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We study three dimensional insulators with inversion symmetry, in which other point group
symmetries, such as time reversal, are generically absent. We find that certain information about
such materials’ behavior is determined by just the eigenvalues under inversion symmetry of occupied
states at time reversal invariant momenta (TRIM parities). In particular, if the total number of −1
eigenvalues at all TRIMs is odd then the material cannot be an insulator.A likely possibility is that it
is then a “Weyl” semimetal. If the material is an insulator and has vanishing Hall conductivity, then
a magnetoelectric response, parameterized by θ, can be defined, and is quantized to θ = 0, π.The
value is π if the total number of TRIM parities equal to −1 is twice an odd number. This generalizes
the rule of Fu and Kane that applies to materials in which time reversal is unbroken. This result
may be useful in the search for magnetic insulators with large θ. These two results are obtained as
part of a classification of the band topology of inversion symmetric insulators. Such band structures
can be classified by two sets of numbers: the TRIM parities and three Chern numbers. The TRIM
parities have the physical implications just described, and additionally they constrain the values
of the Chern numbers modulo 2. An alternate geometrical derivation of our results is obtained by
using the entanglement spectrum of the ground state wave-function.

PACS numbers:

I. INTRODUCTION

Certain electromagnetic phenomena in insulators are
insensitive to details about the material. They result
from a) topology of the bands (or the indecomposability
of the insulator into separate atoms) and b) symmetry.
The quantized Hall effect is the most striking example–in
a strong magnetic field, a two dimensional gas of elec-
trons becomes insulating (in the sense that there is no
thermal conductivity) but has a Hall current when an

electric field is applied: JH = σHE with σH = N e2

h

quantized1. The same effect can, in principle, occur in
a two-dimensional material or film–the lattice does not
stop the Hall current, if sufficiently weak, and an applied
magnetic field can be simulated by electromagnetic inter-
actions of the electrons and nuclei. The Hall coefficient
is usually thought of as being connected to the particu-
lar filling fraction of Landau levels, but the more general
explanation is that it is related to the topology of the
band structure of the electrons. Thus it is unchanged by
continuous changes in the crystal lattice.

A real class of materials2, known as topological insula-
tors, exhibit similar topological phenomena. (Materials
that have the actual intrinsic Hall effect have not been
found yet.) The materials that have been discovered have
time-reversal symmetry. They should have two interest-
ing behaviors–there are “protected” surface states (ob-
served with ARPES, for instance), and there should be
a “magnetoelectric response”3,4 (not yet seen) in which
(e.g.) an applied electric field induces a magnetization

M = θ e2

2πhE. The magnetoelectric response may be ob-
served only if there is a gap on the surface as well as in
the bulk, so the “chiral” surface states must be elimi-
nated by coating the surface with a magnetic material or
doping the bulk5 and getting the Fermi energy into the

band gap this produces.
If the material were spontaneously magnetically or-

dered, one would be able to observe the magnetoelectric
effect without treating the surface first. However, materi-
als that break time reversal symmetry in the bulk tend to
have a small value of θ, a couple of percent6. The origin
of the large θ in a topological insulator is related to the
time reversal symmetry, surprisingly: symmetries usually
force quantities to vanish, but the time-reversal invari-
ance of the insulator keeps θ large. The allowed values
of θ are quantized because time-reversal takes θ → −θ.
This seems to rule out a nonzero θ, but since θ is defined
only modulo 2π, 0 and π are both compatible with the
symmetry7.
In this article, we will look at magnetically ordered ma-

terials (so that the surface states are gapped) but which
have some spatial symmetry group in place of time rever-
sal, in order to keep θ large. One might expect a whole
variety of phases as one varies the symmetry group, per-
haps displaying effects besides θ, but since there are 230
space groups altogether, we will focus here on a single
simple one. This is the symmetry group with just inver-
sion (r → −r), a symmetry that is commonly realized in
magnetic insulators. For example, all Bravais lattices are
inversion symmetric. (Phases of antiferromagnets, with
magnetic symmetry groups, can also be classified using
a similar approach9.)
Now, inversion transforms θ the same way as time re-

versal does, so θ will have two possible values in this
case also, 0 and π. Since θ is quantized, there should
be a simple rule for determining its value, and in fact
we show that the formula of Fu and Kane10 (originally
derived when both time reversal and inversion symmetry
are present) generalizes to the case with magnetic order,
where time reversal is absent.
Rather than focussing solely on the magnetoelectric
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effect, we will study a more general question: “Which
phenomena in topological insulators can be determined
by studying just the symmetry properties of Bloch states
at special momenta?” When inversion is the only sym-
metry, Bloch states at TRIMs (time-reversal invariant
momenta) can be classified by their inversion parities,
which generalize the notion of the sign ±1 picked up by
an orbital wave function of a molecule when it is in-
verted. In an infinite insulator, inversion parities are
defined for the Bloch states at special momenta, those
that are left invariant under the inversion κ → −κ (the
TRIMs, which stands for Time-reversal Invariant Mo-
menta). In molecules, parity eigenvalues lead mainly to
microscopic effects, such as selection rules for transitions.
In bulk, though, phenomena on a large scale can be de-
termined by just these parities, as Fu and Kane’s result
exemplifies.

When inversion symmetry alone is present, the number
of odd states at each of the eight TRIMs can be anything
at all (since time reversal is broken, the states do not have
to come in pairs). What are the phenomena associated
with these parity patterns, which are permitted after the
breaking of time reversal symmetry? We find the follow-
ing phenomena: first, if the total number of odd states
at all TRIMs is an odd integer, then the material is not
insulating. Second, if the material is insulating and the
number of odd states at some individual TRIMs is odd,
then the material has either electrostatic polarization or
bulk quantized Hall conductivity. Third, if the material
is insulating, and the total number of odd states is twice
an odd integer then the material must have a magneto-
electric effect of θ = π. It is natural that unpaired odd
states at TRIMs can indicate a quantum Hall, since this
phenomenon (like the unpaired states) is ruled out by
time reversal symmetry.

Of these phenomena, we would like to emphasize the
first and the third, about the non-insulating behavior
and the magnetoelectric effect. These have some inter-
esting experimental implications. If the product of all
the TRIM parities is −1, as for the parity assignment
in Fig. 1a, then the material cannot be an insulator (as
just mentioned). Such a material is likely to be a “Weyl
Semimetal,” one of the two classes of semimetal intro-
duced by Ref.11. For such parities, the dispersions for
the filled and empty bands with the minimum overlap be-
tween them have two touching points. These points are
called Weyl points. Such materials have thermodynamic
and conductivity properties related to their vanishing
density of states. Furthermore, they should have inter-
esting quantized responses, corresponding to the “chiral
anomalies” of field theory, as pointed out by Volovik12.
Weyl points cannot occur in a material with both time
reversal and inversion symmetry: then energy levels come
in Kramers pairs, so the product of the parities is always
+1.

The formula for θ helps in the search for materials
with a large magnetoelectric effect. It shows, as we had
hoped, that a magnetic material may have a magneto-

electric response but not have protected surface states.
Furthermore, the formula for θ suggests that the mag-
netoelectric effect can occur in materials with essentially
no spin-orbit coupling, but which have nonplanar mag-
netic order. In these materials, nontrivial band topology
can be induced by Berry’s phases in the hopping ampli-
tudes due to the magnetic order, rather than to the spin
orbit coupling (which was required in the time reversal
symmetric case).
For an investigation of whether these properties might

occur in particular materials, see Ref. 13. This arti-
cle studies whether the magnetoelectric effect and Weyl
metal behavior can be present in magnetically ordered
iridates, and finds that the Weyl metal behavior seems
to be more likely.

We will begin (Sec. II) with a brief summary of our
results, explaining the various conductivity and response
properties that are constrained by the inversion symme-
try of a band structure.
After this we present the derivation of these results

systematically. The goal is to try to find all the response
properties that are determined by symmetry properties,
given inversion symmetry. There are three steps. We be-
gin (Sec. III) by classifying all the phases with inversion
symmetry, similar to how the phases with the different
Altland and Zirnbauer symmetry groups have been clas-
sified before15,16. Next (Sec. III B) we identify which
of these phases have a chance of having robust dynam-
ical responses. Last (Sec. IV), we determine what the
responses are.
The outcome of the classification is that all insulators

in three dimensions are parameterized by three Chern
numbers and a set of inversion parities. Chern numbers,
which describe topological properties of the Bloch states
as a function of momentum, were already present in the
absence of inversion symmetry. The Chern number has
three integer components (whereas in two dimensions it
is a single integer, in three it is a reciprocal lattice vec-
tor). The inversion parities can be encapsulated in eight
integers describing the number of odd states at each of
the TRIMs.
The second step, in Section III B, is a preliminary

study to determine which of these phases have the poten-
tial to have interesting quantized responses. This section
organizes the problem–it simplifies a mess of infinitely
many phases down to 16. This uses a process of elim-
ination: we first identify the quantum numbers of dull
“frozen insulators”; the remaining insulators are the in-
teresting ones.

Section IV contains the last step and the outcome:
it determines the quantized responses in the interesting
phases and how they are related to the inversion pari-
ties. It derives the condition that ensures a material is
non-insulating and the criterion for an insulator to be
magnetoelectric, as well as some relations between the
parities, Hall conductivity and polarization.

This procedure implies that these are the only response
properties, even though there are infinitely many differ-
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ent ways of assigning inversion parities. Infinitely many
of these phases have no response, because they can be re-
alized in ionic crystals, in which each electron is tightly
bound to a single atom. After ionic portions of a band
structure are separated out, only finitely many phases
remain.
At the end, we give an alternative approach based on

entanglement. In particular, we will see why the relation-
ships between inversion parities and responses usually de-
pend on the numbers of odd states modulo 2 or 4. The
entanglement spectrum of a material is a set of quantities
that can be derived from the ground state wave function.
It consists of a set of modes that behave like physical sur-
face modes, although they can be determined (at least in
principle) without perturbing the system into an excited
state, and they can give a signature that a material is
in a topological phase17–19. Sec. V gives a formula for
the number of entanglement modes in an inversion sym-
metric insulator in terms of the inversion parities. This
result is then used to rederive some of the electromag-
netic properties in a simple fashion and to understand
why all these relations depend on the parities modulo 4.
The present article addresses some questions left open

in earlier work in which we participated. Ref.18 discusses
the entanglement spectrum of inversion symmetric in-
sulators, without presenting the exact relation to TRIM
parities. The discussion here provides the basis for the in-
vestigation in13 which studied the electronic structure of
a specific material (yttrium iridate) using the constraint
on the total number of odd states and expressions for θ
in terms of the TRIM parities.
The formula derived here for the magnetoelectric ef-

fect depends on the inversion parities in the same way as
Fu and Kane’s formula, but it applies to a wider class of
materials, including materials that cannot even be adi-
abatically connected to any material with time reversal
symmetry.
The first prediction–that a material with an odd num-

ber of states is metallic–has an interesting corollary that
has been noticed before–if time-reversal symmetry is bro-
ken, then continuous transitions between θ = 0 and θ = π
insulators cannot be found generically20. A metallic (or
Weyl-metal) phase intervenes except possibly at isolated
points.

II. SUMMARY OF RESULTS

Let us first define some conventions about the crystal
lattice. We will for simplicity assume that the lattice is
cubic (although there is no symmetry beyond inversion)
and has a lattice spacing equal to one unit. All quantities
will be written with respect to a coordinate system xyz
that is aligned with the axes of the crystal. The prim-
itive lattice vectors are Ri (i.e., the unit vectors along
the axes) and the reciprocal lattice vectors are gi where
gi · Rj = 2πδij . If one wants to apply the results to a
non-cubic crystal, it is possible to translate the results

described here to any lattice, by interpreting the expres-
sions in the right coordinate system21.
To study insulators with inversion symmetry it is use-

ful to look at inversion parities, as in the study of spectra
of small molecules. Such parities seem to describe static
properties of wave functions, yet in a bulk material, they
can determine how electrons move in response to a field.
The point of this article is to understand such relation-
ships. The numbers of occupied states with each parity
provides integers that can be used to classify the phases
(analogous to how “topological integers” are used to un-
derstand other types of phases, for example, the quantum
Hall conductance in Hall insulators or the Z2 index for
strong topological insulators). The main techinical dis-
tinction between solids and molecules is that, in solids,
the occupied states can be labelled by momentum. Let
these states be given by ψik(r) = uik(r)e

ik·r. States at
the “TRIMs” (and only these) can be classified by parity
under inversion. The TRIMs are the momenta given by

κ =
n1

2
g1 +

n2

2
g2 +

n3

2
g3 (1)

where n1, n2, n3 are integers. Such a momentum maps
to itself under inversion symmetry modulo the reciprocal
lattice, −κ ≡ κ. Hence the wave functions at κ must be
invariant, and their parities can be defined:

Iψaκ(r) = ηa(κ)ψaκ(r) (2)

Appendix A explains how to find these parities using a
tight-binding model.
We now introduce a key quantity no(κ) at every TRIM

κ. This is defined as the number of states with odd par-

ities at that TRIM. Note, these cannot change without
a phase transition (at least in a non-interacting system).
Besides these 8 integers, the quantum Hall conductance
gives three more invariant integers, since it is quantized:

GH = e2

2πhG̃H where G̃H

2π has integer components (ac-
cording to the conventions defined above).
For inversion symmetric insulators, the Chern numbers

and the no-counts of odd states give parameters that can
be used to distinguish among phases. Furthermore, these
11 integers, together with the total number of occupied
bands n, give a complete description of the set of phases–
any two band structures with the same integers can be
tuned into one another without a phase transition. This
scheme is derived in Sec. III. Appendix B gives an alter-
native method that is easier to generalize.
Certain physical properties of each phase can be pre-

dicted in terms of these integers. We will find all the basic
observable quantities that can be expressed in terms of
the no’s.
Total Parity Constraint and Metallic Behavior: The

first two relationships between physical properties and
inversion parities can be written in terms of net parities:

ηκ = (−1)no(κ) =
∏

a

ηa(κ). (3)
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FIG. 1: Determining properties of systems using
parities. The boxes represent an eighth of the Brillouin

Zone; the TRIMs are at the corners. The signs
represent the parities of the occupied states at the

TRIMs. In (a) the parity constraint of even number of
odd parity states is violated, hence it cannot be an
insulator. In (b) the parities require a nonvanishing

Hall conductance, with odd Chern number in the kxky
planes. (c) Quantized magnetoelectric response θ = π
determined from number of odd parity states being 2
(mod 4). (d) A parity configuration corresponding to a

frozen polarization.

For any insulator, one can show:

∏

κ

ηκ = 1. (4)

That is, the total number of filled odd parity states must
be even. This is shown in Sec. IVA.
The contrapositive of this statement is the most inter-

esting form of it: if, for some band structure,
∏

κ
ηκ =

−1, then the system must be gapless. For example, if a
system has the parities in Fig. 1a, it must be metallic,
because there are an odd number of odd occupied states.
The gap must close at some momentum k in the Brillouin
zone.
Materials with

∏

κ
ηκ = −1 should be interesting.

They will have Weyl points, three dimensional points
where the valence and conduction bands meet with a dis-
persion shaped like a cone. Under certain circumstances,
the Fermi energy is expected to pass right through the
cone points, so that the material is a semimetal with a
density of states that is equal to zero.
Note that the right hand side in Eq. (4) differs from

the index (−1)δ0 used by Fu and Kane–their index is
only the product of the parities of “half” the occupied
states; since they focused on systems with both time re-
versal and inversion symmetry, the states always come
in pairs due to Kramers’s theorem. The product in Eq.
(4) is automatically equal to 1 when these symmetries
are present, so it did not come up in that context. The
result in Eq. (6), below, generalizes the strong index.
Quantum Hall Effect. The net parities also determine

the quantum Hall integers modulo 2. The z-component
of G̃H, for example, satisfies

e
i
2 G̃Hz =

∏

κ;
κ·Rz=0

ηκ (5)

That is, whether the Hall conductivity along the z-
direction is an even or odd multiple of 2π can be deter-
mined by multiplying the η’s around either of the squares
parallel to the xy-plane. This result is derived in Sec.
IVB.
If a system has the parities shown in Fig. 1b, the Hall

conductivity cannot vanish. The component along the z-

direction, GHz , must be an odd multiple of e2

hc
(per layer

of the crystal).
Eqs. (4),(5) also have a formal interpretation: they are

constraints between the invariants of insulating phases.
The 11 integers G̃H and no(κ) are not completely inde-
pendent of one another, but have to satisfy these four
relationships between their parities. Moreover, these are
the only constraints–if the relationships are satisfied, the
invariants can be realized in principle in some band struc-
ture.
Magnetoelectric Effect We also find the magnetoelec-

tric effect. This effect is related to the magnetoelectric
polarizability αi

j . An applied magnetic field induces a

polarization, P i = αi
jB

j . In the absence of the quantum

Hall effect, αi
j is well-defined. (Otherwise the polariza-

tion can be neutralized by a flow of charge in the surface
states associated with the Hall effect.) The polarizability
αi
j is odd under inversion: Under inversion symmetry, P

changes sign, while B does not.
If the crystal is inversion symmetric, it seems that α

must vanish. However, α is ambiguous. An isotropic por-

tion ( e
2

h
δij × integer) is indeterminate because it can be

mimicked by an integer quantum Hall coating on the sur-
face. Thus αi

j can be inversion symmetric if it is isotropic

and has a quantized value: e2

2πhθδ
i
j , where θ is a multiple

of π.
Earlier work has considered θ for the case of materi-

als with time reversal symmetry. In that context, the
magnetoelectric effect (i.e., θ = π) and a nonzero strong
index are two aspects of the same phenomenon3,4. If
the system also has inversion symmetry, the criterion un-
der which these phenomena occur was found by Fu and
Kane10. We find that essentially the same formula can
be used to determine when θ = π even when the time
reversal symmetry is not present. This formula depends
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on the no parameters, and not just the ηκ’s:

θ

π
≡ 1

2

∑

κ

no(κ) (mod 2). (6)

According to Eq. (4), this is always an integer. This
expression is proved in Sec. IVC.
This result is somewhat more general than the results

for materials with time reversal as well as inversion sym-
metry, because the details of the band structure can be
quite different in the presence of magnetism: when time
reversal is broken, there may be an odd number of occu-
pied states at some of the TRIMs. Such band structures
cannot even be adiabatically connected to the band struc-
ture of a material with time reversal symmetry because
of Kramers’s theorem, yet the magnetoelectric effect is
still determined by Eq. (6).
One such band structure is illustrated in Fig. 1c; it

is not adiabatically connected to any insulator with time
reversal symmetry because of the unpaired odd states at
the TRIMs. Although the number of odd states at each
individual TRIM in Fig. 1c is either even or odd, the
total number of odd states is even (in accord with Eq.
(4)) and is twice an odd number: hence θ = π.
One may concoct examples of Hamiltonians on a cubic

lattice with such patterns of parities. One constructs a
hopping model where the local orbitals are labelled as
being even-type orbitals (s, d, . . . ) or odd-type orbitals
(p, f, . . . ). Electrons can hop between these orbitals. The
hopping matrix elements can be chosen almost arbitrarily
except that they must respect inversion symmetry, which
constrains the relative signs of hopping in two opposite
directions. If orbital a is centered around a point of inver-
sion symmetry, ta→b = ±ta→b′ where the orbitals b and b

′

are corresponding orbitals on sites displaced from orbital
a in opposite directions. The sign depends on whether
a and b have the same or opposite parities. App. A
describes such a Hamiltonian (with third-neighbor hop-
ping) in more detail, with the parities illustrated in Fig.
2a.
Frozen Polarization. Finally, let us complete the dis-

cussion of physical properties that are constrained by the
“net parities” ηκ = ±1. Eq. (5) shows that they deter-
mine the Chern numbers modulo 2. This accounts for
three of the eight independent bits of information con-
tained in the parities. Note that any pattern of parities
satisfying the constraint Eq. (4) can be factored into 7
basis patterns:

η(κ) = ±(−1)
1
π2 g̃xκyκz(−1)

1
π2 g̃yκxκz(−1)

1
π2 g̃zκxκy (−1)

2
π
P̃e·κ.

(7)
This factors into seven parts: the three factors depend-
ing on g̃i, the three depending on P̃e and the overall
sign in front. (Note that the components of P̃e are half-
integers while those of g̃ are integers. The factors of π
are included to make the exponents into integers.) The
pattern corresponding to g̃z = 1 (and all other g̃ and

P̃e variables set to 0) is just the same one shown in Fig.

1b. Hence g̃ is just the Hall conductivity modulo 2. The
patterns of ηκ on the vertices of the cube corresponding
to some P̃e (with g̃ set to zero) vary as a plane wave.

The wave-number, P̃e turns out to determine the intrin-
sic polarization.
Intrinsic electrical polarization is a phenomenon found

in ferroelectrics. When analyzed carefully14, one finds
that it is ambiguous like θ: the total polarization can be
altered by charges on the surface, but an intrinsic part
of it is determined by the bulk properties. The intrin-
sic portion is determined modulo a lattice vector times
e. Inversion symmetry constrains the components to be
integers or half-integers times e. Hence the polarization
is determined by three bits, which are revealed in (7). Pe

actually describes only the polarization of the electrons
relative to the Bravais lattice; one also needs to include
the compensating charges of the nuclei:

P = eP̃e −
∑

i

ZierNi, (8)

where rNi is the position vector of the ith nucleus, with
charge −Zie. This result is derived in Sec. IVB.
Consider the polarization of the crystal with the band

structure illustrated in Fig. 1d; it is e
2R1 if the nuclei

are all on the sites of the Bravais lattice. This quantity
is called “intrinsic polarization,” but it does not actually
appear as a polarization all the time. When it is nonzero,
it could lead to a ferroelectric moment, so that the crystal
would have a surface charge of 1

2e per unit cell and a
large electric field. The alternative possibilities are more
likely: the translational symmetry of the surface may be
spontaneously broken or the surface may be metallic (see
Ref. 22, summarized in appendix G).
Other effects? There are many combinations of pari-

ties an insulator could have and yet not display any of
the phenomena described above. Such insulators cannot
be characterized in any other macroscopic way either.
They belong to distinct phases (there are gapless regions
between them in a phase diagram), but these phases all
behave in the same way. For example, if there are 4 odd
states at κ = 0, and 4 even states at all other TRIMs,
then Eqs. (5), (6), and (7) give trivial Hall conductiv-
ity, θ, and polarization. This phase is definitely a dis-
tinct phase, separated by a phase transition, from the
one where all states are even, so it may seem likely that
some other property would distinguish the two phases.
However, Sec. III B shows that no response property dis-
tinguishes this phase (or any insulating phase θ, the Hall
coefficients, and the polarization vanish).
Parity constraints in general dimensions. The results

in higher dimensions have a surprising feature: as the
number of dimensions increases the sum of the no’s must
be divisible by larger and larger powers of 2 if the mate-
rial is to be insulating.
Specifically, in 2s dimensions, the sum of the no’s is

a multiple of 2s−1. This multiple is related to the 2s-
dimensional Chern number G̃2s (defined as a multiple of
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2π):

1

2s−1

∑

TRIM κ

no(κ) ≡
G̃2s

2π
(mod 2); (9)

the quantum Hall conductance is the 2-dimensional spe-
cial case.
In 2s+1-dimensions, the sum of the no’s is a multiple

of 2s and is related to the Chern-Simons integral

θ2s+1

π
=

1

2s

∑

κ

no(κ) (mod 2). (10)

where the polarization and magnetoelectric effect are the
one- and three-dimensional versions.
Note that insulators with inversion symmetry are quite

different from ones without any assumed symmetry:
There is an insulator in 2s dimensions with a Chern num-
ber G̃2s equal to 1 which has just s filled bands23. This in-
sulator is not inversion symmetric, though. The simplest
inversion symmetric insulator with the identical Chern
number has a minimum of 2s bands, exponentially more
bands than are necesary without symmetry.
The Entanglement Spectrum. The entanglement spec-

trum (a concept used to study quantum fluctuations24)
produces an alternative explanation for these results.
Each of the phenomena is connected to a certain type
of “entanglement surface state.” These states may be
counted using inversion symmetry. An insulator with in-
version symmetry has a particle-hole symmetry Ie in its
entanglement spectrum ǫa(k) when it is cut on a plane
through a center of inversion. This makes it very easy to
determine qualitative properties of the Fermi arcs of the
entanglement spectrum–it is possible to count (without
topological arguments) the number of zero modes in the
entanglement spectrum at the TRIMs κ⊥ along the sur-
face. Let ∆Ne(κ⊥) = trǫ=0Ie; that is ∆Ne(κ⊥) is the
number of even modes minus the number of odd modes
with zero entanglement-energy at κ⊥.
The ∆Ne(κ) parameters can be expressed in terms of

parities of the bulk states through no(κ). (The parities of
the bulk states are to be defined using an inversion center
on the plane of the entanglement cut.) The quantity that
appears is ∆N(κ) = trE<0I, or n− 2no(κ):

∆Ne(κ⊥) =
1

2
(∆N(κ1) + ∆N(κ2)), (11)

where κ1 and κ2 are the two TRIMs that project to
κ⊥. In words: the difference between the number of even
and odd states on the entanglement “Fermi surface” at
a TRIM is half the difference between the even and odd
states in the bulk, at the corresponding TRIMs.
To illustrate an actual entanglement spectrum, we con-

structed a Hamiltonian with a cubic unit cell whose in-
version parities suggest that θ = π and G̃Hi ≡ 0 (mod 2).
The parities and the spectrum are shown in Fig. 2. (The
Hamiltonian is described in Appendix A.) The entangle-
ment spectrum was calculated for a cut along the xy-
plane. As expected, there is a Dirac point at (0, 0),

FIG. 2: Entanglement spectrum of a hopping
Hamiltonian. a) The parities at the TRIMs. b) The
entanglement modes on a cut parallel to the xy-plane.
Note that there are two zero-modes at the TRIM (0, 0)
and none at the other TRIMs, as expected from the

parities.

although there are no physical surface states. The en-
tanglement states reflect the nonzero θ, though physical
states do not.
From the relation between the entanglement spectrum

and the parities, one can give alternative derivations of
the connections between electromagnetic properties and
inversion parities. This formula also leads to a simple
alternative derivation of Fu and Kane’s formula for the
indices of topological insulators. These indices count the
physical surface states. The entanglement states are easy
to count with the help of symmetry, and they can be
continuously deformed into the physical spectrum.

III. CLASSIFYING INVERSION SYMMETRIC

INSULATORS

This section will show why the inversion parities and
the Chern numbers give the full classification of nonin-
teracting insulators with inversion symmetry. This re-
sult follows from the classification of Hamiltonians with-
out any symmetry, because the space of inversion sym-
metric Hamiltonians and the space of all Hamiltoni-
ans are related. The Hamiltonians without symmetry
are already classified by Chern numbers for each two-
dimensional cross-section of the Brillouin zone. The only
additional parameters that appear when the Hamiltoni-
ans have to be inversion symmetric come from the classi-
fication of ”zero-dimensional insulators” associated with
the TRIMs. Like finite molecules, these states can be
classified by inversion parities.
Consider the Hamiltonian H(k) for the wavefunctions

ψnk. This Hamiltonian can be taken to be an N × N
matrix by using a tight-binding model with N bands (n
of which are filled). Since this Hamiltonian is inversion
symmetric,

I0H(k)I0 = H(−k) (12)

where I0 is the matrix describing how the orbitals within
the unit cell transform under inversion25.
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For non-interacting insulators, a phase transition oc-
curs when the gap closes and states cross the Fermi en-
ergy, µ = 0, say. Let us determine when two Hamiltoni-
ans are in the same phase–i.e., can be connected without
a phase transition. Topologically speaking, we consider
matrix fieldsH(k) and define an equivalence relationship:

H(k) ∼ H ′(k) if H(k) can be deformed to H ′(k)

without any eigenvalues vanishing and

while maintaining inversion symmetry.(13)

The only points in the Brillouin zones where the in-
version symmetry constrains the Hamiltonian are the
TRIMs, κ. Each of these points can be interpreted as a
zero-dimensional system, with a Hamiltonian H(κ) that
is invariant under I0, since Eq. (12) implies I0H(κ)I0 =
H(κ). Let no(κ) be the number of eigenvalues at nega-
tive energy which are odd under I0. As the Hamiltonian
evolves, the states at this TRIM can mix together, but
even states can mix only with even states and odd ones
can mix only with odd ones, so the value of no(κ) cannot
change.
The second set of parameters characterizing the Hamil-

tonian are the Chern numbers which are topological
winding numbers that also turn out to describe the Hall
conductivity26,27. Because they are integers, they are
also invariant.
We will now show that these integers give a complete

classification of Hamiltonians with inversion symmetry.
That is, if H(k) and H ′(k) are two Hamiltonians both
with n occupied states, N states total, No of which are
odd, then they can be deformed into one another while
preserving inversion symmetry (i.e., H(k) ≡ H ′(k)) if

no(κ) = n′
o(κ) (for all TRIMs κ)

G̃H = G̃′
H ,

(14)

at least if N − n, n ≥ 2.
We do not usually consider the integers N and No to

be important invariants–their values can be changed by
adding even or odd orbitals with a very high energy.In
continuous space, there are infinitely many available or-
bitals.
The assumptionN−n, n ≥ 2 is included because, when

there are too few bands, there are some Hamiltonians
that cannot be deformed into one another just because
there are not enough degrees of freedom.2829. Our classi-
fication theorem does not capture these distinctions, but
the distinctions are not related to any generic properties.
If one adds sufficiently many trivial occupied and unoc-
cupied bands to an insulator, any two insulators with the
same invariants can be deformed into one another.

A. Proof that no and GH Classify Inversion

Symmetric Insulators

Here we present the essential ideas of the proof of the
classification of insulators. App. B gives a more system-

atic way of deriving the classification, including higher
dimensions.

The result can be derived by relating a Hamiltonian in
d dimensions to one in a smaller number of dimensions,
starting with d = 3. Let us take d to be arbitrary at
first, so that we can describe the general procedure for
reducing the number of dimensions. Let Hd be the space
of general Hamiltonians in d dimensions, while Id is the
subspace of Hamiltonians that have inversion symmetry.
A generic Hamiltonian in Hd can be regarded as a closed
loop in Hd−1: Fixing the dth component of k to have an
arbitrary value kd results in a d−1-dimensional Hamilto-
nian Hkd

, Hkd
(k1, k2, . . . , kd−1) ≡ H(k1, k2, . . . , kd). As

kd varies, Hkd
traces out a closed loop in Hd−1 because

the Brillouin zone is periodic.

A Hamiltonian in Id has an alternative representation,
as just an arc in Hd−1, half of the loop just described
(from kd = 0 to π). The rest of the loop is determined by
the inversion symmetry. The end-points of this arc have
to be on Id−1 because the inversion takes the kd = 0, π
cross-sections to themselves.

Thus, classifying inversion symmetric Hamiltonians is
equivalent to the problem of classifying which arcs can be
deformed into one another, as illustrated in Fig. 3. That
is, consider arcs γ1, γ2 in Hd−1 connecting two points in
the subspace Id−1. What conditions ensure that it is
possible to move arc γ1 to arc γ2? This deformation is
possible if we can first slide the end-points of γ1 within
Id−1 onto the end-points of γ2 and then smoothly de-
form the curves connecting them. That is, two arcs are
equivalent if their end-points are in the same component
of Id−1 (like γ1 and γ2 in the figure) but do not have any
hole in between them.

We can thus classify d-dimensional Hamiltonians by
solving two problems: describing the different compo-
nents of Id−1, and classifying the arcs connecting a pair
of points in Hd−1 up to homotopy.

Let us now consider d = 3. The first step (classify-
ing the end-points) is analogous to the problem we are
trying to solve, just in one dimension less. (The con-
nected components of I2 are just the different classes of
2-dimensional inversion-symmetric Hamiltonians as de-
fined in Eq. (13).) Let us suppose we know how to
deform the two arcs γ1, γ2 so that their end-points are
the same under the assumptions of Eq. (14).

We now have to slide the interior of arc 1 onto arc 2.
Classifying arcs with fixed end-points in a given space is
closely related to classifying closed loops. For example,
consider the complex plane with a hole at the origin.
Paths connecting a fixed pair of points are classified by
∫
dθ (where θ is the polar angle) just as closed loops

are: the possible values of the integrals are separated by
multiples of 2π (corresponding to the number of times
the path encircles the origin) offset by the angle between
the points. The loops in H2 can be classified by two
winding numbers

∮
dα(kz) and

∮
dβ(kz), where α and

β are angular variables around holes in H2. This is a
restatement of the well-known fact that the Hamiltonians
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FIG. 3: Representation of d-dimensional Hamiltonians
by arcs and loops in the space of d− 1-dimensional

Hamiltonians. The grey region represents Hd−1: each
point corresponds to a generic d-1-dimensional

Hamiltonian. The two ellipses on the side represent the
components of Id−1, the Hamiltonians with inversion

symmetry. Inversion-symmetric d-dimensional
Hamiltonians (three of which are shown) are

represented by arcs connecting points in Id−1. Two of
these Hamiltonians are equivalent if the end-points are
in the same component of Id−1 and have the same

winding numbers around holes in the space (represented
by the white ellipse). For example, γ2 and γ3 are not

equivalent because their final end-points are in different
components; γ1 and γ2 are not equivalent because

γ1γ
−1
2 winds around the hole.

in H3 are classified by their Chern numbers. A loop
corresponds to a three-dimensional Hamiltonian without
any special symmetry. The two winding numbers equal
the G̃Hx and G̃Hy Chern numbers of this Hamiltonian.
The remaining Chern number is not important because
it is determined by the base-point of the loop.
Now it follows, by analogy with the example of arcs

in the complex plane, that an arc connecting two fixed
points in the space H2 can be classified by the change
in α and β. The inversion symmetric Hamiltonians can
therefore be classified by ∆α =

∫ π

0
dα(kz) and ∆β =

∫ π

0
dβ(kz).

The Chern numbers G̃Hx and G̃Hy of the full Hamil-
tonian are given by

∮ π

−π
dα(kz),

∮ π

−π
dβ(kz); hence the

“winding numbers” of the open arcs are half as big as
the Chern numbers, (by inversion symmetry). So if the
Chern numbers of the Hamiltonians are equal, then the
arcs have the same values of ∆α and ∆β and so they are
equivalent.
We now have to return to the problem of showing that

the end-points can be slid to one another under the as-
sumptions. This is the same as classifying inversion sym-
metric Hamiltonians in two dimensions. This problem
may be solved by studying arcs and loops in H1.reducing
it by one more dimension. For two Hamiltonians in
kx − ky space to be equivalent, the single winding num-

ber, G̃Hz , must be the same, and the one-dimensional

boundary Hamiltonians must be equivalent.
Now we must classify inversion-symmetric Hamiltoni-

ans in one dimension, i.e., arcs in H0. There are no
winding numbers in H0, so the problem reduces directly
to classifying the zero-dimensional end-points.
Two zero-dimensional Hamiltonians (i.e., matrices!)

are clearly equivalent if the numbers of even and odd
occupied states are the same–just shift the energy eigen-
values so that the two Hamiltonians match. Hence the
last condition is that the eight integers no(κ) and the to-
tal number of occupied states n must match. The num-
ber of even and odd unoccupied states above the Fermi
energy must also be the same, but as mentioned above,
there are an infinite number of these in continuous space.
The original Hamiltonian has bifurcated into eight zero-
dimensional Hamiltonians since each step of passing from
arcs to end-points doubles the number of Hamiltonians.
Hence, three dimensional Hamiltonians are classified

by G̃Hx, G̃Hy and G̃Hz together with the parities at the
TRIMs.

B. A Coarser Classification: Grouping Phases with

Identical Responses

We would now like to look for physical interpretations
of the parities that classify the phases. One often uses
parity symmetry to prove that a quantity vanishes, as
in selection rules for certain types of transitions in a
molecule. We will find that, in bulk systems, some sets of
inversion parities imply the non-vanishing of a physical
quantity. We would like to determine all such relation-
ships.
We will search for sets of parities no that ensure that

a material has nontrivial responses by considering the
opposite problem. That is, we will first find all the dull
insulators, ones in which the electrons cannot move and
therefore do not have any response: we call them frozen
insulators. Then we will know by a process of elimination
which materials have a chance of having an interesting
response. We will find that many of the combinations of
no’s can occur in frozen insulators. Hence, even though
the no quantum describe infinitely many phases, only
finitely many of them have distinctive behavior. In the
next section, we will determine the behavior for each of
the phases with distinct properties.
To picture the different types of insulator, represent

the no quantum numbers geometrically, as a vector in
an eight dimensional cubic lattice. Let us understand
the crystal structure of this imaginary crystal. The no-
vectors for “frozen states” form a sublattice. One may
imagine that there are two “elements” A and B making
up the compound, with the element A residing at the
frozen insulator sublattice, and the other element resid-
ing at the remaining sites. The vectors of frozen states
form a sublattice because the sum of two frozen vectors
is also frozen: combining the orbitals of two materials
together in the same volume of space (without any in-
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FIG. 4: Representative examples of no vectors for
non-frozen band structures. The whole range of

quantized behavior that can be found in insulators with
inversion symmetry can be found in just these two

examples or small linear combinations of them (and the
two rotations of mxy), because they form a basis for the

unit cell of the 8-dimensional lattice of frozen and
non-frozen no vectors.

teractions between them) corresponds to adding their no

vectors.
The frozen sublattice can then be characterized by

some conditions similar to the description of a face-
centered cubic lattice. (The face-centered cubic lattice,
e.g., sodium ions in table salt, NaCl, is the sublattice
of a cubic lattice consisting of the points whose coordi-
nates sum to an even number.) For the crystal of no vec-
tors, the frozen sub-lattice is described as follows. Define
wxyz =

∑

κ
no(κ) mod 4 and uz =

∑

κ⊥Rz
no(κ) mod 2,

and similarly for ux, uy. Then a frozen site is one where
these remainders are all zero. (See App. C.)
For example, consider an insulator with these parities:

4 odd states at κ = 0 and all other states even. It satisfies
the conditions wxyz = ux = uy = uz = 0. Hence it is in
a frozen phase.
Since there are four possible values for wxyz modulo

4 and 23 possible values for the u’s, this crystal has the
chemical formula AB31, that is, the unit cell contains
32 lattice points; one is frozen, and the other 31 can be
represented in terms of four vectors (see Fig. 4):

no = uxymxy + uxzmxz + uyzmyz + wxyzmxyz (15)

where the u’s are each 0 or 1 and wxyz is 0, 1, 2 or 3.
Compounds occupying equivalent positions in the no

crystal (and with equal Chern numbers) have equivalent
quantized response properties30 as they differ by the ad-
dition of a frozen state. In the following sections, we will
determine the properties of each of the different types of
compound in the unit cell. Since the u’s and wxyz distin-
guish among the 32 sites in a unit cell, it will be these pa-
rameters that determine all the quantized response prop-
erties. (Note that materials corresponding to equivalent
sites in this classifying crystal could have different static
properties. Likely the only property of this type is that

frozen insulators can have intrinsic electric polarization.
Since polarization is defined modulo one-half of a Bravais
lattice vector, there are still only a few combinations of
the no-integers that have interpretations.)
The key step in this reasoning is to identify the frozen

crystals and the corresponding no vectors. Consider an
ionic or frozen insulator with positive nuclei on the Bra-
vais lattice and electrons fixed on certain sites, and with
all hopping amplitudes equal to zero. The simplest exam-
ple that is inversion symmetric involves a single electron
per unit cell located at half of a Bravais lattice vector
d = R

2 and its translates. When there are two electrons
per unit cell, there is more freedom: they may be located
at any point together with its inversion image. From
these two cases all other insulators may be constructed.
The parities of the former insulator depend on κ,

and are found by transforming from the localized ba-
sis labelled by R to plane wave states labelled by k,
|d〉k =

∑

R e
ik·(R+d)|R + d〉. Suppose that the orbital

occupied by the electron is odd (for example). Then at
a TRIM, the inversion eigenvalue is given by

I|κ〉d = −e2id·κ|κ〉d, (16)

hence no(κ) is one for each κ such that 2d·κ
π

is even.
These eight vectors, which we call fd, generate the lattice
A of frozen insulators within the crystal of no vectors
that we are using to classify phases. (The additional no’s
that come from frozen insulators with two electrons per
unit cell just reproduce fd=0. They have one odd and
one even state at each TRIM.) The appendix shows how
to determine the unit cell starting from these primitive
vectors.
As an example of a state that can be decomposed into

frozen insulators, consider a Hamiltonian H with four
odd states at κ = 0 (and no where else). Its no vector
may be expressed

∑

d 6=0 fd − 3f0: it is formally a super-
position of the eight basic frozen insulators. Because of
the minus sign, this argument is not quite correct, and
there is no actual frozen insulator with the same parities
as H . Nevertheless, the conclusion is still correct–H does
not have any special response properties. If one combines
H with 3 copies of the d = 0 frozen insulator, one gets a
material that is in the same phase as a frozen insulator.
Therefore H has no special response properties, since the
extra electrons added to it cannot change anything.
To see in general that two materials (H1 and H2)

with the same Chern numbers whose no vectors differ
by a vector in the frozen lattice have the same response
whether the vector has negative or positive coefficients,
write no1 − no2 =

∑

p npfp and define f+ to be the sum
of just the terms in this sum with positive coefficients,
and define f− similarly as the sum of the terms with neg-
ative coefficients. Then f± both are realized for ionic
crystals. Furthermore, no1+ f− = no2+ f+, so the mate-
rials obtained by combining the ionic crystals f− and f+
with H1 and H2 respectively belong to the same phase.
Hence these materials and H1 and H2 all have the same
quantized response properties.
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IV. PHYSICAL PROPERTIES AND THE

PARITIES

Now we will find the properties for all the sites in the
unit cell of the crystal of no vectors. We will study these
sites in three stages: the next section shows that sixteen
of the sites can occur only in non-insulators; the next one
shows that 14 of the remaining ones have a nonzero Hall
conductivity, and the last shows that the two remaining
insulators can be distinguished by whether they have a
magnetoelectric susceptibility or not.

A. Constraint on Parities in Gapped Materials

We will start by showing that if
∑

κ
no(κ) is odd for a

certain band structure, then this band structure is not an
insulator (Eq. (4)). This determines the basic behavior
of a crystal with the no vector mxyz (see Fig. 4a), and
more generally, any state with wxyz ≡ 1, 3 (see Eq. (15),
since

∑

κ no(κ) ≡ wxyz (mod 4)
There are two ways to see that

∑

κ
no(κ) must be

even in an insulator. For the first one, let us understand
a more general question. Consider a Hamiltonian (not
necessarily a gapped one) that is being altered. What
happens when the parities of the occupied states at the
TRIMs change? These parities can change if an even
state at the TRIM below the Fermi energy and an odd
state above the Fermi energy (or vice versa) pass through
one another. Appendix D shows that, each time no(κ)
changes by 1 by means of such an interchange, a pair
of Weyl points that are inversion images of each other
appears or disappears. Weyl points are points in the
Brillouin zone when the conduction and valence bands
touch, hence when they are present, the material is not
an insulator. Therefore, if the insulator starts out as a
frozen insulator with all no(κ) = 0, then the first change
of no(κ) makes the material non-insulating.
Furthermore, the material cannot become insulating

again through a gapping out of the Weyl points, unless
more no’s change. A Weyl point is stable in isolation
because it has a “chirality” ±1 and the total chirality of
Weyl points is conserved (see App. D). (In fact, Weyl
points are Berry-flux monopoles in momentum space, so
they have a conserved charge31.) A pair of inversion-
symmetric Weyl points can either annihilate with a sec-
ond pair or with one another. The latter cannot occur
when the parities at the TRIMs are fixed, because by
symmetry they would have to meet one another at a
TRIM. Annihilating there would cause a change in the
parities at it.
Now start from a trivial (i.e., a frozen) Hamiltonian,

with all electrons glued to the Bravais lattice; in this
Hamiltonian, all the states at TRIMS are even. After an
odd number of changes of no(κ), there are an odd number
of pairs of Weyl points, so the crystal is not insulating.
Some of these may annihilate two pairs at a time, but
one pair always remains. In general the number of pairs

of Weyl points and the sum of the no(κ)’s are both even
or both odd.
A material with a single pair of Weyl points (the sim-

plest case that can occur with
∑

κ no(κ) odd) would be
an example of a Weyl semimetal, and would have some
unusual type of conductivity. The Fermi energy would be
forced to line up with the energy at the cone point, re-
sulting in a density of states equal to zero. Assuming the
material is not doped, the area of all electron-like Fermi
surfaces has to cancel the area of the hole-like Fermi sur-
faces (due to the Lüttinger theorem). Thus, if there is
only one pair of Weyl points, the Fermi energy cannot
move away from zero, since it would then intersect the
cones in small Fermi spheres containing the same type of
carrier. This phenomenon does not occur if time reversal
and inversion symmetry are both present, since a Weyl
point is not invariant under the product of the symme-
tries (its chirality is reversed by them). Weyl points can
also occur when no(κ) is even13, but in that case more
symmetry would be necessary to pin the Fermi energy
to them (since there would be additional pairs of Weyl
points).
The stability of the Weyl points is explained in part

by the basic result on degeneracies of eigenvalues, rather
than by symmetry: in order to tune a Hamiltonian to a
point where there is a degeneracy, three parameters are
sufficient. Since H(k) is a function of three momenta,
these may be tuned to a point where there is a degener-
acy, provided H is close enough to having a degeneracy
in the first place.
Any set of parities no(κ) satisfying

∏

κ
ηκ = 1 can

be realized in an insulator. There is never a direct
phase transition (even with fine tuning) between two such
phases when two or more ηκ’s flip sign. When two modes
cross at one TRIM in order to change the value of no

there, Weyl points will form, and the system will be a
semimetal. The Weyl points must then move to the sec-
ond TRIM and reannihilate, so that the system becomes
an insulator again, as illustrated in Fig. 5. There can
be direct transitions where the value of no at a single
TRIM changes by 2. However, such transitions are al-
ways fine-tuned, because two states above and below the
Fermi energy have to switch places all at once.
The alternative argument for the presence of Weyl

points when Eq. (4) is violated does not involve chang-
ing the Hamiltonian around and following its evolution.
Instead, it is based on studying the Bloch states as a func-
tion of k. Let us first suppose there is a single occupied
band |ψ1k〉. To determine whether the wave function is
even or odd, let us take its overlap with an even orbital
|s〉 centered on the origin, s1(k) = 〈s|ψ1k〉. Plot the
solutions in the Brillouin zone to

s1(k) = 0 (17)

This equation is a complex equation, amounting to two
equations in three variables, so its solutions are curves.
At a TRIM, ψ1κ(r) is either even or odd. If it is odd,
its overlap with |s〉 vanishes. Generically, if it is even,
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FIG. 5: Changing the parities of bands at two TRIMs. The figures represent the Brillouin zone of a system with two
bands, one of which is filled. Initially, all the filled bands have parity +1, but the parities at two points are changed

with the assistance of Weyl points which also act as monopoles in the Berry flux (see appendix D). A pair of
monopoles forms at one TRIM and they move to another TRIM where they annihilate. In the process, the parities
of the states at both TRIMs are reversed. The open circles indicate where the monopoles start out and disappear.

FIG. 6: Curves which are inversion symmetric must
pass through an even number of TRIMs. Left, an

attempt at drawing a curve that passes through one
TRIM fails to be inversion symmetric. Right, an

inversion symmetric figure; if there is just one curve
passing through one of the TRIMs, it must go all the

way around the Brillouin zone and pass through
another TRIM on the way.

the overlap does not vanish. Hence, there is one curve
through each TRIM at which |ψ1κ〉 is odd.
But since the curves are inversion symmetric, they

must pass through an even number of TRIMs (see Fig.
6). Hence, the total number of TRIMs where Iψ1κ =
−ψ1κ is even.

When there are several filled bands which do not touch
each other,

∏

κ
ηa(κ) = 1 for the ath band separately, and

∏

κ
ηκ = 1 follows. If bands do touch, another step is re-

quired to see that the product is still one, even though
the product for a single band may be −1. Consider the
curves determined by sa(k) = 〈s|ψak〉 = 0 for all the oc-
cupied bands 1 ≤ a ≤ n. Some of these curves may be
open arcs; they may end at a Weyl point between band

a and band a ± 1 because sa(k) becomes discontinuous
there. If that occurs, then there is always an arc leaving
the Weyl point in the other band (see App. D). Putting
all the arcs from the occupied states together therefore
produces a set of closed curves; these curves will be var-
iegated if the arcs in each band are imagined to have
different colors, but they are still closed. Hence we can
still deduce that they pass through the TRIMs an even
number of times total, i.e.,

∑

κ
no(κ) is even.

B. Polarization and Hall Conductivity

Next, we interpret the u indices, showing that uxy ≡
G̃Hz

2π (mod 2). This result is equivalent to Eq. (5) and
applies to 14 of the remaining types of phase.
We will prove Eq. (5) momentarily, but it is logically

necessary to derive the expression for the electrostatic
polarization in one dimension first. The polarization is
not captured by the AB31 crystal because it is not a re-
sponse property. (With polarization taken into account,
there are actually 8× 32 different types of behavior that
can occur in inversion symmetric phases.) Both polariza-
tion and the Hall coefficient can be expressed in terms of
to the Berry connection, a vector function in momentum
space. For a single band, the Berry connection is defined
by

Aa(k) = i〈uak|∇k|uak〉 (18)

and the total Berry connection A(k) is the sum of the
Berry connections of the occupied bands.
Consider a crystal in one dimension. We will prove

that the intrinsic polarization is given (modulo e times a
lattice vector) by Eqs. (7),(8) starting from the formula
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in Ref. 14 for the intrinsic polarization of an arbitrary
crystal, namely

P = Pe −
∑

i

Zie(xi − x0). (19)

The second term is the polarization of the nuclei in the
unit cell relative to an origin, x0, and the first term is the
polarization of the electrons relative to x0. Since the elec-
trons are delocalized, calculating the latter contribution
is subtle. It is given by

Pe =
e

2π

∑

a

∫

dkAa(k). (20)

This expression for the polarization is ambiguous up to
multiples of e, as expected on account of surface charge.
For example if the unit cell is redefined, some nuclei loca-
tions are shifted by one unit changing the second term of
Eq. (19). Likewise if the Bloch wave functions are rede-
fined by uak → eiθ(k)uak, then the polarization shifts by
e
2π (θ(2π) − θ(0)), an integer multiple of e if eiθ(k) winds
around the unit circle.
To evaluate the polarization of an insulator with inver-

sion symmetry, set x0 = 0, the inversion center. First,
consider a single band. The wavefunctions at k and −k
must be the same up to a phase, so ψ−k = eiθ(k)ψk for
some phase θ(k). Therefore, A(k) + A(−k) = θ′(−k).
Combining k and −k together in Eq. (20) leads to

P̃e = 1
2π

∫ π

0
θ′(−k)dk = 1

2π (θ(−π) − θ(0)). Now eiθ(k)

is the parity of the wave function ±1 at TRIMs k = 0, π.
Hence if the parities at the TRIMs are different, θ changes
from 0 to π so P̃e ≡ 1

2 (mod 1). If there are many bands,
we may sum the polarization over all of them and we find
in general that

(−1)2P̃e = η0ηπ . (21)

The formula for the polarization in three dimensions
can be deduced from this result–this is shown in detail
below.
Now let us consider the Chern number for a two di-

mensional system, H(kx, ky), and show that (−1)G̃Hz =
∏

κ
ηκ. This is the two-dimensional version of Eq. (5).

The Hamiltonian leads to a 1-D Hamiltonian Hky
when

ky is fixed. As ky changes, the polarization P (ky) of
the one dimensional system changes. This means cur-
rent must flow from one end to the other. According
to Thouless’s pumping argument, the Hall conductivity
G̃Hz is equal to the total charge (divided by e) that flows
in the 1D material when ky changes by 2π. (In real space,
the one-dimensional system is just the two-dimensional
system rolled into a tube along the y direction. Changing
ky corresponds to applying an EMF for a period of time
around the y-direction. Hence the Hall effect implies that
charge should flow.)

Thus G̃Hz = − 1
e

∫ π

−π
dP (ky). (The polarization is not

single-valued if G̃Hz 6= 0.) Now if
∏

κ
η(κ) = −1 (as in

either of the 2D layers in Fig. 1 b) then the polarizations

at ky = 0 and ky = π differ by a half integer. Thus,
∫ π

0
dP = (k + 1

2 )e. By inversion symmetry, dP (ky) =
dP (−ky) (P is an odd function so dP is even). Hence
the full change in the polarization between 0 and 2π is
2(k+ 1

2 )e and the Hall coefficient is odd, G̃Hz = −(2k+
1)2π.

This section concludes with the generalizations of these
results to three dimensions. The expression for the Hall
coefficient in three dimensions Eq. (5) is basically a re-
statement of the two-dimensional result. Each of the
three components of GH is equal to the two-dimensional
Hall coefficient for any cross-section of the Brillouin zone:

GHz =

∫
dkz
(2π)

G2d
Hz(kz)

= G2d
Hz(kz0) (22)

since the Chern number for any cross-section kz = kz0
is the same, because varying kz is like taking a two-
dimensional system and deforming it continuously. The
Hall coefficient can be obtained modulo 2 by looking at
an inversion symmetric plane, either kz = 0 or kz = π,
giving Eq. (5). (Note that this gives another reason for
the constraint

∏

κ
ηκ = 1: the two planes have to agree

about G̃Hz ’s parity.)

The expression for the Hall coefficient can be under-
stood also by studying the evolution of the Hamiltonian
from a frozen one into one with the parities mxy and
studying the monopoles in the intervening semimetallic
phase, as in Fig. 5. When the monopoles move from
(π, π, 0) through the Brillouin zone to (π, π, π) where
they annihilate, they leave behind a magnetic flux, so
the Chern number is 2π. In this process, the parities flip
on the edge parallel to the flux; hence the product of ηκ
on either of the perpendicular faces is −1.

Now consider the polarization in three dimensions,

which is given by Pe = e
t

d3

k
(2π)3

∑

a Aa(k). For the
polarization in three dimensions to be well-defined, GH

must be 0, so that there are no surface modes. According
to Eq. 7, the pattern of signs is then a plane wave; in this
situation all the 1d polarizations at TRIMs, P x

1d(κy, κz),
are the same. This value in fact coincides with the three
dimensional polarization. For example, in Fig. 1d. each
of the four vertical lines through TRIMs looks like a one-
dimensional insulator with half-integer polarization, so
the net polarization per unit cell of the three-dimensional
crystal is also e

2R3.

In more detail, the three-dimensional polarization is
the integral over one-dimensional polarizations, P x =s dkydkz

(2π)2 P
x
1d(ky, kz), if GHy = GHz = 0. (This con-

dition ensures that P x is single-valued.) The inte-
grand is not a constant, but by inversion symmetry
P x
1d(ky, kz) − P x

1d(0, 0) = −(P x
1d(−ky,−kz) − P x

1d(0, 0)).
(Intuitively, one expects P x

1d(ky, kz) to be an odd func-
tion, but only differences in polarization are inversion
symmetric because of the ambiguity in the polarization.)
Hence P x = P x

1d(0, 0), proving Eqs. (7) and (8).
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Note that if GH is nonzero, then part of the polariza-
tion is still well-defined. If GH is parallel to x̂ (or in a
non-cubic lattice, g1) then the x-component of the po-
larization cannot leak through the surface modes. On a
cylindrical sample of material whose axis is along the x-
direction of the crystal, the chiral modes circle around the
cylinder, so they do not provide a short circuit between
the two ends which would have allowed the x polariza-
tion to leak out. This component of the polarization is
still given by Eqs. (7),(8).
The relationships we have proved so far give the phys-

ical interpretation of u and w modulo 2. They also have
another meaning: they complete the problem of listing
all the phases, by showing which combinations of the
11 integers GH and no(κ) occur in insulating materials.
The 11 integers cannot be chosen independently (unlike
the three Chern numbers in the non-symmetric classifi-
cation); they must satisfy Eq. (4) and Eq. (5).

C. Magnetoelectric Response

Now we justify the relation θ = π 1
2

∑

κ
no(κ) (Eq.

(6)), for insulators with GH = 0, by calculating θ for
a special case, no = 2mxyz. This is the only nontrivial
point in the unit cell of the eight dimensional classifying-
crystal that is consistent with the conditions that the
material is insulating and has no Hall conductivity, so
any other case can be related to this one by deforming
the insulator, and adding and subtracting frozen insula-
tors to it. It is not possible to define θ for materials that
have a Hall conductivity: for example, if θ is defined as
dP
dB

, the surface states interfere with defining P .
Now we need to show that θ = π for 2mxyz. An insula-

tor with the parities 2mxyz can be deformed to one with
time reversal symmetry since the number of odd states at
each TRIM is even (consistent with Kramers’s theorem).
However, the time-reversal symmetry is a red herring

when studying the magnetoelectric response, and so we
will give an alternative argument. To calculate θ for
no = 2mxyz, it is enough to consider systems with two
filled bands and the appropriate parities. (Any insulator
with any additional bands, which would have to be even
at all the TRIMs, has the same value of θ because they
can be obtained by adding frozen bands.) The expres-
sion for θ in terms of the Berry connection3,4,32 can be
evaluated directly for the insulator with two bands using
symmetry, similar to how the polarization was obtained
above. The evaluation of this integral follows closely
Ref. 33’s calculation for the time-reversal-symmetric
case. The first half of the argument for the time-reversal
case applies to systems with inversion symmetry also,
and leads to

θ

π
=

1

24π2

y
d3kǫijk(B†∂iBB

†∂jBB
†∂kB) (23)

where Ba1a2(k) = 〈ua1(−k)|I|ua2(k)〉 and ua(k) is a
pair of two wave functions spanning the occupied states

(it might not be possible to take these as energy eigen-
functions, since ua(k) have to be continuous, and energy
eigenfunctions are not continuous when the bands touch
each other). The spaces of occupied states are symmet-
ric under inversion symmetry. B(k) measures how far the
wave functions chosen as a basis for them are from being
inversion-symmetric, just as eiθ(k) measures the asym-
metry for a single wave function in the calculation of the
one dimensional polarization. In a nontrivial phase, it is
not possible to choose the basis functions in a continuous
way without breaking the symmetry.
Now B(k) gives a map from the Brillouin zone (a three-

dimensional torus) to SU2 (also three-dimensional). The
expression above for θ

π
is known to equal the degree of

this map, i.e., the number of times the torus covers SU2.
The degree of the map modulo 2 is the number of solu-
tions to B(k) = −1 (or any fixed matrix). We may just
count the TRIMs satisfying this condition, because all
other solutions come in pairs at k and −k (since inver-
sion symmetry implies B(−k) = B†(k)), and the number
of TRIMs where B has this value is determined by no.
We have found that only some combinations of the no

parameters modulo 2 and 4 have physical interpretations.
In the next section, we will see that all the no-parameters
do have interpretations in the entanglement spectrum.
This will give another perspective on why only values of
the no modulo 4 are important: the entanglement modes
cannot be observed directly. However, numbers of entan-
glement modes modulo 2 are related to various observable
properties.

V. PARITIES AND THE ENTANGLEMENT

SPECTRUM

The relations between the properties of the insulator
and the parities can be derived geometrically using the
entanglement spectrum of the insulator; there is a rule
for counting the number of states in this spectrum based
on the parities.
The entanglement spectrum measures quantum corre-

lations in the ground state of a system (see e.g. Ref.
24). It is defined using the Schmidt decomposition. The
insulator is cut by an imaginary plane passing through
a center of inversion symmetry. The many-body ground
state wave function then decomposes,

|Ψ〉 = 1√
Z

∑

α

e−
Ee

α
2 |α〉L|α〉R. (24)

where Z is a normalization constant and Ee
α controls the

weight of a given term. It is called the entanglement
“energy” because the probability of each term is given by
the Boltzmann distribution. The states |α〉L are called
the entanglement states, and they are analogous to the
surface states of the half of the system on the left side of
the cut.
When the wave function of the entire system is a free

system described by a Slater determinant, the entangle-
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ment states |α〉L are Slater determinants, too24. They
are formed just like the excited states of a system of
free electrons, by selecting wave functions from a cer-
tain orthonormal family of single-particle wave functions
fL
ik⊥

(r). (These states may be labelled by the momen-
tum along the surface, k⊥, by translational symmetry.)
Each of these wave-functions has an associated “energy”
ǫLi(k⊥) as if they were eigenfunctions of a single-particle
Hamiltonian. The entanglement “energy” Ee

α is the sum
of all the “energies” of the occupied states.
The entanglement spectra, ǫLi(k⊥), can be used to de-

termine “topological” properties of a system. When a
material is insulating in the bulk, it may still have a
gapless entanglement spectrum. This implies that elec-
trons are delocalized across the cut, unlike the electrons
in a frozen insulator. These delocalized states may be
“topologically nontrivial.” Physical topological surface
states can be deduced from such entanglement spectrum
states: the entanglement spectrum can be continuously
deformed into the physical spectrum, so any topologically
protected states are present in both17,18.
Determining basic properties of the entanglement spec-

trum is simple in the presence of inversion symmetry. In
this case18, the entanglement spectrum has a particle-
hole symmetry Ie that implies a rule for finding the num-
ber of entanglement states at each surface TRIM. The Ie
symmetry takes each mode to another mode whose mo-
mentum k⊥ and “energy” ǫLi(k⊥) have the opposite sign.
Let us regard 0 as the Fermi “energy”; the state in the
Schmidt decomposition with the smallest “energy” (i.e.,
the largest weight) is obtained by filling up all states with
ǫLi < 0.
At surface TRIMs Ie ensures that states appear in

pairs with energies ±ǫ when ǫ 6= 0. There can be a single
mode at zero. If present, this mode will stay exactly at
zero no matter how the system is changed, because mov-
ing away would break the symmetry. More can be said
about the zero-energy states: the “index” at each TRIM
can be determined. The space of zero-“energy” states is
invariant under Ie so they can be classified by their par-
ities. The index is the difference ∆Ne(κ⊥) between the
number of modes of even and odd parity. This quantity
is invariant because even and odd zero-energy states can
“cancel” one another and move to nonzero energies ±ǫ,
while two states of the same parity cannot cancel. (If two
states move away from zero energy, then they must turn
into eigenstates f1 and f2 with energies of opposite sign.
Thus, f1 and f2 are orthogonal states exchanged by Ie.
The corresponding parity eigenstates, 1√

2
(f1 ± f2), have

opposite parities.) Thus, if ∆Ne(κ⊥) has some value,
such as 2, then there must be at least 2 states at this
TRIM.
The imbalance number can be found directly from the

bulk band structure,

∆Ne(κ⊥) = 1/2(∆N(κ1) + ∆N(κ2)) (25)

where κ1 and κ2 are the two bulk inversion-symmetric
momenta that project to κ⊥ and ∆N(κ1) (e.g.) is related

to no(κ1): it is the difference between the number of even
and odd occupied states at κ1, that is n− 2no(κ1). This
result applies in any dimension. In one dimension, for
example, there is only one ∆Ne (since there is only one
surface momentum) to determine, and ∆Ne is equal to
the number of even states at κ = π minus the number of

odd states at κ = 0. Note that the parities of the bulk
states are to be calculated relative to an inversion center
that is on the cutting plane34.
We will now explain how to define the particle-hole

symmetry and how to derive the formula for ∆Ne.
This derivation requires some results of Refs. 24,35
whose derivations are summarized in appendix E. As the
building-up of entanglement states from single-particle
states suggests, the entanglement modes are actually
eigenfunctions of a “Hamiltonian”HL defined on the part
of space to the left of the cutting plane. The eigenvalues
of HL are not equal to the entanglement energies ǫLi, but
they are related to them,

HL|fL
ik⊥

〉 = 1

2
tanh

1

2
ǫLi(k⊥)|fL

ik⊥
〉.

The Hamiltonian HL is just the result of confining the
“flat-band Hamiltonian” Hflat in the whole space to the
left half of space. Hflat is defined to have the same eigen-
functions as the true Hamiltonian but simpler eigenval-
ues, − 1

2 for the occupied states and + 1
2 for the empty

ones. HL has strange eigenstates–it has infinitely many
surface bands, and for many cases, it has no states besides
these. The reason is that the spectrum ofHL ranges from
− 1

2 to 1
2 . Each bulk state has an energy exactly equal

to ± 1
2 (corresponding to ǫLi = ±∞) so any state with a

finite ǫLi is a surface state.
While HL is obtained from Hflat by cutting off the

right half of space, cutting away the left half of the space
leads to a partner HamiltonianHR (whose eigenfunctions
fR generate the Schmidt states on the right). These three
Hamiltonians have unusual interconnections that do not
occur when a generic Hamiltonian is “cleaved” by just
confining it to half of space. For example, many eigen-
states of Hflat give eigenstates of HL and HR when the
wavefunction is set to zero in the part of space that is be-
ing discarded. For a generic Hamiltonian, the wave func-
tion on the remaining half of the space would be depleted
near the surface. The unusual relationships between the
eigenfunctions of these three Hamiltonians follow because
Hflat satisfies an identity H2

flat =
1
4 .

The connections between the eigenstates of the three
Hamiltonians are as follows. The eigenfunctions of HL

and HR are in one-one correspondence via a map M.
This map reverses the sign of the “energy.” Furthermore,
it is possible to build up a complete set of occupied states
of Hflat from these pairs:

Fik⊥
(r) =

√

1

2
sech

ǫLi(k⊥)

2
×

[

e−
1
4 ǫLi(k⊥)fL

ik⊥
(r) + e

1
4 ǫLi(k⊥)MfL

ik⊥
(r)

]

. (26)
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This is an occupied state since applying Hflat to it gives
an eigenvalue of − 1

2 . As fL
i varies over all eigenstates

of HL, the function F varies over a basis for the occu-
pied states in the ground state. These states are strange
eigenstates for a bulk Hamiltonian since they are local-
ized; this is possible because wave packets do not move
in Hflat: the group velocity is zero since the dispersion
is flat. (Another curiosity of these partnered wave func-
tions is that the weights in the superposition depend on
the energy.)
When the system is inversion symmetric, M and I

can be combined together to give the symmetry Ie; it
is a transformation within the left half of the insulator,
defined by Ie = IM. Since I is a symmetry of the
wave function, it preserves ǫ while M reverses its sign.
Therefore, Ie acts as a particle-hole symmetry. Similarly,
Ie also reverses the sign of k⊥.
Now we can count the zero entanglement-“energy”

states at TRIMs. Let us call the parities of these states
under Ie “ηeiκ⊥

.” A state fL
iκ⊥

with this parity extends,
by Eq. (26), to an occupied state

Fiκ⊥
=

1√
2

[
(fL

iκ⊥
(r) + ηeiκ⊥

fL
iκ⊥

(−r)
]
. (27)

where we have used IMfL
iκ⊥

= ηeiκ⊥
fL
iκ⊥

to relate fR to

fL. This state is invariant under ordinary inversion, and
the parity is ηeiκ.
Let us determine the value of ∆Ne for a one-

dimensional system. The result in higher dimensions fol-
lows since we can fix k⊥ = κ to obtain a one-dimensional
system. Consider a circular chain with an even number of
cells, L. Now, count the number of even occupied states
We minus the number of odd occupied states Wo, using
two different bases. We −Wo is equal to tr I so it is the
same in both bases; the equality will be Eq. (25).
One orthonormal basis will be obtained by cutting the

system along a diameter. There will now be two cutting
points 0 and L

2 . Near each of these cuts are localized an
orthonormal set of F states (Eq. (26)). The two sets
(plus bulk states if any exist) together form a full basis
for the wave functions on the ring. The zero-“energy”
states give parity eigenstates centered on each of the two
cuts, according to Eq. (27). These contribute 2∆Ne to
We −Wo. The remaining states do not contribute be-
cause they can be organized into inversion-related pairs,
Fi(x), Fi(−x). These states states are all mutually or-
thonormal because their left and right halves correspond
to different eigenvalues of HL, HR. The inversion matrix
I has only off-diagonal matrix elements between Fi(x)
and Fi(−x).
On the other hand, instead of the localized wave-

functions, we can use the extended Bloch functions,
ψa(kx). The wave functions at momentum ±kx do
not contribute to the trace of I because they are ex-
changed, while the wave functions at the TRIMs con-
tribute (∆N(π) + ∆N(0)) to We −Wo. Setting the two
expressions for trI equal to each other gives Eq. (25).

FIG. 7: Determining the Quantum Spin Hall index
using the entanglement spectrum. The figure compares
spectra of a nontrivial and a trivial system. The left

spectrum for each system is the entanglement spectrum,
and the right illustrates how the surface spectrum

might look. In the entanglement spectrum, inversion
symmetry protects degeneracies at zero energy at the
TRIMs, allowing one to determine the index. But the
two sets of spectra can be deformed into one another

(the difference is probably more drastic than
illustrated). Because time reversal symmetry produces
Kramers degeneracies at the TRIMs at all energies, the

parity of the number of modes crossing the Fermi
energy does not change.

We can now count the entanglement states of a two-
dimensional insulator to understand their physical sur-
face properties. For example, applying the result to an
insulator that has both time reversal and inversion sym-
metry gives a simple derivation of the the formulae from
Ref. 10 for the indices of topological insulators. We will
focus on the two dimensional quantum spin-Hall index,
since the three dimensional indices are defined in terms of
it. The quantum spin-Hall index ν is the number (mod-
ulo 2) of physical edge modes betweeen 0 and π. As we
have just seen, finding states in the entanglement spec-
trum is easy because of the particle-hole symmetry (see
Fig. 7). Once these are found in the entanglement spec-
trum, they remain when it is deformed into the physical
spectrum, by the standard arguments.
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FIG. 8: A model with a single filled band that has an
odd quantum Hall effect parallel to Rz. a) The parities

at the TRIMs. b) The entanglement states on the
xz-face of the Brillouin zone, determined using

∆Ne(κ⊥) =
1
2 (∆N(κ1) + ∆N(κ2)).

Consider the entanglement spectrum created by divid-
ing the system at y = 0. The spin Hall index is the parity
of the number of curves in the dispersion ǫ(kx) crossing
ǫ = const. between kx = 0 and π. Consider in particular
the axis ǫ = 0. Strictly between 0 and π the axis crosses
an even number of modes: the crossings come in pairs be-
cause the spectrum is symmetric under T Ie, which just
flips the sign of ǫ. (Generically, these states will just mix
and move off the axis.)
Therefore only the modes at the ends of the interval are

important. We may assume that all the modes at either
of these TRIMs have the same parity, because otherwise
the states whose parity is in the minority may combine
with the states in the majority and become gapped. Then
by Eq. (25) the number of modes at, e.g., kx = 0 is

|∆Ne(0)| = |n− no(0, 0)− no(0, π)|. (28)

Since these modes are at the extremes of the interval
from 0 to π, each one only qualifies as half a mode.
To justify this guess, look at a line slightly above the
axis. This line crosses half of the modes emanating from
each TRIM, so the number of crossings, mod. 2, is
ν ≡ 1

2

∑π
kx=0 |n − no(kx, 0) − no(kx, π)|. This is con-

gruent to 1
2

∑

κ
no(κ), summed over all four TRIMs, in

agreement with the standard result.
When the flat band Hamiltonian is deformed into the

true Hamiltonian, ν remains the same even though the
surface states no longer have particle-hole symmetry.
The energy curves form continuous loops or zigzags (see
figure) because of the double-degeneracies protected by
Kramers’ theorem.
We can use a similar approach to understand the re-

sults in Sec. IV for the polarization and Hall coefficient.
These effects may be determined by sketching the arcs
of the entanglement Fermi surface using the information
about the number of zero energy states at the TRIMs.
While each zero energy state at a TRIM gives at least
a Fermi point, not all of these points extend to Fermi
arcs. Helpfully, the parity of the number of Fermi arcs

FIG. 9: Determining the polarization from the
entanglement spectrum. a) Parities for an insulator

with one filled band, with a half-filled Fermi sea in the
entanglement spectrum. b)Possible entanglement Fermi

arcs for a cut parallel to the xz plane. The arcs
surround half the surface Brillouin zone. If there are no

nuclei on y = 0, this crystal has a half-integer
polarization in the y-direction.

is the same as ∆Ne’s parity though. (This is proved in
appendix F.)

Fig. 8 shows how the modes might look for one set of
parities. Consider the xz surface of this insulator. Ac-
cording to Eq. (25) there must be one arc (or an odd
number) passing through (π, 0) and (π, π), and an even
number through the other two TRIMs. Minimally, there
is only one Fermi arc, as illustrated in Fig. 8. Hence
as one travels along kx through the Brillouin zone, one
crosses through the Fermi arc. Since the z-component of
the Hall conductivity, G̃z is the number of arcs (counted
with a sign depending on the sign of the group velocity),
1
2π G̃Hz = ±1. In more complicated cases, we can deter-

mine only that 1
2π G̃Hz is odd because there may be Fermi

arcs that do not pass through TRIMs. These cannot be
predicted from the no(κ) parameters, but they come in
pairs by inversion symmetry, so the parity of the Hall
coefficient is uniquely determined.

Now consider the parities in Fig. 9. One possible
choice of modes (with one passing through each TRIM
point as required) is illustrated. If these modes are not
chiral, then they separate the Brillouin zone into filled
and empty states; exactly half the Brillouin zone is filled
because of the symmetry. This will imply that P y = e

2
if there are no nuclei on y = 0, and this will be seen to
agree with the rule for the polarization.

The polarization is defined as the surface charge once
the surface bands have been emptied. (See appendix G.)
This definition may be applied also to the entanglement
spectrum. Cut the system with a plane y = 0 through
a point of inversion symmetry. If there are no nuclei on
this plane (which would be indivisible), then the plane
just divides the electronic part of the wave function in
two parts.

Of all the terms in the Schmidt decomposition, con-
sider the one with the largest coefficient, |G〉L|G〉R,
where |G〉L and |G〉R are the ground states of HL and
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HR respectively, obtained by filling all the negative en-
ergy states. These states are mirror images of each other,
so they both have the same surface charge Qy. The net
charge is 2Qy. However, the Schmidt state |G〉L|G〉R,
obtained by collapsing the wave function by making a
hypothetical measurement, has the same charge as the
ground state. Each electron is pushed over to the side
of the y = 0 plane where it is more likely to be, but no
electrons appear or disappear. Thus, 2Qy = 0, i.e., the
ground state of HL has no surface charge.
Now Fig. 9 shows that this ground state of HL has

a partially filled band. When this band (which covers
half the Brillouin zone) is emptied, a charge of − e

2 per
unit cell on the surface remains. Hence the polarization
P y ≡ e

2 (mod e).
To compare this result to Eq. (8), we need to calcu-

late both contributions to this equation, from nuclei and
electrons. Note that P y

e = 0 for the given parities. Since
there is one filled band of electrons, by neutrality, there
must be a single charge −e nucleus per unit cell, which
contributes P y

n = e
2 . (The nuclei must be at y ≡ − 1

2 be-
cause these are the only inversion symmetric points that
are not on the cutting plane.) Appendix G gives a more
general argument.
We would also like to prove the rule for θ using the

entanglement spectrum. The entanglement modes of
such an insulator (see Fig. 2b) include a Dirac point.
Such modes, if they were physical, would produce a half-
integer Hall effect. However, this argument is incomplete
since the entanglement modes are not physical.

VI. CONCLUSIONS

This study shows that, beyond the Chern numbers
that can be used to classify insulators without symmetry,
the only protected quantities for insulators with inversion
symmetry are the parities of the occupied states at the
TRIMs.
For bulk materials, certain values of the parities im-

ply non-vanishing electrical properties (the reverse of the
usual use of parity symmetry, to prove the vanishing of
certain quantities). In particular, if the number of odd
occupied states is odd, the material is never a complete
insulator.
The parities also provide a simple criterion for deter-

mining when a crystalline compound has a magnetoelec-
tric response equal to π, the generalization of the re-
sult on the strong topological index of an insulator with
time-reversal symmetry as well as inversion symmetry.
Hence, the magnetoelectric effect could occur in mag-
netic materials. There are two consequences: The mag-
netoelectric effect could be generated by the magnetic
ordering, rather than spin-orbit coupling; thus there are
more possible materials, besides ones containing elements
with large Z’s so that the electrons are spin-orbit cou-
pled. It would be interesting to search for such a mate-
rial. Second, in a material with spontaneous magnetism

and θ = π, the magnetoelectric effect would be easier
to observe than in a topological insulator, because the
material does not have gapless surface states that would
interfere with the observation.
Beyond these properties, the static polarization, and

the Hall conductivities’ parities, there are no indepen-
dent response properties that are related to the inversion
parities, since any two insulators which have these re-
sponse properties in common can be deformed into one
another, apart from some frozen electrons.
The properties of inversion symmetric insulators can

be derived in a simple way with the help of the entan-
glement spectrum, illustrating how entanglement modes
can be indirectly observed: a magnetoelectric response of
θ = π corresponds to a material with an odd number of
Dirac points in the entanglement spectrum (even when
there are no surface states at all).
Understanding the stability of the parity invariants

to interactions will be an interesting subject for future
study. Ref. 36 shows in one dimension that phases
can merge when interactions are turned on. In non-
interacting systems, more complicated point groups may
also protect more interesting phases. Perhaps there are
even new types of quantized responses in these phases.
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Appendix A: Tight Binding Models and Inversion

Parity.

A useful set of models for studying inversion symmet-
ric Hamiltonians are tight-binding models with one atom
per unit cell which has some orbitals that are even, |si〉,
where i ranges from 1 to Neven and some odd ones, |pi〉,
where i continues from Neven + 1 to Nodd + Neven. Let
the Hamiltonian be

H = −
∑

i,j,R,∆

tij(∆)c†i (R +∆)cj(R), (A1)

where ci includes creation operators for both types of
orbitals.
A Bloch wave function ψak (a is the band index) is

determined by its values at the origin, φi, which are re-
peated in a plane-wave fashion to other sites. Inversion
maps k → −k and φi → I0ijφj , where I0ij is a diagonal
matrix of Neven ones and Nodd minus ones.
There is a simple criterion for determining the parities

of the occupied states at the TRIMs, in case one wants
to determine the parities of states in a numerical band
structure calculation using a basis of molecular orbitals,
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for example: if a state is odd, then all its s-wave compo-
nents vanish. If it is even, all p-wave components vanish.
In the generic case, it is enough to check a single s-wave
component:

ηa(κ) = +1 if 〈s1|ψaκ〉 6= 0

ηa(κ) = −1 (probably) if 〈s1|ψaκ〉 = 0. (A2)

If a component is exactly zero, it is reasonable to assume
that it is because inversion symmetry forbids that com-
ponent.
The Hamiltonian used to illustrate the entanglement-

rule in Fig. 2 is of this type. In momentum space Eq.

(A1) can be written
∑

ij c
†
i (k)cj(k)Hij(k). The Hamil-

tonian can be built from two subsystems H1, H2, whose
occupied states are given by the upper and lower signs
in Fig. 2. Each Hamiltonian can be gapped because
both sets of signs satisfy the constraint

∏

κ
ηκ = 1 by

themselves.
Each of these Hamiltonians Hr can be constructed in a

space with one even state |sr〉 and one odd state |pr〉. For
the Hamiltonian to be inversion symmetric it must com-
mute with σz , so the diagonal matrix elements are even
and the off-diagonal matrix elements are odd functions
of k.
The two Hamiltonians can be combined together by

including a small mixing between the two systems. The
final Hamiltonian has the form:

H(k) =

(
H1(k) t1
t1 H2(k)

)

. (A3)

where

H1 = Akσz +Bkσx + Ckσy

H2 = Dkσz + Ekσx + Fkσy (A4)

and

Ak = (1− cos (kx)) cos (ky) + (1 + cos (kx)) cos (ky − kz)

Bk = (1− cos (kx)) sin (ky) + (1 + cos (kx)) sin (ky − kz)

Ck = sin (kx) , Ek = − sin (kx) , Fk = sin (kz)

Dk = cos (kx) + cos (kz)− 1.

The parities of the occupied states at κ of H1 and H2 un-
der inversion in the point 1

2 x̂ are equal to the signs shown
in Fig. 2. Choosing this point to define the inversion par-
ities is necessary because the entanglement spectrum is
obtained by cutting the system between two planes of the
atoms.

Appendix B: Classification using Topology in the

Space of Hamiltonians

In this section we will show how to use systematic
methods from topology to classify the insulators with in-
version symmetry. This method was also used to find the

classification of topological phases with the Altland and
Zirnbauer symmetry groups15,16.
In general we write a band insulator as H(k), which

we think of as a vector bundle on the Brillouin zone.
The eigenvectors of H(k) with energies below the chem-
ical potential are the occupied states, defining a vector
subspace of the entire Hilbert space at k. For inversion-
symmetric insuators, there is an additional constraint on
the Hamiltonian: P0[H(k)] ≡ I0H(k)I0 = H(−k), this
relates the Hamiltonians at k and −k.
The idea behind our method of classification, similar

to the one used for time-reversal invariant topological
insulators, is to look only at half the Brillouin zone.
For a Hamiltonian H in d-dimensions, one can con-

struct a path f(t) = H(kx = πt, k2, k3, . . . ) in the space
of (d−1)-dimensional Hamiltonians, where the endpoints
(t = 0, 1) are inversion symmetric. Thus the classification
of d-dimensional Hamiltonians is equivalent to the classi-
fication of paths in P(Hd−1; Id−1, Id−1), where Hd is the
set of general d-dimensional Hamiltonians and Id ⊂ Hd

is the subset which is inversion-symmetric. The symbol
P(X ;A,B) is defined to be:

P(X ;A,B) ≡ Set of paths in X from A to B (B1)

= {f : [0, 1] → X |f(0) ∈ A, f(1) ∈ B},

where A,B ⊂ X . We want to divide up Id into sets such
that paths from different sets are not homotopic to each
other. Heuristically, the classes of paths of P(X ;A,B)
are given by the number of components of A,B which
determines the set of possible endpoints, and the loop
sturcture of X which determines the number of ways to
travel from A to B. The classes of insulators in d-dimen-
sions is very roughly given by:

Components of Id

∼ Loops in Hd−1

Loops in Id−1
× (Components of Id−1)

2. (B2)

This idea is made precise using algebraic topology38, and
is captured by an exact sequence below (B4) (which ex-
plains the reason for the denominator here).
There is an addition structure in the classification of

insulators38, which comes from the fact that one can com-
bine two insulators together using direct sums “⊕”. To
simplify the classification, it is useful to also have a sub-
traction “⊖” operation between insulators. This would
give the topological invariants (e.g. Z) a group structure.
The subtraction procedure is realized by considering

an ordered pair of bands (H1, H2), which represents
the “difference” of the two Hamiltonians. Addition by
H ′ is given by (H1 ⊕ H ′, H2) and subtraction is given
by (H1, H2 ⊕ H ′). Imposing the equivalence relation
(H1 ⊕H ′, H2 ⊕H ′) ∼ (H1, H2) makes the addition and
subtraction processes cancel each other. Physically, we
are interested in classifying difference of two topological
insulators – this is analogous to studying domain walls
between them whose properties are determined only by
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the difference in topological invariants. With this inter-
pretation, it is possible to talk about a negative number
of filled bands (whenever H2 has more bands than H1).
The construction above, called the Grothendieck group,

has two interpretations. First, two insulators H1, H2 are
deformable to one another when the topological invari-
ants of the band structure (H1, H2) are all trivial. Sec-
ond, the invariants classifying phases of H can be defined
as the topological invariants of (H, vac), where the second
insulator is the vacuum.

1. Hamiltonians, Classifying Spaces and Homotopy

Groups

Consider an N × N matrix H with n occupied states
and N − n empty states. Setting the chemical potential
to be zero, H is a matrix with n negative eigenvalues and
N − n positive eigenvalues. In the topological classifica-
tion of insulators, the energies are irrelevant so long as we
can distinguish between occupied and unoccupied states,
and hence we can deform the energies (eigenvalues) of all
valence bands to −1 and the energies of conduction bands
to +1. We can also assume there are an infinite number
of conduction bands, and so we let N → ∞. H0 is the
set of such 0D Hamiltonians, and can be separated into
discrete components based on the number of filled bands
(which may be negative for differences of Hamiltonians).
The space H0 is homeomorphic to Z×BU , where BU is
the classifying space of the unitary groups.
At the TRIM, the Hamiltonian is inversion-symmetric

and commutes with the operator I0. The Hilbert space
is divided into an even subspace and an odd subspace,
based on the inversion eigenvalues. Hence the set of
inversion-symmetric (0D) Hamiltonians I0 is homeomor-
phic to H0 ×H0.
Finally, we introduce the “vacuum” v0 ∈ I0 ⊂ H0,

which is a Hamiltonian with no filled bands. v0 is a useful
object in that it allows us to compare any Hamiltonian
to it, and also acts as the basepoint when we compute
the homotopy groups of H0, I0.
Given a topological space X and a basepoint within

the space x0, the homotopy group πs(X) is the set of
equivalence classes of maps f : (Ss, b0) → (X, x0), where
the basepoint b0 ∈ Ss and f(b0) = x0. For example,
π0(X) gives the number of connected components of X ,
and π1(X) tells us which loops in X are equivalent and
which loops are contractible.
The group strucutre of πs(X) is given by concatena-

tion of maps. However, the group structure of the Ham-
litonians has already been defined based on direct sums.
Fortunately, the group composition defined based on the
two methods (concatenation / direct sums) are equiva-
lent.
The homotopy groups of Hd are known: π0(H0) = Z

because 0-dimensional Hamiltonians are classified by the
number of filled bands n. π1(H0) = 0 means that the
loops in H0 are all contractible. π2(H0) = Z, because

FIG. 10: Relative homotopy groups. The figure
represents an element of π2(X,A, x0) where X is R3; A

is the torus.

maps of the sphere are classified by the first Chern class
(or the Chern number). This invariant gives rise to
the integer quantum Hall effect. For higher dimension,
πs(H0) is 0 when s is an odd integer, and Z when s is an
even integer, corresponding to the (s/2)th Chern class.
In this section, Chern numbers are taken to be integers
rather than multiples of 2π.
The homotopy groups of I0 are simply the squares

of the homotopy groups of H0. In particular, the set
of components π0(I0) = Z

2 is labeled by two integers:
(n, α), where n is the total number of valence “bands”
and α = no is the number of states which have odd in-
version parity.

2. Relative Homotopy Groups and Exact

Sequences

The homotopy groups πs(X) classifies components,
loops, and maps from higher dimensional spheres to the
space X . The relative homotopy groups πs(X,A) classify
maps from paths, disks, etc. where the boundary must
lie in some subspace (see Fig. 10). This is how topolo-
gists define “winding numbers” of open arcs, which were
discussed in Sec. III. Relative homotopy groups were ap-
plied much earlier by Refs.39 to an interesting problem
within physics: classifying defects of ordered phases when
the defects are stuck to the surface.
Given a space X a subspace A ⊂ X , and a basepoint

x0 ∈ A, the relative homotopy group πs(X,A) is the
equivalence classes of maps (Ds, ∂Ds, b0) → (X,A, x0).
The boundary of the disk ∂Ds = Ss−1 must map to A,
and the basepoint b0 ∈ ∂Ds maps to x0. The relative ho-
motopy groups can be computed via the exact sequence

πs(A)
i∗−→ πs(X)

j∗−→ πs(X,A)
∂−→ πs−1(A)

i∗−→ πs−1(X).
(B3)

An exact sequence is a sequence of groups along with
maps defined from one group to the next, each map pre-
serving the group operations. In an exact sequence, the
image of every map is the same as the kernel of the sub-
sequent map.
In the one-dimensional case, the relative homotopy

group π1(X,A) describes the set of possible paths in X
from x0 to A up to homotopy, that is, the classes of paths
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P(X ;x0, A). The exact sequence becomes:

π1(A)
i(1)−−→ π1(X)

j(1)−−→ π1(X,A)
∂−→ π0(A)

i(0)−−→ π0(X).
(B4)

In the exact sequence above, the maps are defined as
follows.

• i : A → X is the inclusion map which takes ev-
ery point from A to itself interpreted as a point in
X . The induced maps i(s) : πs(A) → πs(X) take
components/loops from one space to the other.

• j: All the loops in X start and end at x0, and so
they are also clearly paths in P(X ;x0, A) seeing
x0 ∈ A. j(1) is the map that takes the equivalence
classes of loops π1(X) to the equivalence classes of
paths π1(X,A).

• ∂ : π1(X,A) → π0(A) is a map that takes a path
and selects its second endpoint to give a component
of A. ∂ is called the boundary map, it takes a “1D
object” to give a “0D object.”

It appears that the maps i and j “do nothing” to the
objects (points, loops) they act on. However, each map
gives the loop/path more freedom to move around. For
example, j(1) takes a loop to a path where the endpoints
no longer have to be the same, so it may map a nontrivial
path to a trivial one.
The exact sequence captures the idea that the paths in

P(X ;x0, A) can be classified once one knows the proper-
ties of X and A, based on their end-points and how they
wind.

1. First, we pick the endpoint x ∈ A of the path p. x
can be in any component of A that is connected to
x0 within X and this is captured by the statement
ker(i(0)) = img(∂).

2. Given a choice of a path p from x0 to x, we can
construct all the other paths between the points.
We can create any other path p′ by concatenating
a loop l ∈ π1(X) at the beginning of p. This is the
exactness at π1(X,A).

3. However, the paths p and p′ are only different (i.e.
not homotopic to each other) only if the loop l can-
not be unwound within A, this is to say that p ∼ p′

if l is homotopic to a loop in A. See Fig. 11. This
idea is captured by the exactness at π1(X). Hence

we think of l belonging to the quotient π1(X)
i(1)π1(A) ,

and this group is called the cokernel of the map
i(1).

We see that any path may be constructed by its end-
point x and a loop l.

p = j(l) + ∂−1x. (B5)

The inverse boundary operator ∂−1 is not unique, but
that does not affect the structure of the group π1(X,A)

FIG. 11: An illustration of the exact sequence. The
cylinder here represents X and the two dark circles at

the ends represent A. Paths in π1(X,A) can be
enumerated by taking one path for each inequivalent

end-point x and adding loops from π1(X) to the paths.
This description is redundant for the topology shown in
the figure. Consider the paths shown: they are p and
another path p′ = p+ l obtained from it by adding l,
which winds around the cylinder. The two paths are
equivalent because they can be deformed into one

another by bringing the right end-point around A. This
happens because l can be smooshed into A.

for the cases we are considering. The equivalence classes
of x form ker(i(0)), while the equivalence classes of l make
up coker(i(1)). The relative homotopy group is a semidi-
rect product

π1(X,A) = coker(i(1))⋊ ker(i(0)). (B6)

What this means is that coker(i(1)) is a normal subgroup
of π1(X,A) and ker(i(0)) is the quotient of the two. For
the purpose of classifying inversion-symmetric insulators,
we can treat the semidirect product as simply a product.

3. One Dimension

In this section we examine the classification of 1D
inversion-symmetric Hamiltonians H(k). Let I1 be the
set of maps H : S1 → H0 such that P0[H(k)] = H(−k).
I1 is homeomorphic to the set of paths in H0 that start
and end in I0 (i.e. I1 ≈ P(H0; I0, I0)), and we seek to
classify all such paths - to compute π0(I1).
For a 1D band structureH(k), we can ‘factor’ outH(0)

by letting H ′(k) = H(k)⊖H(0) so that H ′(0) = v0. The
decomposition H(k) = H(0)⊕H ′(k) can be expressed as

I1 = I0 × Ĩ1. (B7)

H(0) is an element of I0 while H ′(k) is an element of

Ĩ1, where Ĩ1 is the subset of I1 with a fixed basepoint
(H ′(0) = v0). Hence the classification of I1 can be broken

up in to two parts, the classification of I0 and that of Ĩ1.
The former is understood already, π0(I0) = Z

2.

Notice that Ĩ1 is homeomorphic with the class of paths
P(H0; v0, I0), whose components are described by the
relative homotopy group π1(H0, I0). The relative homo-
topy group can be computed by the exact sequence (B4).
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Using the fact that π0(Ĩ1) = π1(H0, I0),

π1(I0)
0

i0(1)−−→ π1(H0)
0

j0(0)−−→ π0(Ĩ1) ∂−→ π0(I0)
Z
2

i0(0)−−→ π0(H0)
Z

.

(B8)

(The upper index 0 on the maps indicate that this is
the exact sequence for paths from H0 to I0.) Since
π1(H0) = 0, we can ignore the left side of the ex-
act sequence (cokernel of i(1) is zero). The integer
n ∈ π0(H0) = Z tells us how many filled bands there
are, and (no, ne) ∈ π0(I0) = Z

2 are the number of even-
parity and odd-parity bands. The map i(0) is given by
n = no + ne, and so the kernel of the map is the subset
where no = −ne, isomorphic to Z.40. Hence π0(Ĩ1) is
isomorphic to ker(i(0)) = Z. This is to say that the set of
paths P(H0; v0, I0) are solely classified by the endpoint.

Since I1 = I0 × Ĩ1, we have

π0(I1) = π0(I0)× π0(Ĩ1)
= π0(I0)× π1(H0, I0)
= Z

2 × Z. (B9)

The invariant π0(I1) = Z
2 corresponds to the number

of total bands and odd-parity states at k = 0: n, no(0).

The invariant π0(Ĩ0) = Z corresponds to the difference in
number of odd bands at k = π and k = 0: αx = no(π)−
no(0). Hence the parities at the two TRIMs completely
classify all 1D inversion-symmetric Hamiltonians.
A generator of a group is an element which gives the

entire group by group addition and subtraction; for ex-
ample, 1 is a generator of Z. In our case, the generators
are Hamiltonians which form a basis for all Hamiltoni-
ans, up to homotopy. Knowing the generators amounts
to having a list of all the possible phases. Moreover,
the indices for classifying phases can be found using the
generators: each phase can be written as a sum of the
generators, and the coefficients are a possible set of in-
dices. The indices we have used up to now, no and the
Chern number, are simple linear combinations of them.
The generators of π0(I0) = Z

2 are two Hamiltonians
H0

n and H0
α which add one even-parity and odd-parity

band to the system, respectively. (Remember that we are
classifying ways of changing one Hamiltonian to another
Hamiltonian.) Explicitly:

H0
n =

[
−1

]

(+)
. (B10)

H0
α =

[
−1

]

(−)
⊖H0

n. (B11)

where the subscript (±) labels the inversion eigenvalue(s)
of the orbital(s). The first expression H0

n adds an in-
ert band to increase n; the second expression H0

α adds
an odd-parity band but subtracts an even-parity one
to increase no while maintaining n. The generator for
π0(Ĩ1) = Z is:

H1
α(k) =

[
− cosk sink
sin k cos k

]

(+−)

⊖H0
n. (B12)

The subscript (+−) specifies the inversion operator I0 =
[
+1

−1

]
for this Hamiltonian. When k = 0, the matrix

becomes
[−1

1

]

(+−) and the occupied band is even under

inversion. Similarly, the matrix at k = π is
[
1
−1

]

(+−)

and there the occupied band is odd. Hence αx = no(π)−
n0(0) = 1− 0 = 1 and H1

α(k) is a generator of π0(Ĩ1).
Therefore, any 1D inversion-symmetric Hamiltonian is

homotopic to

H(k) = nH0
n ⊕ αH0

α ⊕ αxH
1
α(k). (B13)

4. Two Dimensions

We apply the same ideas used in 1D to classify
inversion-symmetric insulators in 2D. The inversion-
symmetric Hamiltonians (kx, ky) in 2D satisfy:
P0H(kx, ky) = H(−kx,−ky). The set of 2D inver-
sion symmetric Hamiltonians (I2) is equivalent to
P(H1; I1, I1), where H1 is the set of 1D band structures
(loops in H0).
Just as in the 1D case where we decomposeH(k) into a

0D and 1D object: H(k) = H(0)⊕H ′(k), we decompose
the 2D Hamiltonian into 0D, 1D and 2D components.
Let

H ′(kx, ky) = H(kx, ky)⊖H(0, 0), (B14a)

so that H ′(0, 0) = v0. Now we define

H ′′(kx, ky) = H ′(kx, ky)⊖H ′(0, ky)⊖H ′(kx, 0),
(B14b)

so that

H ′′(0, ky) = H ′′(kx, 0) = v0. (B15)

H(0, 0) is an element of I0, and H ′(0, ky) and H
′(kx, 0)

are elements of Ĩ1. We define Ĩ2 to be the set of inversion-
symmetric Hamiltonians satisfying (B15). With this pro-
cedure, we have decomposed I2 as

I2 = Ĩ0 × Ĩ2
1 × Ĩ2, (B16)

where Ĩ0 = I0. Explicitly, the decomposition is:

H(kx, ky)

= H(0, 0)
︸ ︷︷ ︸

Ĩ0

⊕H ′(0, ky)⊕H ′(kx, 0)
︸ ︷︷ ︸

Ĩ1×Ĩ1

⊕H ′′(kx, ky)
︸ ︷︷ ︸

Ĩ2

(B17)

Due to (B15), we can think of Hamiltonians in Ĩ2 as
maps from the sphere (rather than the torus) to H0. The
Hamiltonian is constant around the edges of the Brillouin
zone (when we take the Brillouin zone to extend over the
range [0, 2π] for each coordinate), and so the edges may
all be identified to a single point to give a sphere.
We now analyze the properties of Hamiltonians in

Ĩ2. For each fixed kx, the Hamiltonian H ′′(ky)|kx
is
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a map from the 1D Brillouin zone (S1) to H̃0 (where

we’ve also defined H̃0 = H0). Denote the set of such

maps as H̃1, the set of loops in H̃0 with basepoint v0:
H̃1 = P(H̃0; v0, v0). H̃1 is called the loop space of H̃1,

and the notation used in literature is H̃1 = ΩH̃0.
The Hamiltonian at kx = π is inversion-symmetric,

and so H ′′(ky)|kx=π ∈ Ĩ1. At kx = 0, the line
H ′′(ky)|kx

= v0 is a constant map - which we call v1
(a line of v0). Clearly v1 is an element of Ĩ1, and acts as
the basepoint when we compute the homotopy groups of
Ĩ1, H̃1.
Having defined the spaces Ĩ2, H̃1 and basepoint v1, we

can see that Ĩ2 is homeomorphic to the set of paths in
H̃1 with endpoints at v1 and somewhere in Ĩ1: Ĩ2 ≈
P(H̃1; v1, Ĩ1). The exact sequence which gives the equiv-
alence classes of such paths is

π1(Ĩ1)
i1(1)−−→ π1(H̃1)

j1(1)−−→ π0(Ĩ2) ∂−→ π0(Ĩ1)
i1(0)−−→ π0(H̃1).

(B18)

Elements of π1(H̃1) are two-dimensional Hamiltonians
that equal v0 along kx = 0 ∼ 2π and ky = 0 ∼ 2π, which

are equivalent to maps S2 → H̃0. Hence

π1(H̃1) = π2(H̃0) = Z (Chern number). (B19)

The map j1, which essentially maps general two-
dimensional Hamiltonians to inversion symmetric ones,
is defined by

(j1H)(kx, ky)

=

{

H(2kx, ky) 0 ≤ kx ≤ π

P0H(4π − 2kx, 2π − ky) π ≤ kx < 2π
. (B20)

It builds an inversion symmetric Hamiltonian out of two
copies of a Hamiltonian with no special symmetries. The
map ∂ : Ĩ2 → Ĩ1 is defined by

[∂H ](k) = H(kx = π, ky = k) (B21)

which takes a 2D Hamiltonian and picks out the 1D
Hamiltonian at kx = π.
The exact sequence, Eq. (B18) would fairly easily de-

termine π0(Ĩ2) if we only knew that π1(Ĩ1) were equal to
0, as turns out to be true. However, to see this, we will
have to do a recursive calculation, using another exact
sequence for π1(Ĩ1) which classifies loops of 1D inversion-
symmetric insulators (not to be confused with 2D insu-

lators). As argued in Fig. 12, the group π1(Ĩ1) is isomor-

phic to π2(H̃0, Ĩ0). We can compute π1(Ĩ1) = π2(H̃0, Ĩ0)
via the exact sequence (B3).

π2(Ĩ0)
Z
2

i0(2)−−→ π2(H̃0)
Z

j0(2)−−→ π1(Ĩ1) ∂−→ π1(Ĩ0)
0

i0(1)−−→ π1(H̃0)
0

(B22)

The first map i0(2) : π2(Ĩ0) → π2(H̃0) is given by β =

βe+βo (which means that the Chern numbers of the odd

FIG. 12: Isomorphism between π2(H̃0, Ĩ0) and π1(Ĩ1).
An element in Ĩ1 is a path from v0 to an element of Ĩ0
(dark black lines). An element of π1(Ĩ1) is a family of
such paths. The first path in the family must be v1, a
“zero-length” constant path at v0 (gray dot). The last
path of the family must also be v1, and so the paths
must shrink back to v0 at the end, because that is the
base point for the homotopy groups. This family of
paths traces out a disk D2 which maps to H̃0, the
endpoints of each path traces out a circle S1 = ∂D2

which maps to Ĩ0 (dashed circle). The basepoint of the

circle maps to v0, and hence every element of π1(Ĩ1) is
also an element of π2(H̃0, Ĩ0) and vice-versa. This

establishes the isomorphism π2(H̃0, Ĩ0) = π1(Ĩ1).

and even bands add to the total.) The image of i0(2) is all

of i0(2), so its cokernel is trivial. Since on the right side

the groups are also trivial (ker(i0(1)) = 0), we have that

π1(Ĩ1) = 0.

We now return to the exact sequence (B18) to compute

the π0(Ĩ2).

π1(Ĩ1)
0

i1(1)−−→ π0(H̃2)
Z

j1(1)−−→ π0(Ĩ2) ∂−→ π0(Ĩ1)
Z

i1(0)−−→ π0(H̃1)
0

.

(B23)

The exact sequence yields π0(Ĩ2) = Z × Z; the set of
H ′′(k) are classified by two integers (αxy, βxy). The first
integer αxy coming from the map ∂ gives no(π, π); the
second integer βxy is related to the Chern number of H ′′.

The basis elements of π0(Ĩ2) are found by taking the im-

age of the generator in π1(H̃1) and one of the preimages

of the generator element in π0(Ĩ1), which we denote by

H2
β(k) and H2

α(k) respectively. Any Hamiltonian in Ĩ2,
up to a homotopy, can be written as

H ′′ = βxyH
2
β ⊕ αxyH

2
α. (B24)

The generator H2
β(k) = j1(1)Hchern(k) where Hchern is

the generator of π1(H̃1) = π2(H̃0), i.e. a 2D band insu-
lator with Chern number +1. H2

α(k) is defined such that
(∂H2

α)(k) = H1
α(π, k) is the 1D insulator (B12).
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Explicitly, the generator

H2
α(k) =

1

1 + x2 + y2

[
1− x2 − y2 2(y + ix)
2(y − ix) x2 + y2 − 1

]

(+−)

,

⊖H0
n, (B25)

where x = cot kx

2 , y = cot
ky

2 . When kx or ky = 0, then

x2+y2 → ∞ andH2
α(k) =

[−1
1

]

(+−) soH
2
α is normalized

properly, H2
α ∈ Ĩ2 When kx = ky = π, it can be seen that

H2
α(k) =

[
1
−1

]

(+−) and the filled band is odd under
inversion. Note that the Hamiltonian has Chern number
+1. Since αxy = no(π, π) (and the other TRIMs have
no = 0 because of the normalization), this is related to

the constraint G̃ ≡ ∑

κ
no(κ) mod 2.

The other generator H2
β(k) = i1(1)Hchern(k):

H2
β(kx, ky) = H2

α(2kx, ky). (B26)

has Chern number +1 in each of the halves 0 ≤ kx ≤ π
and π ≤ kx ≤ 2π. Evidently, the Chern number of the
entire Brillouin zone is given by

G̃ = αxy + 2βxy, (B27)

since H2
α, H

2
β has Chern number 1, 2 respectively.

The decomposition (B16) gives us six Z invariants in

2D: two from Ĩ0, one from each of the two Ĩ1, and two
more from Ĩ2. The six invariants (n, α, αx, αy, αxy, βxy)
are related to the properties of the original Hamiltonian
H(kx, ky) as follows:

• n gives the number of filled bands, generated by
(B10).

• α = no(0, 0) is the number of odd-parity states at
(kx, ky) = (0, 0), generated by (B11).

• αx = no(π, 0)− no(0, 0) involves the difference be-
tween two parities, generated by (B12) (k → kx).

• αy = no(0, π) − no(0, 0) involves the difference be-
tween two parities, generated by (B12) (k → ky).

• αxy = no(π, π) − no(π, 0) − no(0, π) + no(0, 0) in-
volves the parities at all TRIMs, generated by
(B25).

• βxy relates to the Chern number: G̃ = 2βxy + αxy,
generated by (B26).

The rule for the Chern number’s parity, Eq. (5), fol-
lows from the last constraint here.

5. Going to Higher Dimensions

In d-dimensions, we want to calculate π0(Ĩd), the set of
components of the space of inversion-symmetric Hamil-
tonians. To calculate this in a larger dimension, we will
need to know πs(Ĩd−s) in lower dimensions.

The relevant spaces are H̃d and Ĩd. The general Hamil-
tonian space H̃d = ΩH̃d−1 is the space of loops of Hamil-

tonians in H̃d−1, which become trivial on kx = 0 as well
as on all the other boundaries ki = 0 of the Brillouin zone.
Their homotopy groups are given by πs(H̃d) = πs+d(H̃0).

The homotopy groups of the subspace Ĩd ⊂ H̃d are
harder to find. This space is homeomorphic to Ĩd ≈
P(H̃d−1; vd−1, Ĩd−1), since half of the Brillouin zone de-
termines the Hamiltonian. The homotopy groups of
Ĩd are therefore given by the relative homotopy groups
πs(Ĩd) ≈ πs+1(H̃d−1, Ĩd−1). Via the relative homotopy

exact sequence (B3), one can relate πs+1(H̃d−1, Ĩd−1) to

πs, πs+1(H̃d−1) and πs, πs+1(Ĩd−1). The homotopy struc-

ture of Ĩd depends on that of Ĩd−1. Iterating this process

reduces the problem to that of the basic objects H̃0 and
Ĩ0.
Specializing to 3D, we follow the same prescription as

before to decompose Hamiltonians.

Ĩ3 = Ĩ0 × Ĩ3
1 × Ĩ3

2 × Ĩ3 (B28)

The homotopy group π0(Ĩ3) = π1(H̃2, Ĩ2) can be com-
puted from

π1(Ĩ2)
i2(1)−−→ π1(H̃2)

0

j2(1)−−→ π0(Ĩ3) ∂−→ π0(Ĩ2)
Z
2

i2(0)−−→ π0(H̃2)
Z

.

(B29)

We know that π0(Ĩ2) = Z
2 from the previous section and

π0(H̃2) = π2(H̃0) = Z corresponds to the Chern number

G̃. In addition, the homotopy group π2(H̃2) = π3(H̃0) =

0 is trivial, so π1(Ĩ2) is irrelevant to the problem.

The map i2(0) : π0(Ĩ2) → π0(H̃2) is given by (B27)

which is surjective, hence coker(i2(0)) = Z. It follows that

π0(Ĩ3) = Z; 3D insulators can be written as αxyzH
3
α

where αxyz is an integer and H3
α is the generator. To re-

late αxyz to band-structure properties (like no), we place
the maps ∂ and i2∗ under further scrutiny. The relevant
part of the exact sequence is:

0 → π0(Ĩ3)
Z[αxyz ]

∂−→ π0(Ĩ2)
Z
2[αyz, βyz]

i2(0)−−→ π0(H̃2)

Z[G̃]
, (B30)

where the brackets show the names of the integers that
are used to label the elements of the group. The map i2(0)
is given by G̃ = αyz +2βyz. The kernel of the map is the
set (αyz , βyz) = (2j,−j) for integers j. Since the kernel

is isomorphic to π0(Ĩ3), we can define αxyz to be j; hence
∂ is defined by ∂αxyz = (αyz, βyz) = (2αxyz,−αxyz).
In terms of the band structure invariants, we have

2αxyz = αyz

∣
∣
kx=π

= no(π, π, π);

Hence no(π, π, π) is even. Note that all other no’s
are 0 because the Hamiltonian is normalized– adding
back the lower-dimensional parts of the Hamiltonian that
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have been subtracted off does not change the parity of
∑

κ
no(κ), so it remains even.

Explicitly, the generator H3
α is

H3
α =

[
t0τ

z + τx(t · σ)
]

(++−−)
⊖ 2H0

n, (B31)

where

(t0, tx, ty, tz) =
(1 − x2 − y2 − z2, 2y, 2z, 2x)

1 + x2 + y2 + z2
,

with x = cot kx

2 , y = cot
ky

2 , z = cot kz

2 .

At kx = ky = kz = π, (t0, tx, ty, tz) = (1, 0, 0, 0) and
there are two filled bands with odd parity. At the plane
kx = π the Hamiltonian reduces to two copies of (B25),
but with opposite Chern numbers so that the net Chern
number is 0. One can think of the two subspaces of ∂H3

α

as H2
α (Chern +1) and H2

α ⊖H2
β (Chern −1).

Therefore, there are 12 Z invariants in 3D, the eleven
emphasized in the main part of the article together with
the total number of occupied bands. They relate to the
band structure invariants as follows:

• n is the number of filled bands.

• α = no(0, 0, 0).

• αx = no(π, 0, 0)− no(0, 0, 0),
αy = no(0, π, 0)− no(0, 0, 0),
αz = no(0, 0, π)− no(0, 0, 0).

• αyz = no(0, π, π)− αy − αz − α,
αzx = no(π, 0, π)− αz − αx − α,
αxy = no(π, π, 0)− αx − αy − α.

• βyz = 1
2 (G̃

yz − αyz),

βzx = 1
2 (G̃

zx − αzx),

βxy = 1
2 (G̃

xy − αxy).

• αxyz = 1
2

(
no(π, π, π) −

∑
αµν −

∑
αµ − α

)
.

The last equation explicitly written out as a function of
no(κ) is

2αxyz = no(π, π, π)

− no(0, π, π)− no(π, 0, π)− no(π, π, 0)

+ no(π, 0, 0) + no(0, π, 0) + no(0, 0, π)

− no(0, 0, 0).

From the formula, it is clear that the sum of parities of
no(κ) at the eight TRIMs is even, Eq. (4).

In every higher dimension d, Ĩd has a Z invarant corre-
sponding to the inversion parity no(π, . . . , π) generated
by Hd

α. For the even dimensions d = 2s, there is a second
Z invariant corresponding to the sth Chern class, gener-
ated by Hd

β . Hence π0(Ĩ2s) = Z
2 and π0(Ĩ2s+1) = Z.

The generator for the sth Chern class is as follows. Let
{Γ1,Γ2, . . . ,Γ2s+1} be 2s×2s gamma matrices satisfying
the Clifford algebra ΓiΓj + ΓjΓi = 2δij . First we warp

the Brillouin zone to a sphere: T 2s[k1, . . . , k2s] → S2s[n̂]
by sending k = (π, . . . , π) to n̂ = (1, 0, 0, . . . ) and all
the planes bounding the Brillouin zone (ki = 0) to
(−1, 0, 0, . . . ). We choose the map so that it is inver-
sion symmetric (i.e., when k → −k) all components of
n̂ except the first switch sign). The Hamiltonian can be
defined then as

H2s
c (k) = n̂ · Γ, (B32)

where Γ is the (2s+1)-vector of gamma matrices. (B25)
is an example of this construction for d = 2s = 2. The
inversion matrix is given by the first gamma matrix: I0 =
Γ1, and we can see that all the occupied states are odd at
k = (π, . . . , π), so no = 2s−1 there. At the other TRIMs,
the occupied states have even inversion-parity.
The sth Chern number Cs may be computed by the

formula:

Cs =
1

s!

(
i

2π

)s ∫

Tr[P (dP )2s], (B33)

where P (k) = 1
2 (1−H(k)) is the projector onto the filled

states and d is the exterior derivative in the Brillouin
zone. Evaluating the integral shows that Cs = ±1 for
the Hamiltonian H2s

c .
In 2s dimensions, Eq. (B23), generalized to more di-

mensions, gives a preliminary way of choosing the gener-
ators: H2s

β is the image under j of a generator of π0(H̃2s)

and H2s
α is an arbitrary preimage under ∂−1 of the gen-

erator of π0(Ĩ)2s−1. Any Hamiltonian can be expanded
as

H = β2sH
2s
β ⊕ α2sH

2s
α . (B34)

H2s
c can be used for the generatorH2s

α . To see this, we
decompose H2s

c in terms of the original pair of generators
H2s

α , H2s
β . The sth Chern number of H2s

β is 2, since it
is constructed using the map j which takes a general
insulator to an inversion-symmetric one by duplicating it
in each half of the Brillouin zone [see Eq. (B20)]. At all
the TRIMs, H2s

β (κ) = v0 and so no is zero. Using Eq.

(B34) for H2s
c implies

Cs(H
2s
c ) = 1 = 2β2s + α2sCs(H

2s
α ), (B35a)

no(H
2s
c ) = 2s−1 = 0 + α2sno(H

2s
α ). (B35b)

The first expression requires α2s to be odd, and the sec-
ond requires it to be a factor of 2s−1. Hence α2s = ±1
and we can use H2s

c as the generator H2s
α . Since every

Hamiltonian can be expressed by Eq. (B34), the num-
ber of odd inversion-parity states no(π, π, . . . ) is always
a multiple of 2s−1.
In terms of the general Hamiltonians in I2s, the total

number of odd parity states at all the TRIMs must be a
multiple of 2s−1. Furthermore,

1

2s−1

∑

TRIM k

no(k) ≡ Cs (mod 2) in 2s-dimensions.

(B36)
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In 2s+ 1-dimensions, the Hamiltonians at kx = 0 and π
are both 2s-dimensional inversion-symmetric Hamiltoni-
ans, and they must have the same Chern number, so the
constraint on the parities is

∑

TRIM κ

no(κ) ≡ 0 (mod 2s) in (2s+ 1)-dimensions.

(B37)

This is related to the (2s+1)-dimensional Chern-Simons
integral θ2s+1 ∈ [0, 2π) by

θ2s+1

π
=

1

2s

∑

TRIM κ

no(κ) (mod 2), (B38)

because we can evaluate θ by writing the Hamiltonian as
the kx = π cross-section of a Hamiltonian in one more
dimension, and then determining the Chern number of
that Hamiltonian3 using Eq. (B36).

Appendix C: Frozen Crystals

This appendix determines what subset of the space of
no vectors is spanned by integer combinations of frozen
crystals. Let fp be vectors corresponding to systems with
a single fixed electron in each unit cell displaced by p

from the Bravais lattice.
For each of the eight polarizations p, the numbers of

odd states at TRIMs are described by fp(κ) ≡ 1 + κ

π
·

p(mod 2), assuming the electrons to be in odd orbitals.
For each nonzero TRIM, fp contains four zeros and four
ones, and f0(κ) = 1.
The goal is now to determine what vectors are integer

linear combinations of the f ’s. There is a coordinate sys-
tem for Z8 where this is easy to solve. One has to find a
set of vectors v1 . . .v8 such that it is a basis for Z8, and
also n1v1, n2v2, . . . , n8v8 is a basis for the frozen vectors
(where n1, . . . n8 are certain integers). Then if a vector
no is represented by a1v1 + · · ·+ a8v8 in the new coor-
dinate system, the criteria that it is a frozen vector are
simple–ai has to be a multiple of ni. The classification
theorem for finitely generated abelian groups describes
an algorithm for finding such bases.
To find the basis, take an 8× 8 matrix whose columns

are the f ’s and do column operations until the vectors in
it become divisible by integers n1, n2, . . . . The only op-
erations that are allowed are adding or subtracting mul-
tiples of one column to another or changing the sign of
a column. These operations do not change the lattice
spanned by the f ’s. (They can be inverted without di-
viding by integers.)
This process leads to the following basis: m0, mx,

2mxy, and 4mxyz and vectors symmetric with these.
Here,m0 is the vector with ones at all corners of the cube,
mx is the vector with ones on the face of the cube defined
by κx = π (and zeros elsewhere), mxy is the vector with
ones on the edge defined by κx = κy = π, and mxyz is
the vector with a one at the vertex κx = κy = κz = π.

The procedure that produces the vectors
m0,mi, 2mij, 4mxyz (where i, j run over x, y, z)
consists of changing one of the four groups of f ’s to
m’s at a time. First m0 = f0 so we can just rename
this vector, giving the sequence m0,mi, fij , fxyz. Next,
replace fi by mi = m0 −mi. This is one of the column
operators just described. Next, replace f 1

2 (x̂+ŷ) by

mx +my − m0 + f 1
2 (x̂+ŷ), which is equal to 2mxy, and

do the same for the other pairs of x, y, z. Last replace
f 1
2 (x̂+ŷ+ẑ) by

4mxyz = 2mxyi+ 2myz + 2mxz −mx −my −mz

+m0 − f 1
2 (x̂+ŷ+ẑ).

Each of these combinations is chosen so that the ones
cancel out except on just the right vertex or edge of the
cube.
Some thought leads to a similar demonstration that

m0,mi,mij and mxyz (without the factors of 2 and 4)
span all combinations of 8 integers. Therefore any vector
no can be decomposed as

no = a0m0 +
∑

i

aimi +
∑

i<j

aijmij + axyzmxyz (C1)

where aij is an even integer and axyz is a multiple of four.
An even part of aij and a multiple of 4 contained in axyz
can be combined with the a0, ai-terms to form a vector
in the frozen sublattice (the A sites). The displacement
between this A site and no then has the form given in
Eq. (15).
The concise statement of this result is that the quotient

of Z8 by the span of the f ’s is Z3
2 × Z4.

Appendix D: Monopoles and Weyl Points

Consider a Hamiltonian for which the ath and a+ 1st

bands are close to being degenerate at k0. Then all states
except the two nearly degenerate states are unimportant,
and the spectrum can be described by a 2× 2 matrix

H(k) =

(
E0 +A(k) B(k)
B∗(k) E0 + C(k)

)

. (D1)

The eigenvalues are degenerate wherever A(k) = C(k)
and B(k) = 0. This gives three equations in three vari-
ables (since B is complex), so generically, a solution may
be found in three dimensional space, as pointed out by
Von Neumann and Wigner.
Now at the location of the degeneracy (which we call

kd) there is a magnetic monopole in the Berry magnetic
fields31 Ba and Ba+1 of the two bands. The degeneracy
point (or Weyl point) has a handedness δ = ±1, which
determines the charge of the monopoles. Bands a and
a+ 1 have opposite monopoles, of charge

Qa = 2πδ

Qa+1 = −2πδ. (D2)
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This monopole and antimonopole are glued together (at
the point kW ) but they do not annihilate because they
are monopoles in different “magnetic” fields.
To understand why the monopoles exist, write the

Hamiltonian in terms of Pauli matrices, then expand the
coefficients to linear order in k, H(k) ≈ E0 + v0 · k +
∑3

i=1(vi · kσi). The handedness is defined by

δ = sign[v1 · (v2 × v3)]. (D3)

Define the oblique coordinate system Ki = (k−kW ) ·vi.
Now change to spherical coordinates,K3 = K cos θ,K1 =
K sin θ cosφ,K2 = K sin θ sinφ. The eigenvalues are
E0+v0 ·k±K. We will assume that v0 = 0 because this
term only tilts the dispersion slightly. In this case, the
graph of the energy as a function ofK1,K2 withK3 set to
0 is a symmetrical cone. In accordance with the degrees-
of-freedom-argument given above, fixing K3 at an arbi-
trary value (and thus reducing the number of parameters
to 2) gives a hyperboloid of two sheets E(K1,K2), with-
out any touching between the bands.
The Berry magnetic field in band a is defined as

Ba = curlAa where Aa is defined in Eq. (18); note that
the distinction between u and ψ does not matter for the
purpose of calculating the magnetic field. The eigenvec-

tors of the Hamiltonian are ψa+1 =

(
cos 1

2θe
−iφ

sin 1
2θ

)

and

ψa =

(
sin 1

2θe
−iφ

− cos 1
2θ

)

. The Berry connections for these

states are Aa+1(K) = 1
2 cot

θ
2 φ̂ and Aa(K) = 1

2 tan
θ
2 φ̂.

These fields are familiar as the vector potentials for Dirac
monopoles41– they have a flux-tube, or Dirac string, ap-
proaching the origin along the positive and negative K3

axis. These monopoles have fluxes of
v

Ba+1 = −2π andv
Ba = 2π respectively.
The calculation just completed contains a sign error

half the time, which we can correct now. The magnetic
flux can be calculated in the new coordinate system only
if the system is right-handed; magnetic flux is a pseu-
doscalar. Hence, the result just obtained is correct when
δ = +1. When δ = −1, the oblique coordinate system
is left-handed, so the signs of the monopoles should be
flipped, leading to Eq. (D2).
Now let us show that the curves defined by sa(k) = 0

and sa+1(k) = 0 merge with one another at the Weyl
point. (This appears in Sec. IVA.) The function sa(k) is
defined as 〈s|ψak〉 = 〈s| ↑〉〈↑ |ψak〉+ 〈s| ↓〉〈↓ |ψak〉 (since
only the two states | ↑〉 and | ↓〉 that are represented by
(

1
0

)

,

(
0
1

)

in the effective theory are important near

kW ). Parameterize these overlaps via
(

〈↑ |s〉
〈↓ |s〉

)

= A

(
cos α

2 e
−iβ

sin α
2

)

.

We then find that sa(k) = 0 only if θ = α and φ = β,
and that sa+1(k) = 0 if θ = π−α and φ = π+β. That is,
the two curves are rays meeting at the Dirac point from
opposite directions.

Now let us see why a system cannot remain insulat-
ing when no changes. When an even and odd state at a
TRIM pass in opposite directions through the Fermi en-
ergy, a pair of monopoles forms or annihilates near it. In
this problem there are also two nearly degenerate states,
so we can recycle the effective Hamiltonian Eq. (D1)
for this problem, taking the top and bottom components
to represent the even and odd states respectively. Then
I0 = σz , and since I0H(k)I−1

0 = H(−k), the diagonal en-
tries have to be even and the off-diagonal entries have to
be odd functions of k. Assume E0 and the trace are equal
to zero. (The trace just shifts both bands by a smooth
function and does not affect the degeneracy.) We wish to
study how the dispersions change when A(0)−C(0) = ∆,
the gap changes sign.
Let A(k) = ∆

2 + f(k) = −C(k); f is a quadratic
function to lowest order. B(k) is a linear function of
k, so we may choose a coordinate system where K1

and K2 are defined as the real and imaginary parts
of B, B(k) = K1 − iK2. The dispersion is there-

fore ±
√

(∆2 + f(k))2 +K2
1 +K2

2 . The Weyl points are

given by K = KW where KW1 = KW2 = 0 and
∆ = −2f(KW3, 0, 0) = −2αK2

W3, say. Thus, if α >
0, there are band-touchings when ∆ is negative (with

KW3 = ±
√

− ∆
2α ) and no crossings when ∆ is positive.

So if ∆ changes from positive to negative, two monopoles
appear. The crossings move out from the origin to a dis-
tance proportional to the square root of ∆.
Now reexpand the Hamiltonian to linear order around

one of the KW ’s to find the form of the Hamiltonian for
the Weyl modes. We find that it is equal to αKW3(K3 −
KW3)σz +K1σx +K2σy. (Notice that we have set K1 =
K2 = 0 in f(K1,K2,K3) because we are interested in
values of the K’s such that K1,K2 ≪ K3. The orders of
magnitude such that all the terms under the square root
in the dispersion have the same magnitude are K1 ∼
∆, K2 ∼ ∆, K3 ∼

√
∆.) The two cone points have

opposite handedness sinceKW3 has opposite signs for the
two points. This is what we expected since the monopole
charge has to be conserved.

Appendix E: Entanglement Spectrum

We summarize the results on the noninteracting entan-
glement spectrum24,35, focusing on one dimension. The
flat band Hamiltonian is defined in terms of the corre-
lation function C(x1, x2) = 〈ψ(x2)†ψ(x1)〉. Because the
correlation function decays exponentially (for an insula-
tor), it is reasonable to think of it as a hopping matrix
for an electron system:

[Hflatφ](x) =
1

2
φ(x) −

∫

C(x, x′)φ(x′)dx′. (E1)

The eigenfunctions of this Hamiltonian are the same as
the eigenfunctions of the physical system but the eigen-
values are different. Each unoccupied state φγ has eigen-
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value 1
2 and each occupied state belongs to an eigenvalue

− 1
2 , since C(x1, x2) =

∑

γ φγ(x1)φγ(x2)
∗.

When a surface at x = 0 is introduced we can split
the wave function into two parts, x > 0 and x < 0, and
represent them as the top and bottom halves of state-
vectors. Then the correlation function has four parts,

Ĉ =

(
ĈL Ĉ†

RL

ĈRL ĈR

)

. (E2)

The entanglement eigenstates fL
i turn out24 to be the

eigenfunctions of HL = 1
21− ĈL.

The eigenvalues are called 1
2 − pi(k⊥). These eigen-

values are between ± 1
2 because pi is the probability that

an electron occupies the state fL
i . Any eigenvalue in the

range 0 < pi < 1 is a state in the gap, so the wavefunction
is localized near the surface. There are infinitely many
surface states like this. In two dimensions, if they are
graphed as functions of ky the highest bands converge to
± 1

2 .
The entanglement energy spectrum is not quite the

same as pi but is related by the transformation ǫ =
2tanh−1(1−2p) which sends the limiting energies to ±∞;
p = 1

2 corresponds to ǫ = 0. The graphs of the entan-
glement energies look more normal–they retain a finite
spacing, although the gap is infinite and there are in-
finitely many surface modes in it.
Since Ĉ has 1 and 0 as eigenvalues, Ĉ2 = Ĉ, giv-

ing four matrix equations. For showing how to pair
eigenstates35 of ĈL and ĈR, the relevant equation is
ĈRL(1 − ĈL) = ĈRĈRL. Given an eigenfunction fL

i of

ĈL with eigenvalue pLi one can obtain an eigenvector of
ĈR with eigenvalue 1− pi via the transformation M̂

fR
i (x) = [M̂fL

i ](x) =
1

√

pi(1− pi)

∑

x′>0

ĈRL(x, x
′)fR

i (x′).

(E3)
The prefactor is inserted to ensure that fR

i is normalized.
Because of how p transforms, ǫLi = −ǫRi. (One can check

that M̂ is a unitary transformation, which can be written
in matrix form M̂ = 1√

ĈR−Ĉ2
R

ĈRL). The eigenvalues of

fL
i and fR

i for HL and HR are ±(12 − pi) so ǫLi = −ǫRi.

Furthermore, Fi =
√
pif

L
i +

√
1− pif

R
i is an occupied

state because it satisfies Ĉ|Fi〉 = |Fi〉. (Eq. (26) restates
this obscurely.) States of this form give a basis for all
the occupied states. The ground state is therefore given

by
∏

i(
√
pil

†
i +

√
1− pir

†
i )|vac〉 where l†i , r

†
i create the

states fL
i and fR

i respectively. Cross-multiplying gives
the Schmidt decomposition, Eq. (24). The state Fi is
definitely occupied by an electron. This electron is on
the left with probability pi and on the right with prob-
ability 1 − pi. A term in the Schmidt decomposition is
obtained by making a choice, for each mode, whether the
electron is on the left or right.
If a state is filled on the left side, then the correspond-

ing state must be left empty on the right. Thus the

Schmidt states are |α〉L =
∏

i∈A l
†
i |vac〉L and |α〉R =

∏

i6∈A r
†
i |vac〉R where A is a set of states. The weight of

this state is
∏

i∈A pi
∏

i6∈A(1− pi).

To reinterpret the fluctuations as statistical fluctua-
tions of the system on the left, imagine covering the
right half. Then electrons disappear when they cross

the boundary. The factors of r†i correspond to holes in
|α〉L. The weight of a state can be written in terms
of just the occupied states on the left by factoring out
1
Z

:=
∏

i(1 − pi). The weight is then
∏

i∈A
pi

1−pi
which

looks like a Boltzmann distribution if e−ǫLi := pi

1−pi
, ex-

plaining where the definition of ǫLi comes from.

The maximum weight Schmidt state is obtained by
placing electrons on the left half when pi >

1
2 and on

the right half when pi <
1
2 . If we can only see the left

half, this is equivalent to filling all the negative “energy”
states. The negative energy states on the right are also
filled since ǫRi = −ǫLi. So the maximum weight state
is the product |G〉L|G〉R of the ground states of HL and
HR.

Appendix F: Parity of Arcs through a TRIM

Suppose ∆Ne(κ⊥) is prescribed at a certain TRIM.
The number of arcs passing through this TRIM must be
equal to ∆ν modulo 2. To show this, we use the k · p
effective Hamiltonian in the space of states that have en-
ergy zero at κ⊥ to determine how the energies vary away
from κ⊥. Suppose for simplicity that all the modes at the
TRIM have the same Ie parity (the generic case). Then
particle-hole symmetry implies that the effective Hamil-
tonian is odd in k⊥, to leading order H(k⊥) = Axkx +
Ayky+. . . . HenceH(k⊥) = |k|(Ax cos θ+Ay sin θ), in po-
lar coordinates. The energy-dependence has a cone-like
structure: ǫi(k, θ) = |k|fi(θ) where fi(θ) are the eigen-
values of the periodic Hamiltonian Ax cos θ + Ay sin θ.
Now the particle-hole symmetry implies that the bands
come in pairs satisfying ǫi(k⊥) = −ǫi′(−k⊥), or in other
words that fi(θ + π) = −f∆Ne+1−i(θ). Thus between θ
and θ+π, the energies must be turned upside down. This
relates the dispersions fi in pairs, except for the middle
one f 1

2 (∆Ne+1) (if ∆Ne is odd) which is related to itself.

This mode changes sign from 0 to π by the symmetry, so
it crosses through 0 at an odd number 2k+1 of values of θ
in between, and crosses zero again at 2k + 1 points 180◦

away. When the solutions to ǫi(k⊥) = 0 are graphed,
these crossings correspond to 2k+1 arcs passing through
the TRIM. The other pairs of modes fi and fN+1−i to-
gether give rise to an even number of arcs. Thus, the
parity of the number of Fermi arcs is equal to the parity
of ∆Ne.

Though the parity of the number of arcs is determined
by ∆Ne’s parity, the precise number of arcs is not. For
example, when ∆Ne = 2, there may be no zero-energy
states away from the TRIM, as in the Dirac equation.
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Appendix G: Polarization

From the point of view of standard electrostatics, one
expects a cubic crystal, aligned with the x, y, and z axes,
with polarization P, to have a surface charge of P x per
unit cell on the yz surfaces. However, in general, a ma-
terial may have some stray charges on the surface.

In some situations, the surface charge is expected to
be determined (almost) by the theoretical value of the
polarization22. This does not always happen because
there may be extra charge trapped on the surface. But
for a clean surface (that is, a perfectly periodic one) the
ambiguity can be reduced: the charge density per unit
cell is given by P x up to an integer multiple of e, if the
surface is gapped.

If there are no modes at the Fermi energy on the sur-
face, then P x = Qx + ke (the surface charge per unit
cell). The surface charge may be changed by ke by filling
k surface bands. It is not possible to add a fractional mul-
tiple of e to each cell, since then the surface will become
conducting, according to the theorem that an insulator
must have a whole number of electrons per unit cell, un-
less strong interactions produce an unusual phase. (Since
we are assuming time reversal to be broken, generically,
an odd number of electrons can form an insulator.)

This prediction for the surface charge may be general-
ized to allow for a metallic surface. In this case there is a
two dimensional Fermi surface describing the modes on
the surface. The polarization is

P x ≡ Qx − eAfs

(2π)2
(mod e). (G1)

where Afs is the area of the surface arcs. The second
term can be interpreted as the charge that needs to be
removed to make the surface insulating.

If a crystal has a fractional polarization of P x, then
there are three possibilities. The surface may be electri-
cally charged (with a density of P x + ke per unit cell for
some integer k), or it may be metallic. The surface may
also reconstruct, so that there is a charge density wave.
When P x is a simple fraction, this is very likely, since
then the charge density wave would be commensurate.
For example, when P x = e

2 (as expected for inversion-
symmetric insulators) the surface could have a period
two reconstruction. The surface might also be metal-
lic, but a big spontaneous surface charge seems unlikely.
Since the “intrinsic” polarization may be exchanged for
a surface property, a scanning tunneling microscope may
be the best tool for observing it.

The polarization may be determined by noting that the
entanglement Hamiltonian HL has to satisfy the same
constraints on its surface charge. We can just determine
Qx and Afs for the ground state ofHL. AssumeGH = 0.
Then the number of arcs through each TRIM has the
same parity, either even or odd (according to Eq. (7)).
The Fermi surface covers half the Brillouin zone if this

number is odd, so according to Eq. (25),

Afs

(2π)2
≡ 1

4
(∆N(0, 0, 0) + ∆N(π, 0, 0))

≡ n

2
− P̃ x

e (mod 1) (G2)

where P̃ x
e is defined by Eq. (21). The second line uses

∆N(κ) = n− 2no(κ)
Now, if there are no nuclei at x = 0, then as in Sec.

V, one can use the neutrality of the Schmidt spectrum
and symmetry to show that Qx = 0. If on x = 0 there
are nuclei of total atomic number per cell Z0, imagine
taking these nuclei out of the system. This leaves behind
a charge of Z0e which must be divided evenly between the
left and right half. Focus on the left half of the system;
it has a charge of Qx = Z0e

2 .
Now substitute Qx and Afs into Eq. (G1). Combine

the n term in Eq. (G2) with Qx to get (Z0−n)e
2 . By

neutrality n is the total atomic number per unit cell, so
n− Z0 is the atomic number of the nuclei not on x = 0,
which is congruent mod 2 to Z 1

2
(the number of nuclei

at x = 1
2 ) because the other nuclei come in pairs. Hence

the polarization is eP̃e

x − 1
2Z 1

2
e. This agrees with Eq.

(8) because the dipole moment of the nuclei relative to
x = 0 is − 1

2Z 1
2
e. Nuclei not on the two special planes 0

and 1
2 come in pairs and cancel out. (We are defining the

dipole moment of the nuclei to be the sum over a unit
cell bounded by − 1

2 < x ≤ 1
2 in the x-direction.)
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