, i.e.,

χ0(r, r′, ω = 0) = −2 Im

∫ EF

−∞

dω

π
G+(r, r′, ω)G+(r′, r, ω).

(20)
This allows us to use our RSMS framework to calculate
the response functions and thus the Hubbard interaction.
Since the interactions in question are limited in spacial
extent around a single atomic site, we make the approxi-
mation that the Coulomb interaction may be replaced by
its spherical average about that site, i.e., v(r−r′) = 1/r>,
where r, r′ are relative to the center of the atomic site. In
addition we neglect the angular momentum off-diagonal
elements of the Green’s function. This gives the follow-
ing simple expression for the spherically averaged non-
interacting response function,

χ0(r, r′, ω = 0) = −2 Im

∫ EF

−∞

dω

π

×
∑

L

G+
LL(r, r

′, ω)G+
LL(r

′, r, ω). (21)

We then find the RPA response function by inverting
in real space. Within these same approximations, we
may calculate the response function χ0

r defined above by
omitting the angular momentum states of interest (d- or
f -states) from the sum in the above equation within a
cutoff radius Rc. For example to find U for the d-states,
we use the response function

χ0
r(r, r

′, ω = 0) = −2 Im

∫ EF

−∞

dω

π

×

[

∑

L 6=d

G+
LL(r, r

′, ω)G+
LL(r

′, r, ω) +

G+
dd(r, r

′, ω)G+
dd(r

′, r, ω)Θ(r −Rc)Θ(r′ −Rc)

]

,

(22)

where Θ(r) is a smooth cutoff function which goes to
zero at r = Rc. Finally, U is found according to Eq. (18)
and (19). These RSMS calculations have been used to
find the RPA screened core-hole potential in calculations
of XAS, and give reasonable results when compared to
other theories (i.e., final state rule or Bethe Salpeter) and
experiment.36 We find that a cutoff radius Rc = 1.5Rn

gives reasonable values of U when compared to other cal-
culations, and consistent band gaps when compared to
experiment. Fig. 1 shows a comparison of our cRPA re-
sults for U with the cRPA and cLDA results of Ref. 23.
Overall, the values are in reasonable agreement, and dif-
ferences can be attributed to the choice of localized states
and the approximations in the treatment of screening in
our method.

Sc Ti V Cr Mn Fe Co Ni
0

2

4

6

8

10

12

14

U
 (

eV
)

cRPA: this work
cRPA: Ref.22
cLDA: Ref.22

FIG. 1: (Color online) Results of our cRPA calculations of U
(red squares) for the 3d transition metals compared with the
cRPA (blue circles) and cLDA (green triangles) calculations
of Aryasetiawan.23

D. Rotationally invariant LDA+U formalism

Our construction of V U
lmσ(E) is adapted from the

LDA+U approach of Anisimov et al.5 In their approach
one starts with the total energy functional of the sys-
tem and adds a Hubbard correction to account for the
Coulomb interaction between localized, strongly corre-
lated electrons. It is generally assumed37 that a simi-
lar mean-field term should exist in LDA or other DFT
approaches which must be subtracted from the energy
functional to avoid double counting,

EU [nσ(~r),nσ] = ELDA[nσ(~r)] (23)

+ EU [nσ]− Edc[n
σ],

where nσ(~r) is the charge density, nσ the density ma-
trix, EU the Hubbard interaction, and Edc the double
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counting term. The Hubbard term depends on the den-
sity matrix nσσ′

ilm,ilm′ , and on-site Coulomb interactions
between the localized electrons.
For systems where the localized electrons are

atomic-like, the density matrix can sometimes be
approximated38 as

nσ
mm′ = nσ

mδmm′ . (24)

This spherical approximation is often not reasonable for
many systems including TMOs, and good agreement for
the band gap is found only when the non-sphericity of
d-d interaction as well as the off-diagonal terms of nmm′

are taken into account.38 In order to implement basis
independent formalism of LDA+U , we diagonalize the
density matrix nσ by a unitary transformation from the
|lm〉 to |lα〉 basis for 3d states,

τ ∗ {nσ
lmm′} ∗ τ−1 = {nσ

lα} . (25)

The total energy functional can then be written as

E = ELDA +
1

2

∑

α,α′,σ

U(nσ
α − no)(n−σ

α′ − no)

+
1

2

∑

α,α′ 6=α,σ

(U − J)(nσ
α − no)(nσ

α′ − no). (26)

Here the double counting term Edc is represented by no

where no = nd/10, and nd =
∑

ασ n
σ
α. Using V (~r) =

δE/δnσ(~r), a simplified expression for the total LDA+U
potential is finally obtained,38 i.e.,

V LDA+U (~r) = V LDA(~r) + V U
lασ , (27)

where

V U
lασ = U

∑

α′

(n−σ
lα′ −no) + (U − J)

∑

α′ 6=α

(nσ
lα′ −no). (28)

In a single-step spin-dependent calculation using the von
Barth-Hedin LSDA functional, we first obtain nσ

lα. In
this prescription, a prior knowledge of spin polarization

of i-th atom mi = n↑
i − n↓

i is required. For Mn, Ni, and
Cu we used m = 5, 2, and 1 respectively using Hund’s
multiplicity rule39,40 for free atoms which is often a good
approximation for such systems.
The occupancy of the spin-up and -down states within

the d-orbitals are thus determined in this single-step
LSDA approach. Our calculations of spin-orbital occu-
pancies of Mn and Ni d-states using this scheme are listed
in Tables I and II. Thus we essentially start with a spin
dependent ground state calculation and introduce spin
and orbital dependence using Anisimov’s prescription of
Hubbard model. This LDA+U prescription is found to
provide good agreement between the theory and exper-
iment for the XAS of the TM compounds investigated
here, although the self-consistent LDA+U treatment may
be more desirable in other cases. The exchange param-
eter J is typically much smaller than U and variations

were found3 to be small over the transition metals; thus
we have used J=0.9 eV for all cases. Using Eq. (12),
(17), (18), and (21), we then correct our self-consistent
potential and obtain a new potential V (r, E).
Then using the above Hubbard corrected Hamiltonian,

the wave functions Rlα(r, E) and Hlα(r, E) are recalcu-
lated as solutions of the Schrödinger equation inside the
muffin-tin spheres. The orbital dependent phase shifts
δσlα(E) are obtained by matching to the free solutions
(spherical Bessel functions) at the muffin-tin, and the
scattering t-matrices are found,

tσlα = eiδ
σ

lα sin(δσlα). (29)

Finally the multiple-scattering equations are resolved
with these t-matrices yielding the the total Green’s func-
tion G = Gc +Gsc, which now includes the Hubbard-U
correction. With the addition of the state dependent
Hubbard correction, the potential of Eq. (12) can cor-
rectly account for the well known discontinuity38,41 in ex-
act DFT exchange-correlation potentials. However, such
a term is absent from the conventional LDA and GGA
approaches, rendering them incapable of including such
band-gap corrections.

III. RESULTS AND DISCUSSION

A. Transition Metal Oxides

Transition metal oxides (TMOs) such as MnO and NiO
are considered to be prototypes of strongly correlated
Mott type insulators, with localized and partially filled
d-electrons at the metal sites. These TMOs have NaCl
like crystal structures, (Cubic O5

h symmetry, and fm3m

space group). Below their respective Nèel temperatures,
they all exhibit a rhombohedral distortion due to anti-
ferromagnetic (AF) ordering, which is also known as ex-
change anisotropy.42 We also examined the effects of such
crystal distortions but they had negligible influence on
the spectral features of interest here. In the following
subsections we present results for the total and angular
momentum projected DOS of MnO and NiO for a few
values of U . For both compounds, the O K-edge XAS
and XES are also calculated and compared with experi-
mental results.

1. MnO

In order to compare with room temperature
experiment,24 we used an undistorted MnO crystal with
a = b = c = 4.4316 Å and α = β = 90.624◦.43 In this
paper, we do not consider periodic magnetic effects; how-
ever, the single site moments are implicitly taken into
account in our ΣU (E) implementation. Our calculated
cRPA U for MnO was found to be 5.4 eV. In our FMS
RSMS calculations for MnO, we used a cluster of 250
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atoms, which was adequate to converge the spectrum,
and a smaller cluster of 60 atoms for the self-consistent
muffin-tin potentials. For this system we calculated the
O K-edge XES and XAS and the spin and angular mo-
mentum projected DOS about the Mn and O sites with
and without Hubbard corrections. Fig. 2 shows a com-
parison of our calculated total ground state spin-resolved
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FIG. 4: (Color online) O K-edge XAS (black) and XES (red)
in MnO. (a) QP FEFF calculation using our MPSE model
ΣMP (E), (b) ΣU (E) with U = 5.4, and (c) experiment.24

The vertical dashed lines are a guide to the eye.

DOS of MnO to that calculated with different values of
U including its cRPA value. While a calculation with
a MPSE underestimates an insulating gap (dashed blue
line in Fig. 2), a gap close to that observed in experi-
ment is obtained using our calculated Hubbard correc-
tion with U = 5.4 eV. When this Hubbard correction is
applied to Mn d-states, the unoccupied spin down states
are shifted by +1.6 eV, as seen in Fig. 3(a). The O p-
states (Fig. 3(b)) near EF are strongly hybridized with
Mn d-states (Fig. 3(a)); thus a gap is also seen in the
O p-DOS. However, the O p-states around 6-8 eV only
hybridize with Mn s-p-states (not shown) and are not af-
fected by the Hubbard correction. In Table (I) we present
the spin-orbital occupancies of the localized Mn d-states
and the corresponding Hubbard correction for U = 5.4
and J = 0.9 eV.

TABLE I: Mn d-state parameters (U = 5.4 eV; J = 0.9 eV)

l α nlα n
↑

lα
n
↓

lα
V

↑

lα
(eV) V

↓

lα
(eV)

2 α1 0.94 0.85 0.09 -0.32 3.11
2 α2 0.90 0.81 0.09 -0.29 3.11
2 α3 0.93 0.83 0.10 -0.30 3.12
2 α4 1.10 0.99 0.11 -1.00 3.12
2 α5 1.09 0.98 0.11 -1.00 3.15

Bulk sensitive XES and XAS for TM oxides often pro-
vide a good assessment of the band gap in insulators.24

In Fig. 4 we compare our ΣU calculation of the O K-edge
XAS and XES with experiment.24 Fig. 4 shows the re-
sult of our spin resolved FMS calculation obtained with
both Hubbard and MPSE corrections (b), compared to
results with no Hubbard correction (a), and experiment
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(c). The XAS calculation was done in the presence of
a screened core-hole at the absorbing O atom while for
XES no core-hole was included; these approximations are
consistent with the final-state- and initial-state rules for
XAS and XES respectively. Our Hubbard corrected self-
energy blue shifts the first excitation at around 534 eV,
while the rest of the unoccupied states, including the
main peak at 540 eV, are unchanged. In XES, the high-
est occupied state moves down by 3 eV which is now
on the other side of the second vertical dashed line in
Fig. 4. These distinct, opposite shifts of the highest oc-
cupied and first unoccupied states are due to the strong
hybridization of O p-states with the localized Mn d states.
This can also be identified in Fig. 3(b) as the lower (LHB)
and upper Hubbard bands (UHB) at around -2 and 2 eV.

2. NiO

In order to compare with room-temperature
experiments24 we have accounted for the rhombohedral
distortion of NiO crystal along the [111] direction.44,45

Our methods for calculating electronic structures of
NiO are similar to those for MnO, except for the input
NiO crystal structure, where we have used a slightly
distorted crystal with a = b = 4.168 Å, c = 4.166 Å,
and α = β = 90.055◦, γ = 90.082◦. With the Hubbard
correction, the best agreement with the experimental
XAS was again obtained with our calculated U = 8.0
eV. Fig. 5 shows the gap opening in the spin projected
total DOS of NiO for other values of U beside cRPA
U . The O p-states in NiO are also strongly hybridized

TABLE II: Ni d-state parameters (U = 8.0 eV; J = 0.9 eV)

l α nlα n
↑

lα
n
↓

lα
V

↑

lα
(eV) V

↓

lα
(eV)

2 α1 1.21 0.91 0.30 -0.72 3.95
2 α2 1.30 0.95 0.35 -1.40 4.02
2 α3 1.86 0.95 0.91 -1.40 -0.52
2 α4 1.86 0.95 0.91 -1.40 -0.52
2 α5 1.88 0.96 0.92 -1.43 -0.53

with localized Ni d-states as in MnO. The spin-orbital
occupancies and corresponding Hubbard potential for
the Ni d-states are listed in Table II.
Our GW plasmon-pole calculation in Fig. 7(a) exhibits

considerable overlap between the O K-edge XAS and
XES spectra, due to the underestimated insulating gap.
However, the introduction of the Hubbard interaction
(U = 8.0 eV) increases the gap, causing the pre-peaks of
both the XAS and XES to split further apart, as shown
in Fig. 7(c). For comparison, we also show a WIEN2K
LDA+U calculation in Fig. 7(a) for the O K-edge EELS
in NiO.46

Aligning the first peak of this calculation with ex-
periment [Fig. 7(d)], we observe an underestimation of
the high energy peaks at around 544 eV. These peaks
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FIG. 5: (Color online) U dependence on total DOS of NiO
with spin up (solid red) and spin down (dashed blue) for dif-
ferent values of U : (a) U = 0 eV, (b) U = 4.5 eV, (c) U = 8.0
eV (cRPA), and (d) U = 13.5 eV; the vertical dashed line is
at the Fermi energy.
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U = 8.0 eV (solid line); Spin up an down DOS are above and
below the horizontal axis correspondingly: (a) Ni d-DOS (b)
O p-DOS; the vertical dashed line is at the Fermi energy.

can be attributed to O p-states which are strongly hy-
bridized with Ni s- and p-states. Similar behavior has
been found in NiO,6,47 and other TM compounds.46,48

We attempted to improve these results by using a GW
MPSE33 for NiO, while applying the Hubbard correction
to the Ni d-states. This MPSE model includes a more
realistic treatment of inelastic losses than the plasmon
pole model, and yields improved agreement with exper-
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FIG. 7: (Color online) NiO O K-edge XAS (black) and XES
(red) experiment vs theory: (a) LDA+U calculation46 for O
1s EELS using WIEN2K; (b) FEFF GW plasmon-pole (PP)
self-energy; (c) FEFF ΣU (E) with ab initio Hubbard correc-
tion with cRPA U = 8.0 eV; and (d) Experiment.24 The ver-
tical dashed lines are a guide to the eye.

iment, as seen in Fig. 7(c). These results demonstrate
that an accurate treatment of the delocalized s-p-states
can also be important in such systems. Thus in order
to achieve good agreement between theoretical and ex-
perimental spectral features, a systematic consideration
of excited state properties including both localized- and
delocalized states is important.

TABLE III: Calculated Hubbard parameter U and gap ∆ of
MnO, NiO, and LSCO.

Materials MnO NiO LSCO

U (this work) 5.4 8.0 10.0
U (Ref. 6) 4.7 5.2
U (Ref. 3) 6.9 8.0

∆ (this work) 3.9 4.4 1.4
∆ (Ref. 6) 2.6 3.8
∆ (Expt.24,49) 4.1 4.3 1.8

In Table III we compare our cRPA calculated U and
estimated XAS-XES gap ∆ with gap values reported by
others. Our values of U for MnO and NiO are in reason-
able accord with experiment and roughly comparable to
those of Ref. 3,6. Likewise our calculated values of ∆ are
in good agreement with experiment for MnO and NiO,
but underestimated by 0.5 eV for LSCO. We have also
compared in Fig. 8 our total DOS for MnO calculated
with our cRPA U = 5.4 and J = 0.9 eV, with that of
Ref. 6 calculated with U = 5.4 and J = 0.0. Despite dif-
ferences in methodology and the fact that the gap ∆ can
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FIG. 8: (Color online) MnO total DOS with our RSMS
cRPA calculated U = 5.4 and J = 0.9, and GW@LDA+U

calculations6 with U= 5.4 J = 0.0 (dashed blue line); the
vertical dashed line is at the Fermi energy.

only be determined approximately with a finite cluster
RSMS approach, both methods are in reasonable agree-
ment.

B. LSCO

Understanding the doping dependence of high Tc

cuprates has become an interesting challenge in recent
years. LSCO (La2−xSrxCuO4), which is a prototype of
hole-doped cuprates, exhibits metallic and paramagnetic
behavior at high doping,11 and becomes an AF insulator
when undoped. Between these limits, the system goes
through a superconducting phase at the doping concen-
tration of about x = 0.15. A good description of the
electronic structure in its insulating phase is important
to understand the exotic doping dependent phase trans-
formations in such systems.

In the over-doped region with x > 0.2, LSCO becomes
paramagnetic, and is well described by a self-energy
approximation constructed from a single band Hubbard
model.11 A Fermi-liquid description thus becomes more
appropriate for such systems. As doping is reduced,
correlation effects due to localized states become more
important, and the implementation of Hubbard U to the
d electrons on the Cu sites is seen to open a gap. A gap
correction using ΣU (E) on the partial d-DOS of Cu and
p-DOS of O is shown in Fig. 9. Our O K-edge XAS for
ΣMP (E) and ΣU with U = 10.0 eV are compared with
experimental results in Fig. 11. Our result with cRPA
calculated U agrees well with the undoped LSCO exper-
iment, while the over-doped LSCO system is reasonably
reproduced by a GW MPSE calculation alone (U = 0).
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This result is not surprising, since in the absence of the
Hubbard term, the LDA does not predict a correlation
gap. As a result the system is predicted to be metallic,
mimicking the over-doped (x ≈ 0.3) paramagnetic
phase of La1−xSrxCuO4. A complete description of the
doping dependence of spectral features from over-doped
(x = 0.3) to undoped (x = 0.0), requires a dynamical
self-energy correction that incorporates pseudo-gap,
superconducting, and Fermi-liquid physics.50
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FIG. 11: (Color online) O K-edge XAS for LSCO: (a) our
ΣU (E) calculation with cRPA U = 10.0 (red) and GW only
(black); (b) experimental K-edge XAS for undoped (x = 0.0,
red) and over-doped (x = 0.3, black) LSCO, and the vertical
dashed lines are a guide to the eye.

IV. SUMMARY AND CONCLUSIONS

We have implemented Hubbard model corrections
within an LDA+U approach, using a rotationally invari-
ant formalism and an extension of the RSMS Green’s
function method for calculations of excited state elec-
tronic structure and x-ray spectra of correlated materi-
als. Our approach also builds in a model GW self-energy.
Both Hubbard-model and dynamic self-energy effects are
incorporated in an effective self-energy correction ∆ΣU .
The Hubbard parameter U is estimated using the cRPA
method, again within the RSMS formalism. The addi-
tional GW self-energy is approximated by a many-pole
model based on the electron gas Green’s function and the
loss function in the long-wavelength limit. These consid-
erations lead to a RSMS/∆ΣU approach which provides
an efficient way to account for correlation effects on x-
ray spectra of complex materials. The approach is ad-
vantageous for aperiodic systems since it does not rely
on symmetry or periodicity. The method was tested on
several correlated materials and found to yield reason-
able agreement for the observed experimental band gap
as well as the XAS and XES of MnO and NiO. However,
the agreement with experiment is less accurate for more
complex systems such as LSCO. This suggests the need
in such systems for a more comprehensive treatment of
superconducting and pseudo-gap physics that incorpo-
rates doping dependence in the under-doped regime.8,50

Overall, however, our method explains the key features
of the excited state electronic structure and spectra of
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many strongly correlated systems, and in particular the
correlation gap. Finally we note that our approach is
limited to the quasi-particle approximation and Hubbard
model corrections, while inelastic many-body effects such
as satellites and charge-transfer excitations are currently
neglected.
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