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Abstract

We analyze a novel type of phase transition that appears in the spin-
rotationally invariant form of the underscreened Anderson Lattice Model
and we obtain, with decreasing temperature, a continuous transition with
opening of a gap. We suggest that this model might describe the “Hidden
Order” transition in URu2Si2, We also examine the gaps that appear in
the electronic dispersion relations of the bands of different orbital char-
acter and compare our results with those found through photo-electron
spectroscopy.

PACS: 71.27.+a, 71.10.Fd, 71.10.Hf, 71.28.+d

Keywords: underscreened Anderson Lattice, Hidden-Order, URu2Si2

1 Introduction

In 1985 it was found[1] that URu2Si2 became superconducting below 0.8K,
and also that there was a large jump in the specific heat at 17.5 K. In 1986,
transport, thermal and magnetic measurements[2] on URu2Si2 produced
compelling evidence that the transition at 17.5 K produced a gap ∼ 10
meV which spread across about 40 % of the Fermi-surface. Far-infrared
reflectance measurements[3] provided direct evidence for a gap with a mag-
nitude between 5.6 and 7.5 meV which formed below 17.5 K. Recent ultra-
fast spectroscopy measurements[4] provided corroborating evidence for the
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existence of gaps of 5 and 10 meV, and STM measurements[5] have shown
the existence of 5 meV gaps. Initially, the transition was assumed to be
of magnetic origin. Inelastic neutron scattering measurements[6] showed
evidence for the existence of tiny ordered magnetic moments (of the order
10−2 µB). However, subsequent pressure measurements[7] showed that
a transition to an antiferromagnetic state with well-defined ordered mo-
ments (of the order 0.4 µB) occurs above P=0.5 GPa. The application
of pressure was found to have only a minimal effect on the transition
temperature. NMR measurements[8] indicated that, at zero pressure, the
system was inhomogeneous, containing both paramagnetic regions and
regions of antiferromagnetism. It was confirmed that the patches of anti-
ferromagnetism can be created either by impurity doping[9], or by stress
fields in pure URu2Si2[10]. Hence, it is now thought that the origin of
the transition at 17.5 K is not due to the appearance of small moment
antiferromagnetism, although there is significant evidence that the tran-
sition is produced by Fermi-surface nesting which is similar to that found
in the high pressure Neel state[11, 12, 13, 14]. Since experiments were
unable to identify the nature of the order parameter, the transition has
come to be known as a “Hidden-Order” Transition. Over the twenty-
seven years that have elapsed since its first discovery, there have been
many theoretical[15, 16, 17, 18] and experimental attempts to uncover
the nature of the transition. Some recent theories include descriptions
of states with rotational spin-currents that break spin-rotational invari-
ance, but not time-reversal invariance[15], modulated spin liquid states
that break the C4 rotational invariance[16], states with incommensurate
hybridization density waves promoted by the spin-independent coulomb
interaction between the 5f and conduction electrons[17], or unconven-
tional spin-density wave states where the order parameter has d-wave
symmetry[18]. The present status of the field has been comprehensively
reviewed in reference[19].

In this paper, we shall examine the underscreened Anderson Lattice
Model which describes two itinerant 5f bands which resonantly couple
to a single conduction band. Like the Anderson Lattice Model[20, 21]
which is a generalization of a single impurity model introduced to de-
scribe a magnetic impurity in a metal[22], the underscreened Anderson
Lattice Model[23, 24] is a generalization of a model introduced to de-
scribe the single-impurity underscreened Kondo effect[25, 26]. The model
is generic and is not specifically tailored to the electronic structure of
URu2Si2[27, 28].

The underscreened Kondo or Anderson Lattice Model were recently
studied to describe the competition between ferromagnetism and Kondo
effect, which has been observed in uranium and neptunium compounds
[23, 24, 29]. But, in the URu2Si2 compound, the Kondo effect is not in-
volved in the transition occuring at 17.5 K and we can use a simplified
mean-field treatment of the Anderson Hamiltonian at the Hartree-Fock
level. Moreover, as it will be explained later, we can simplify the prob-
lem by taking a zero value for one of the two d-f hybridization terms,
without changing the physical results. Thus in the present model, the
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f electrons interact via local (spin-rotationally-invariant) Coulomb and
exchange interactions. We find that the system exhibits a competition
between magnetic ordering and a novel type of ordering. The novel state
corresponds to an inhomogeneous state with wave vector Q and in which
the 5f bands are mixed, in contrast the normal state where the 5f bands
have pure orbital characters. However, the admixture is spin-dependent
and, in certain circumstances, corresponds to a broken gauge invariance of
the Hamiltonian. The type of correlation is best illustrated in the limit of
zero hybridization, where the correlation can be described simply in terms
of the 5f electron creation operators corresponding to the two bands (la-
beled by α and β). The correlation can be seen in the even-parity, broken
time-reversal symmetry state constructed from products of operators of
the type

(

αk f†,α
k+Q,↑ + βk f†,β

k,↑

) (

β∗
k f†,α

−k−Q,↓ − α∗
k f†,β

−k,↓

)

(1)

acting on a vacuum state | 0 >, where the coefficients of the operators
are normalized to unity

|αk|
2 + |βk|

2 = 1 (2)

It is seen that the mixed two-particle states and the corresponding un-
mixed two-particle states (αk = 1 , βk = 0) have precisely the same type
of expectation values for spin-conserving 5f orbital single-particle opera-
tors, and likewise for the 5f spin operators. The interference terms can
only be measured by a combined spin and orbital sensitive measurement.

2 The Model

The model describes two degenerate localized 5f bands (labeled by χ =
α, β), which acquire itinerant character by direct hopping between neigh-
boring 5f shells and the mixing with one itinerant conduction band. The
Hamiltonian is written as

Ĥ = Ĥf + Ĥd + Ĥfd (3)

where Ĥf describes the f electrons, Ĥd describes the itinerant conduction
band and Ĥfd describes the hybridization. The Hamiltonian Ĥf is given
by

Ĥf =
∑

k,σ,χ

Eχ

f (k) n
χ

f,k,σ +

(

U

2N

)

∑

k,k′,q,σ,σ′,χ,χ′

f†,χ
k+q,σ f†,χ′

k′−q,σ′ f
χ′

k,σ′ f
χ

k′,σ

+

(

J

2N

)

∑

k,k′,q,σ,σ′,χ,χ′,

f†,χ
k+q,σ f†,χ′

k′−q,σ′ f
χ

k′,σ′ f
χ′

k,σ (4)

in which the first term, proportional to Eχ

f (k), describes the dispersion
relation for the χ-th 5f band while the second and third terms describe
the screened Coulomb interaction between the 5f electrons in the same
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5f-shell. The third term contains an inter-orbital exchange interaction
which is required to make the model spin rotationally invariant[30]. Since
we have selected only two 5f bands, the model is not invariant under
spatial rotations[31]. The conduction electron Hamiltonian Ĥd can be
expressed as

Ĥd =
∑

k,σ

ǫ(k) d†k,σ dk,σ (5)

where ǫ(k) describes the dispersion relation of conduction electrons la-
beled by the Bloch wave vector k. The Hamiltonian describing the on-site
hybridization process is given, as usual, by

Ĥfd =
∑

k,σ,χ

(

Vχ(k) f
†,χ
k,σ dk,σ + V ∗

χ (k) d
†
k,σ fχ

k,σ

)

(6)

The Coulomb interaction can be re-written in the form

Ĥint =

(

U − J

2N

)

∑

k,k′,q,σ,χ6=χ′

f†,χ
k+q,σ fχ

k,σ f†,χ′

k′−q,σ
fχ′

k′,σ

+

(

U

2N

)

∑

k,k′,q,σ,χ,χ′

f†,χ
k+q,σ fχ

k,σ f†,χ′

k′−q,−σ
fχ′

k′,−σ

+

(

J

2N

)

∑

k,k′,q,σ,χ6=χ′

f†,χ
k+q,σ fχ′

k,σ f†,χ′

k′−q,−σ
fχ

k′,−σ
(7)

To aid the analysis, we shall introduce the normalized non-Hermitean
operator ẑq,σ

ẑq,σ =
1

N

∑

k

f†,β
k+q,σ fα

k,σ (8)

This product of operators provides a measure of the coupling between the
two types of f bands. The last line in the interaction of eqn.(7) originates
from the spin-flip term which was required from considerations of spin-
rotational invariance[30]. We shall also introduce the 5f orbital charge
density operator via

ρ̂χq,σ =
1

N

∑

k

f†,χ
k+q,σ fχ

k,σ (9)

It should be noted that the first term in the interaction eqn.(7) can be
expressed in terms of products of either ẑq,σ or of the orbital density op-
erators ρ̂χq,σ.

We shall assume that the α and β bands are degenerate and that
Vβ(k) = 0. In this case, one can see that the Hamiltonian is invariant
under a gauge transformation of the β electrons, which is independent of
the gauge invariance of the α and conduction electrons. This gauge sym-
metry is analogous to the chiral gauge symmetry present in the massless
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limit of the Dirac equation. It is important to note that taking Vβ(k) = 0
does not change the physical results but only simplifies the calculations.

3 The Mean-Field Approximation

In the mean-field approximation, the interaction term in the Hamiltonian
is expanded in powers of the fluctuations of bi-linear products of operators.

∆n̂χ

f,σ =

(

n̂χ

f,σ − nχ

f,σ

)

∆ẑq,σ =

(

ẑq,σ − zq,σ

)

(10)

where the hats have been dropped for the averaged quantities. We have as-
sumed that the average f electron occupation numbers are translationally
invariant (i.e. nχ

f,i,σ = nχ

f,σ), but we have retained the momentum-
dependence of the expectation values of the non-Hermitean operators.
The terms in the Hamiltonian quadratic in the fluctuations are neglected.
This approximation reduces the Hamiltonian to an expression quadratic
in fermionic operators that can be diagonalized. We shall assume that the
average zq,σ is a non-zero complex number for commensurate momentum
transfers Q, where Q could be any vector that is both on and normal
to the Brillouin zone boundary. The assumption of a finite momentum
transfer corresponds to having an inhomogeneous state. However, the in-
homogeneous nature of this state is masked in either purely spin sensitive
or purely orbital sensitive measurements.

In the Hartree-Fock Approximation, the temporal and spatial Fourier
transform of the single-electron f-f Green’s function satisfy the equations
of motion
(

ω − Eα
f,σ(k)

)

Gα,χ′

ff,σ(k, k
′, ω) = δα,χ′

δk,k′ + Vα(k) G
χ′

df,σ(k, k
′, ω)

+ κ−Q,σ Gβ,χ′

ff,σ(k +Q, k′, ω)
(

ω − Eβ

f,σ(k)

)

Gβ,χ′

ff,σ(k, k
′, ω) = δβ,χ′

δk,k′ + Vβ(k) G
χ′

df,σ(k, k
′, ω)

+ κ∗
Q,σ Gα,χ′

ff,σ(k −Q, k′, ω)

(11)

where the Hartree-Fock f band dispersion relation Eχ

f,σ(k) is given by

Eχ

f,σ(k) = Eχ

f (k) +
∑

χ′

(

(U − J) nχ′

f,σ (1− δχ,χ′

) + U nχ′

f,−σ

)

(12)

and the gap parameter κQ,σ is defined as the complex number

κQ,σ = J z−Q,−σ − ( U − J ) z−Q,σ (13)
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The mixed f-d Green’s function is found to satisfy

(

ω − ǫ(k)

)

Gχ′

df,σ(k, k
′, ω) = Vα(k)

∗ Gα,χ′

ff,σ(k, k
′, ω) + Vβ(k)

∗ Gβ,χ′

ff,σ(k, k
′, ω)

(14)
The above equation form a closed set which are easily solved when Vβ(k) =
0 and Q is commensurate with the lattice. The solutions are given by

Gα,χ′

ff,σ(k, k
′, ω) =

(ω − ǫ(k))

Dσ(k, ω)

[

(ω − Eβ

f,σ(k +Q)) δα,χ′

δk,k′ + κQ,σ δβ,χ′

δk+Q,k′

]

Gβ,χ′

ff,σ(k, k
′, ω) = Dσ(k +Q,ω)−1

[

κ∗
Q,σ (ω − ǫ(k +Q)) δα,χ′

δk+Q,k′

+

(

(ω − Eα
f,σ(k +Q))(ω − ǫ(k +Q))− |Vα(k +Q)|2

)

δβ,χ′

δk,k′

]

(15)

where the denominator Dσ(k, ω) is given by

Dσ(k, ω) =

[ (

ω −Eβ

f,σ(k +Q)

)(

ω − Eα
f,σ(k)

)

− |κQ,σ|
2

] (

ω − ǫ(k)

)

− |Vα(k)|
2

(

ω − Eβ

f,σ(k +Q)

)

(16)

For completeness, we give the d-electrons Green’s function

Gdd,σ(k, k
′, ω) =

δk,k′

Dσ(k, ω)

[(

ω−Eβ

f,σ(k+Q)

)(

ω−Eα
f,σ(k)

)

− |κQ,σ|
2

]

(17)
The zeros of the denominator Dσ(k, ω) yield the Hartree-Fock quasi-
particle dispersion relations for electrons of spin σ.

The quantity zQ,σ is determined from the expectation value of the
product of operators which are off-diagonal in the band indices

z∗Q,σ =
1

N

∑

k

< f†,α
k,σ fβ

k+Q,σ > (18)

which can be related to the definition of the real-time Green’s function
for small negative times t = −η where η → 0. On expressing the real
time Green’s function in terms of its Fourier Transform and on closing
the contour in the upper-half complex ω-plane, as well as noting the pole
structure of the Green’s function, one finally arrives at the result

z∗Q,σ = −
1

N

∑

k

[
∫

C

dω

2πi
f(ω) Gβ,α

ff,σ(k +Q, k, ω)

]

(19)

where f(ω) is the Fermi-function and where the contour C encloses the
real axis. Since the f-f Green’s functions involve zQ,−σ, the zQ’s must be
determined self-consistently. Furthermore, since the Green’s functions for
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5f electrons of spin σ with mixed band-indices are odd functions of zQ,−σ,
the self-consistency equations have the trivial solution zQ,σ = 0 ∀ σ
which corresponds to the conservation of the number of electrons in the
β-band. We shall first consider the trivial solution with zQ,σ = 0.

3.1 The Normal State

The normal state is defined as that for which zQ,σ = 0 ∀ σ. The single-
electron Green’s functions for the 5f bands reduce to

Gβ

ff,σ(k, k
′, ω) =

δk,k′

ω − Eβ

f,σ(k)

Gα
ff,σ(k, k

′, ω) =
( ω − ǫ(k) ) δk,k′

(ω − Eα
f,σ(k)) (ω − ǫ(k))− |Vα(k)|2

(20)

in which the dispersion relation for the β 5f Hartree-Fock quasi-particles
is simply given by Eβ

f,σ(k). The conduction electron states are admixed
with 5f states of α-character and their Green’s functions reduce to

Gdd,σ(k, k
′, ω) =

( ω − Eα
f,σ(k) ) δk,k′

(ω − Eα
f,σ(k)) (ω − ǫ(k))− |Vα(k)|2

(21)

The Green’s functions for the α-th band can be re-cast in the form

Gα
ff,σ(k, k, ω) =

|A+
σ (k)|

2

ω − E+
σ (k)

+
|A−

σ (k)|
2

ω − E−
σ (k)

Gdd,σ(k, k, ω) =
|B+

σ (k)|2

ω − E+
σ (k)

+
|B−

σ (k)|2

ω − E−
σ (k)

(22)

which the dispersion relations of the hybridized Hartree-Fock quasi-particle
bands E±

σ (k) are given by

E±
σ (k) =

(

Eα
fσ(k) + ǫ(k)

2

)

±

√

(

Eα
fσ(k)− ǫ(k)

2

)2

+ |Vα(k)|2 (23)

The f and d characters of the bands have weights given by |A±
σ (k)|

2 and
|B±

σ (k)|2, respectively, where

|A±
σ (k)|

2 =
1

2

[

1±
( Eα

fσ(k)− ǫ(k) )
√

(Eα
fσ(k)− ǫ(k))2 + 4 |Vα(k)|2

]

|B±
σ (k)|2 =

1

2

[

1∓
( Eα

fσ(k)− ǫ(k) )
√

(Eα
fσ(k)− ǫ(k))2 + 4 |Vα(k)|2

]

(24)

The k-dependence of the quasi-particle dispersion relations and the form
factors are sketched in fig.(1). In the figure, the energies are given in
units of half the conduction band width. The 5f density of states are
shown in fig.(2). Due to the relatively small value of the hybridization
(V=1/10) and the large value of the 5f band width (Wf = 6/10) caused
by f-f hopping, the α and β 5f density of states have quite similar shapes
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Figure 1: (Color online) [Upper Panel] The three dispersion relations for
the bands of the under-screened Anderson Lattice Model in the normal state
(Schematic). The momentum k is taken to be along the (1, 1, 1) direction. The
upper ( E+(k) ) and lower ( E−(k) ) bands are comprised of α 5f states hy-
bridized with the conduction band. The band in the center marked by the red
curve (open circles) is the unhybridized β-band. [Lower Panel] The 5f weights
of the upper and lower hybridized bands ( |A±

σ (k)|
2 ) are plotted as functions

of k. The β band has pure 5f character.

at energies removed from the hybridization gap. The hybridization gap is
centered on Ef/(1+Wf/2). It should be noted that near the band edges,
the shape of the band is similar to that of the unhybridized bands except
for small energy shifts of the order of |V |2.
Magnetic Instabilities

In the Hartree-Fock approximation, the paramagnetic phase is gener-
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Figure 2: (Color online) The α and β components of the 5f density of states

per spin versus ω (solid lines), and nα
f and n

β
f electron per spin (dashed lines)

as functions of µ, in which the Hartree-Fock energies of the 5f orbitals have
been kept constant. The simple cubic tight-binding density of states has been
approximated by a semi-elliptical form.

ally expected to retain its stability relative to magnetic states for small
values of the Coulomb U and the exchange J interactions. The dynamic
spin susceptibility for the Hartree-Fock state can be found from the equa-
tions of motion in the Random-Phase Approximation[32]. The static sus-
ceptibility found by setting ω = 0, shows a pole when

( 1− U χ
α,α(0)
f (q, 0) ) ( 1− U χ

β,β(0)
f (q, 0) )− J2 χ

α,α(0)
f (q, 0) χ

β,β(0)
f (q, 0) = 0

(25)
which signals the instability to a spin density wave with wave vector q.
In the above equation, the quantity χ

β,β(0)
f (q, 0) represents the response

of the β-band to a Weiss field and is given by

χ
β,β(0)
f (q, 0) =

1

N

∑

k

(

f(Eβ

f (k + q))− f(Eβ

f (k))

Eβ

f (k)− Eβ

f (k + q)

)

(26)

and χ
α,α(0)
f

(q, 0) is the reduced Hartree-Fock 5f spin susceptibility for the
α-band which is given by

χ
α,α(0)
f (q, 0) =

1

N

∑

k,±,∓

|A±(k+q)|2 |A∓(k)|2
(

f(E±(k + q))− f(E±(k))

E∓(k)− E±(k + q)

)

(27)

The quantity χ
α,α(0)
f (q, 0) has the same form as the reduced 5f susceptibil-

ity found from an R.P.A. study of the Anderson Lattice[21]. Due to the Ef

dependence of the form factors in the α-band 5f electron density of states,
the susceptibility χ

α,α(0)
f (q, 0) has a band Van-Vleck component in addi-

tion to a modified Pauli-paramagnetic term. Both Hartree-Fock suscepti-
bilities are always positive. It is expected that if the β-band is described
in a tight-binding approximation, the reduced susceptibility χ

β,β(0)
f (q, 0)
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may show a divergence at the β-band nesting vector Q = (1, 1, 1) when µ
approaches the center of the band. In any case, it should be noted that
the magnetic instability is promoted by nesting the Fermi-surface sheets
that have the same 5f orbital characters.

3.2 The Instability to a Novel State

We will now introduce a Novel state which is based on a non zero value
of z∗Q,σ given by the equation (18). This new parameter links the two

f-electrons of different orbitals α and β and exists in the situation of the
underscreened Anderson Lattice model, but not in the classical Anderson
Lattice model. This model is used here since we are now discussing the
case of the uranium compound URu2Si2 [23].
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Figure 3: (Color online) The interband susceptibility χ
α,β(0)
f (Q) (solid line)

and the sum of the intraband susceptibilities χ
α,α(0)
f (Q) + χ

β,β(0)
f (Q) (dashed

line) as functions of µ, with fixed Hartree-Fock f electron bands E
χ
f,σ(k). The

unhybridized f and conduction band dispersion relations have been described
within a simple cubic tight-binding model.

The self-consistency condition for zQ,σ can be expressed as

z∗Q,σ = − κ∗
Q,σ

1

N

∑

k

∫

C

dω

2πi

( ω − ǫ(k) )f(ω)

Dσ(k, ω)
(28)

If the novel transition is second-order, then at the transition we expect
that Fσ ∼ 0, so the above set of equations can be linearized to yield

[

1− (U − J)χ
α,β,(0)
f,σ (Q, 0)

]

z∗Q,σ = −z∗Q,−σJχ
α,β

f,σ (Q, 0)
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[

1− (U − J)χ
α,β,(0)
f,−σ

(Q, 0)

]

z∗Q,−σ = −z∗Q,σJχ
α,β

f,−σ(Q, 0) (29)

where

χ
α,β,(0)
f,σ (Q, 0) =

1

N

∑

k,±

|A±
σ (k)|

2

(

f(E±
σ (k)) − f(Eβ

f,σ
(k +Q))

Eβ

f,σ(k +Q) − E±
σ (k)

)

(30)

The summand in χ
α,β,(0)
f,σ is manifestly positive. Hence, for positive J we

may have a state for which the z-component of the spin magnetization for
each 5f band vanishes (i.e. nχ

f,σ = nχ

f,−σ) and the spin-up with the spin-
down dispersion relations are identical, but for which zQ,σ = − zQ,−σ.
For negative values of J , one may have a paramagnetic solution for which
zQ,σ = zQ,−σ. If |zQ,σ| 6= |zQ,−σ|, the system may have a non-zero value
of the z-component of the magnetization. We shall, henceforth, restrict
our attention to positive J . The critical value of J , Jc, at which this new
phase may occur is given by the expression

[

1− (U − Jc)χ
α,β,(0)
f,σ (Q, 0)

] [

1− (U − Jc)χ
α,β,(0)
f,−σ (Q, 0)

]

= J2
c χ

α,β,(0)
f,−σ (Q, 0) χ

α,β,(0)
f,σ (Q, 0)

(31)

It is seen that the novel transition is promoted by the Fermi-surface nest-
ing between the two bands with different 5f orbital characters. In this as-
pect our theory bares a resemblance to the that of Dubi and Balatsky[17].
However, in their case the hybridization wave is driven by a spin-independent
interaction, whereas in our theory the transition is driven by the spin-flip
part of the Hund’s rule exchange and, thus, breaks spin-rotational invari-
ance. The interband susceptibility χ

α,β,(0)
f (Q, 0) is shown as a function

of µ in fig.(3). The graph determines the µ-dependence of the critical
value of J−1

c at which the novel state first becomes stable, when U = J .
The figure also shows χ

α,α(0)
f (Q, 0) + χ

β,β(0)
f (Q, 0) which, when U = J ,

determines the critical value of J−1 required for the antiferromagnetic
instability. The magnetic susceptibility of the β-band diverges logarith-
mically when the Fermi-surface approaches the perfect nesting condition
µ = Eβ

f,σ(k) = Eβ

f,σ(k +Q) at µ = 0.3. The second peak originates from
the α-band susceptibility. This is expected since the hybridized α-band
follows a similar dispersion relation to the β-band, except it is split and
shifted by an energy of the order of |V |2 by the hybridization and, there-
fore, should exhibit a similar structure at a shifted value of the chemical
potential. The interband susceptibility shows a similar nesting peak at an
intermediate value of µ. The graph indicates that the commensurate novel
state may have a narrow region of phase space where it is stable against
paramagnetism and Neel antiferromagnetism. The instability criterion
can be extended to incommensurate wave vectors q by using the Random
Phase Approximation. For an incommensurate transition, where the band
folding is not appropriate, one should see clear signs of gapping in angle
resolved photoemission, at wave vectors corresponding to the nesting of
sheets of the Fermi-surface with different orbital characters. However, the
gapping is expected to produce a new branch that only has appreciable
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intensity in the nested region of the Fermi-surface. Since the Neel antifer-
romagnetic state is expected to be produced by intra-band nesting, and
since this model is characterized by a close proximity of the intra and inter
band nesting vectors, it is expected that these two phases are competing
for the same regions of the Fermi-surface. It should be noted the role of
nesting in the electronic structure of URu2Si2 has been investigated within
the LDA[27, 28]. The LDA studies[27, 28] have identified a commensurate
nesting vector associated with the antiferromagnetic phase and have also
discovered the pure character of the 5f bands in the normal state. The
underscreened Anderson Lattice Model, although generic, captures these
features. Our description is also consistent with the interpretation of in-
elastic neutron scattering measurements[11, 12]. Hence, it seems highly
unlikely that this novel state will coexist homogeneously with antiferro-
magnetism. This is consistent with the experimental observations[9] on
URu2Si2. For U = J and a general value of J away from the quantum
critical value Jc, the temperature dependence of the gap |κQ,σ(T )| has
the usual mean-field variation shown in fig.(4). The calculated ratio of

0
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0 0.001 0.002 0.003 0.004 0.005
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Q
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)|
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Figure 4: The temperature dependence of the gap parameter |κQ,σ(T )| for a
value of J=0.128 and U = J . This value of J is comparable to the assumed
value of 0.6 for the 5f band-width due to direct f-f hopping.

the gap parameter to Tc of ∼ 2.25 should be compared with the experi-
mentally determined value[5] of 2.9± 0.15. The result shown on fig.(4) is
important for the comparison with the compound URu2Si2. It supports
our hypothesis that the change occuring at 17.5 K is due to an opening
of a gap resulting from the underscreened band structure with a two-fold
degenerate 5f-level, as expected in uranium compounds.

4 Results and Discussion

The novel state is described by a non-zero value of the complex order
parameter ZQ, defined as the trace over spins of a spin-dependent expec-
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Figure 5: (Color online) [Upper Panel] A (schematic) close up view of the dis-
persion relations (filled markers) for the bands with α character in the novel
state and their 5f-α weights (unfilled markers). The wave vector k is directed
along the (1, 1, 1) direction. The position of the Fermi-energy µ is marked by
the arrow. The α intensities for the various branches of dispersion relations are
indicated by symbols of the same type. [Lower Panel] The dispersion relations
for the bands with β character and their 5f-β weights are plotted as functions
of k.

tation value

ZQ =
1

2N

∑

k,σ

σ < f†,β
k+Q,σ fα

k,σ > (32)

which characterizes a type of spin inter-5f orbital density wave. Since
this appears to be a second-order instability which breaks a continuous
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gauge symmetry through short-ranged interactions[33], there should be a
branch of collective Goldstone modes associated with it[34]. However, un-
like the case of ordinary magnetic instabilities[32], the Goldstone modes
are not expected to be easily accessed via inelastic neutron scattering
spectroscopy. Therefore, we shall outline the signatures of the novel state
that may be accessed in orbitally-sensitive angle resolved photoemission
measurements.

In the novel state, the 5f quasi-particle dispersion relations are mod-
ified and the orbital characters of the bands are mixed. The dispersion
relations and the 5f-orbital characters of the bands are shown in fig.(5),
for wave vectors along the nesting direction. The weights for each char-
acter when summed over the bands yields unity. It can be seen that the
set of bands containing α-character contains a pair of adjacent band seg-
ments with disjoint dispersion relations which are quite similar to those
of the upper and lower hybridized bands of the normal state. The 5f-α
intensities of this pair of band segments grossly follow the same pattern
as the intensities of the pair of hybridized bands in the normal state.
However, the individual α-weights of the segments do show sharp jumps
in the regions where gaps, either at the Fermi-surface gaps or above, are
found. It is the gapping of the Fermi-surface that stabilizes the novel
state. A Fermi-surface gap occurs for |k| ∼ 0.48, and a smaller above-
the-Fermi-surface-gap can be seen for |k| ∼ 0.37. It should be noted that
Fermi-surface gaps at k ∼ ± 0.56 have been inferred from the experimen-
tal measurements of Dakovski et al. [36]. In the momentum intervals
enclosed by these gaps, the dispersion relation marked by solid red trian-
gles has a gradual variation in intensity caused by the hybridization of the
5f α-band with the conduction band. The set of bands with β-character
contain two adjacent segments that, when combined, resembles the pure
β-band of the normal state. The β-weights of these two adjacent segments
form a (disjoint) curve that remains almost constant over almost the en-
tire Brillouin zone, similar to the normal state. However, there are rapid
changes in the intensity for the k values where the energy gaps occur be-
tween the consecutive segments. It is seen that the Fermi-surface gaps for
the β-character bands occur at k ∼ ±0.52, which slightly differ from the
k values for which the Fermi-surface gaps occur in the bands with α char-
acter. This leads to a double gap structure seen in fig.(6). It should be
noted, that despite the gapping of the Fermi-surface for the normal state
derived bands, the occurrence of new bands that cross the Fermi-energy,
albeit with reduced intensities, allows the novel (mean-field) phase to be
classified as metallic. This can be seen in the density of states shown in
fig.(7). For the commensurate case considered here, the picture greatly
simplifies if one folds the Brillouin zone. Indeed, evidence of a modified
periodicity (such as from simple tetragonal to body-centered tetragonal)
in the “Hidden Order” state of URu2Si2 has been inferred from angle re-
solved photo-emission experiments[35].

In summary, we propose that a novel concept of a spin inter-orbital
density wave may describe the “Hidden Order” state of URu2Si2. The
order parameter is complex, indicating that the transition breaks a con-
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Figure 6: (Color online) The dispersion relations for the 5f α (black line) and
5f β (red line) electrons along the (k, k, k) direction. The widths of the lines
are proportional to their intensities. The Fermi-energy µ is set at about 0.32
and is indicated by the horizontal line. The α-dispersion relations shows the
existence of a direct gap of the order of 2 |V | ∼ 0.2 between the two branches.
For other wave vectors, the α and β branches follow similar dispersion relations,
however, their degeneracy is lifted by a small energy of the order of |V |2. Gaps
at the Fermi-energy are seen to occur at points which are connected by the
commensurate nesting vector Q = (1, 1, 1). [Figure courtesy of T. Durakiewicz]

tinuous gauge symmetry of the Hamiltonian. The correlations in this state
are not readily accessible by purely spin or purely orbital measurements.
However, the novel state is produced by the nesting between sheets of
the Fermi-surface with different (unmixed) orbital characters. Further-
more, below the transition temperature, the Fermi-surface will gap at
these points, leading to the formation of small patches of dispersion rela-
tions that describe electrons with mixed orbital characters. The existence
of two distinct gaps with mixed characters of 5f states may be identifiable
through orbitally sensitive angle resolved photoemission measurements.
Indeed, such gaps shifting states away from the Fermi-level at specific lo-
cations in the Brillouin zone have been seen[36] to evolve in the “Hidden
Order” phase of URu2Si2. Since antiferromagnetism is favored by nesting
between sheets with the same (unmixed) orbital characters, and since the
inter-band and intra-band nesting points are close, the novel ordering is
expected to compete with antiferromagnetism, as has been found to be
the case for URu2Si2. Thus, we have presented a new model starting
from two 5f-localized bands hybridized with a conduction band within
the underscreened Anderson Lattice model. We have obtained an elec-
tronic structure with gaps which increase with decreasing temperature.
Our model can account for the opening of a gap observed in a number of
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Figure 7: (Color online) The combined α 5f ρα(ω) and conduction band density
of states for the ordered state, as a function of ω. The β 5f density of states
ρβ(ω) is also shown as a function of ω. It seen that the gap structure associated
with the novel ordering is highly asymmetric.

different experiments (including recent photoemission measurements) in
the “Hidden Order” phase of URu2Si2 .
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