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We numerically determine subleading scaling terms in the ground-state entanglement entropy of
several two dimensional (2D) gapless systems, including a Heisenberg model with Néel order, a free
Dirac fermion in the π-flux phase, and the nearest-neighbor resonating-valence bond wavefunction.
For these models, we show that the entanglement entropy between cylindrical regions of length x
and L− x, extending around a torus of length L, depends upon the dimensionless ratio x/L. This
can be well-approximated on finite-size lattices by a function ln(sin(πx/L)) akin to the familiar
chord-length dependence in one dimension. We provide evidence, however, that the precise form of
this bulk-dependent contribution is a more general function in the 2D thermodynamic limit.

PACS numbers:

Introduction – The study of quantum condensed mat-
ter systems is benefiting from an infusion of ideas related
to quantum information and entanglement. The impor-
tance of this new resource is strikingly demonstrated in
the study of entanglement entropy at one-dimensional
(1D) quantum critical points with conformal invariance.
Conformal field theory (CFT) provides an important uni-
versal number, the central charge c, that appears in an
astonishing array of physical quantities.1 A given CFT,
and thus any quantum critical points it describes, can be
characterized by this number. Its numerical or analytical
determination provides an invaluable tool in identifying
which, if any, CFT describes the scaling limit of a given
Hamiltonian. Computing the entanglement entropy has
proven to be a very useful way of finding c numerically.
It can be extracted directly from the ground-state wave-
function by measuring its Renyi entanglement entropy,
Sn = 1/(1 − n) ln

[
TrρnA

]
, where region A is entangled

with its complement, region B. Namely, in a system
with total length L, where the region A has length x,
the scaling of the Renyi entropy in 1D critical systems
depends on the “chord length” as,2–5

Sn =
c

6

(
1 +

1

n

)
ln
[L
π

sin
(πx
L

)]
, (1)

with the central charge appearing as the coefficient.
In higher dimensions, the scaling behavior of the entan-

glement entropy is much less well-understood. Ground
states of local Hamiltonians are generally believed to pro-
duce an “area-law” (i.e. boundary) scaling,6 the sublead-
ing corrections to which may be universal quantities that
can be used to identify and characterize quantum phases
and phase transitions. A well established example of such
is the topological entanglement entropy7–10 of a gapped
state with topological order. In gapless states, the sub-
leading corrections may still potentially harbor universal
quantities. It is conceivable that such quantities could be
used to define an “effective” central charge in two spa-

tial dimensions, but there are strong constraints on any
proposal.11 The best-understood gapless situation in two
dimensions is the special case of a conformal quantum
critical point, where the ground state itself is written in
terms of a two-dimensional (2D) CFT.12–18 In the pres-
ence of a spontaneously broken continuous symmetry,
Goldstone modes produce a subleading bulk logarithmic
correction.19,20 Subleading logarithms from corner con-
tributions with universal coefficients also occur at some
critical points.12,21,22

The purpose of this paper is to analyze one type of sub-
leading term in 2D gapless systems, and to study whether
this term is universal. Gapless modes typically have long-
range correlations, so it is possible for the entanglement
entropy to depend on the size and shape of the regions
A and B. Indeed, the 1D result (1) is manifestly size-
dependent. We show how similar behavior also occurs in
2D.

We study the finite-size scaling of the second Renyi
entropy for the ground states of several two-dimensional
gapless systems on the square lattice using quantum
Monte Carlo (QMC) simulations. It is possible to vary
the size of regions A and B without changing the length
of the boundary between in a toroidal lattice geometry,
where A and B are cylinders as in Fig. 1. We examine
the Néel ground state of the Heisenberg model, and the
nearest-neighbor resonating-valence-bond (RVB) wave-
function, in this geometry. In both cases, we find a size-
and shape-dependent scaling function that closely mim-
ics the chord-length contribution in 1D in Eq. (1).

To probe this behavior in a simpler system, we also
study free spinless fermions in the π-flux phase and find
that the entanglement scaling also has a universal size-
and shape-dependent piece. For finite-size systems, this
closely mimics the chord length, but in the infinite-size
limit we observe it to cross over to a different non-trivial
function. Among other consequences, this term will give
a non-zero signature in the entanglement quantities9,10
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FIG. 1: An 8 × 16 toroidal lattice. The width of cylindrical
region A (blue) is x = 4. The boundary length between region
A and its complement is ` = 16.

designed to look for topological order, which complicates
any possible generalization of the topological entangle-
ment entropy to gapless spin-liquid states.

Fermions with π-flux— We begin by considering free
spinless fermions on a square lattice, with π-flux through
each plaquette. We consider a torus of size Lx by Ly,
and measure the entanglement using a cornerless cylin-
drical region A (Fig. 1) with a constant boundary length
` = 2Ly. We denote the width of region A by x. This
system has Dirac points near momentum ky = 0 and
ky = π. We take anti-periodic boundary conditions in the
x-direction so that there will be no exact zero mode. We
use exact numerical diagonalization of the single-particle
Hamiltonian to compute the entropy. The entanglement
entropy of 2+1-dimensional conformally invariant sys-
tems such as this has been argued to be of the form,23,24

Sn ∼ const.× `/a+ γ(x/Lx, Ly/Lx), (2)

where γ is a universal scaling function of the dimension-
less ratios. The area-law term proportional to the bound-
ary length ` depends on the lattice constant a, and so the
constant is non-universal. A crucial difference from the
result in 1D, Eq. (1), is that a only appears in the area law
term. In contrast, the one-dimensional result can be writ-
ten as a sum of two terms as Sn = C ln[sin

(
πx
L

)
]+C ln[Lπ ],

where C = c/6(1 + 1/n). The first term is a universal
function of the dimensionless ratio x/L, akin to the func-
tion γ above, while the second term involves the lattice
scale, as it diverges with L.

To illustrate the absence of such an “additive log-
arithm” (a logarithmic divergence depending on L/a)
in 2D, we treat this free system as a collection of
independent systems in 1D labeled by the momenta
ky. The ky = 0 mode contributes an additive
logarithm C ln(Lx) to the entropy, while the modes
with small ky 6= 0 contribute additive logarithms
C ln(k−1y ).2,4,5 Summing over ky = 2πj/Ly, this gives an

entropy C
[

ln(Lx) + 2
∑j∼Ly
j=1 ln(Ly/2πj)

]
= C ln(Lx) +

2C ln[(Ly/2π)Ly/Ly!], where the factor of 2 arises from
summing over positive and negative m 6= 0. Using Stir-
ling’s formula for Ly!, one finds that the additive loga-
rithm terms add to C[ln(Lx) − ln(Ly)] = C ln(Lx/Ly).
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FIG. 2: (a) Renyi entropy of Lx = 256 Dirac fermion model,
with an arbitrary constant subtracted off each data set. The
straight line is Eq. (1) plotted with c = 2. It is clear that
deviations from linearity increase for larger Ly/Lx. (b) A
set of points near x = 0 is shown to follow the 1D result
ln(sin(πx/Lx)). Notice that the “central charge”, c, in this
region is system-size independent.

This can be absorbed into the scaling function γ, so that
there is no additive logarithm. A more precise calcula-
tion would include the effect of finite Lx, but we ignore
this since it does not affect the cancellation of additive
logarithms. A similar calculation near ky = π leads to a
cancellation of the additive logarithm there.

The entropy of a given ky mode contains, in addition
to the additive logarithmic divergence in ky, a universal
scaling function G(x/Lx, kyx). At ky = 0, we see the
chord-length scaling C ln

[
sin(πxL )

]
(Fig. 2), but for ky 6=

0 and for kyx large, the chord-length scaling disappears
and the entropy becomes roughly flat as a function of
x/L. In fact, for Ly = Lx = L, the lowest ky mode has
a mass 2ky = 4π/L. This factor of 4π ≈ 13 means this
mass is rather large, and so the entropy of this mode is
flat for a large range of x/L. As a result, for Ly = Lx =
L, the entropy of the 2D system appears to display 1D
chord length scaling over a wide range of x/Lx.

Quantum Monte Carlo— Using QMC techniques we
simulate both the Heisenberg ground state and the RVB
wavefunction in 2D. The Heisenberg ground state is pro-
jected from a trial state by applying a high power of
the Hamiltonian, H =

∑
〈ij〉 Si · Sj , via a QMC method

operating in the valence bond (VB) basis.25 The RVB
wavefunction is an equal-amplitude superposition |Ψ〉 =∑
α |Vα〉 of all nearest-neighbor valence-bond states,

|Vα〉 =
1

2N/4

N/2∏
i=1

(
| ↑i↓jα〉 − | ↓i↑jα〉

)
, (3)

defined by requiring that each spin i on one sublattice be
in a singlet with one of its nearest neighbors jα.26,27 The
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FIG. 3: The second Renyi entropy for the Néel and RVB
states for L = 24. Note that the entanglement entropy for the
RVB splits into two branches, even and odd, which may be
related to the existence of topological sectors in the underlying
transition graphs.

RVB Monte Carlo sampling algorithm does a random
walk through the possible states by creating a defect at
some spatial point and propagating it through the system
(thereby rearranging the nearest-neighbor bonds) until
the defect reaches the initial point and its path forms a
closed loop.28 If we visualize the Heisenberg ground state
in this VB language, then the RVB wavefunction is its
largest component, the remainder of the state being su-
perpositions of longer bonds, decaying with their length
as 1/r3.25 Likewise, the RVB wavefunction is the ground
state of a local (but longer-range) Hamiltonian that in-
cludes a Heisenberg term.29

We consider the same geometry as for the π-flux
fermions, with Lx = Ly = L (see Fig. 1). In Fig. 3,
we plot QMC results for the second Renyi entropy in the
Néel and RVB states on a 24×24 torus. Several features
of the entanglement scaling are clear from this plot. First,
note that the data for the Néel state has a significant cur-
vature as a function of x. This curvature was first seen in
Ref. [19] but not explored in detail (instead, using a fixed
x/L a surprising subleading logarithmic term ∝ ln(`) was
found20). The entropy of the RVB wavefunction exhibits
an obvious dependence on whether x is even or odd which
we discuss in more detail below. In each of the even and
odd “branches”, there is significant curvature in the x
dependence as with the Heisenberg case.

To capture the x-dependent curvature of these wave-
functions, we fit the data with the scaling ansatz,

S2 = a`+ b ln(`) + c(L) ln
[
sin
(πx
L

)]
+ d, (4)

motivated by the chord length in Eq. (1). We begin by
examining the Néel state in Fig. 4. For a fixed linear
system size L and boundary length `, plots of S2 versus
ln
[
sin
(
πx
L

)]
would yield a straight line if Eq. (4) were

obeyed perfectly. The plots indeed are quite close to
straight lines for a fixed L.
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FIG. 4: (a) Heisenberg data and linear fits (excluding the first
two data points on the left) for L = 14, 16, . . . , 28 plotted in
terms of the log of the “chord-length”, ln

[
sin πx

L

]
. (b) Slopes

of the fits, c(L), exhibit a strong dependence on the system
size, L.

The second Renyi entropy therefore displays at the
very least an effective chord-length dependence over a
large range of x for the square torus. It is possible that
the apparent chord-length scaling of this 2D system is not
perfectly obeyed in the thermodynamic limit, and that
this fact is manifest in slight deviations from straight-line
behavior in Fig. 4(a). This would be a similar scenario
to the deviation from chord-length scaling observed for
π-flux fermions in Fig. 2. However, it is difficult to draw
a firm conclusion regarding the statistical significance of
any deviation from Eq. (4) scaling in our present data,
due to limited system sizes and stochastic error.

We can however further examine the deviation from
conformal-style scaling by extracting the L-dependence
of the coefficient c(L) in Eq. (4). In order for this shape-
dependent term to be universal in 2D, c(L) should ap-
proach a constant in the limit L→∞ for fixed x/L. As
illustrated in Fig. 4(b), the coefficient does not approach
a constant for the system sizes that we have studied,
but rather has some functional dependence on L. This
functional dependence is apparently sub-linear – possibly
behaving like c(L) ∼ Lp with p ≤ 1. That scenario could
be supported by the QMC data if convergence were as-
sumed to be very slow. Indeed, in the quantum dimer
model, the corresponding term can be computed exactly
in finite size, and the convergence is very slow.30 A defini-
tive determination of this limit (and therefore the strict
adherence of γ to universality in this system) is impos-
sible with our current data; significantly larger system
sizes must be studied.

We next examine the scaling of the Renyi entropy
in the RVB wavefunction. As seen in Fig. 3, a strik-
ing two-branch structure exists, depending on whether
the distance x is even or odd. The presence of the two
branches presumably is related to the fact that correla-
tors in the RVB state have a pronounced even-odd depen-
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FIG. 5: (a) Even and (b) odd branches of the second Renyi
entropy plotted against the log of the “chord-length”. We
exclude x = 1, 2 data from the plots, as there is some crossover
behavior observed in Fig. 3. (c) The absolute value of the
slopes, |c(L)|, as a function of the system size, L. As with the
Heisenberg, there is a strong dependence on L.

dence. Moreover, simple counting arguments of prototyp-
ical valence-bond configurations in the (0,0) topological
sector26,27 show that the number of valence bonds cross-
ing from region A to region B alternates strongly with x.
This L = 24 data displays a clear x-dependent curvature
in each branch. This can be analyzed more closely by
attempting fits of the form Eq. (4) to each branch indi-
vidually. From Fig. 5(a) and (b), it is clear that fits to the
scaling ansatz to both branches are quite accurate when
the extremal values of x are excluded. It is worth noting
that in the closely related quantum dimer model on the
square lattice, similar terms appear and can be computed
exactly,30 generalizing the results of Refs. [13–18].

We can attempt to extract the size dependence of the
coefficient c in a similar manner as for Heisenberg. Un-
fortunately, due to the two-branch structure, each curve
on this plot has essentially half the usable data compared
to the analogous Heisenberg results in Fig. 4. Nonethe-
less, the result (Fig. 5(c)) shows that a significant L-
dependence seems to exist in the RVB wavefunction as
well. This again suggests that, although the fit to a
chord-length scaling at fixed L is consistent within the
accuracy of our data, subtle corrections to this form may
come into play in the 2D thermodynamic limit.

Discussion— We have studied the Renyi entanglement
entropy in the ground state of three gapless systems on
Lx × Ly toroidal lattices, where the subregion A is a
cylinder of length x. We have demonstrated that it
contains a subleading scaling term which depends on
bulk quantities, namely the dimensionless aspect ratios
of the subregion and the lattice linear dimensions. Note
that while numerical measurement of topological entan-

glement entropy9,10 has been used to probe topological
properties of gapped phases,31 the subleading term con-
sidered here means that a measurement of topological en-
tanglement entropy in a gapless phase could give either
a zero or non-zero result, even without any topological
aspects of the phase (though measurements in the U(1)
superfluid phase yielded a vanishing number31). Interest-
ingly, just as strong sub-additivity constrains the sign of
the Levin-Wen entropy,10 it also implies, for fixed Lx, Ly,
that γ for the von Neumann entropy is a concave-down
function of x.

Our quantum Monte Carlo simulations of the Heisen-
berg Néel ground state and the short-range RVB wave-
function with Lx = Ly = L show an almost-perfect loga-
rithmic dependence of γ on the chord length sin(πx/L).
It appears that the coefficient of this term is not a uni-
versal constant, however, which might suggest either that
care must be taken in the order of limits with which
the thermodynamic limit is approached, or that a size-
dependence remains in this limit, rendering this term
non-universal. A study of the crossover from one to two
dimensions might illuminate this issue further. Further
evidence that the true 2D scaling function might not be
exactly the chord-length form is given by the scaling of
gapless Dirac fermions in the π-flux phase. Here we have
argued that such scaling is superseded by a sum over
transverse modes, leading to a different (unknown) func-
tional form in 2D. Furthermore, spontaneous symmetry
breaking in the Heisenberg model may complicate mea-
surement of the entanglement entropy. The fact that a
complete characterization of the scaling behavior in the
Néel and RVB states remains a challenge, despite the
large lattice sizes studied to date, underlines the abso-
lute necessity for using large-scale QMC simulations for
the study of entanglement entropy.

Regardless of the precise functional form of the shape-
dependent subleading term γ, its general existence in
gapless wavefunctions in 2D would have some profound
consequences. Besides the immediate complications in
attempting to use entanglement as a probe to detect gap-
less spin liquids mentioned above, the similarity of the
scaling function to a chord-length (present in 1D confor-
mally invariant systems) raises the tantalizing possibility
that our results will prove useful in characterizing higher-
dimensional critical points. Indeed, since the search for
a c-theorem32 valid in higher dimensions is of intense in-
terest across several disparate field of physics,23,33–35 we
hope our results will inspire a broader examination of
this scaling term in 2D gapless states.
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