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We present a simplified numerical method to solve for the current distribution in a V-shaped
antenna excited by an electric field with arbitrary polarization. The scattered far-field amplitude,
phase and polarization of the antennas are extracted. The calculation technique presented here is
an efficient method for probing the large design parameter-space of such antennas, which have been
proposed as basic building blocks for the design of ultrathin plasmonic metasurfaces. Our calculation
is based on the Integral Equation Method of Moments and is validated by comparison to the results
of finite-difference time-domain (FDTD) simulations. The computation time is approximately five
orders of magnitude less than for FDTD simulations. This speed-up relies mainly on the use of the
thin wire approximation whose domain of validity is discussed. This method can be generalized to
more complex geometries such as zigzag antennas.

PACS numbers: 00.00.00

I. INTRODUCTION

Optical devices modify the wavefront of light by acting
on its phase and amplitude. At the core of many optical
components is a spatially varying phase response, as il-
lustrated by a simple lens, which has a parabolic phase
profile. Most conventional optical components rely on
light propagation over different optical lengths in order
to create such a spatial phase response profile. However,
it was recently shown1 that abrupt phase changes over
the scale of a wavelength can be introduced by using the
phase response of plasmonic resonators. While a single
resonator is limited to providing a phase response with
a maximum range of π, it was shown that an element
consisting of two orthogonal resonators can provide arbi-
trary amplitude and phase response, covering the entire
2π range for the scattered light component polarized per-
pendicularly to the incident light1.

In previous works1,2, nanoscale gold V-shaped plas-
monic antennas supporting two plasmonic eigenmodes
of opposite symmetry (Fig. 1 (a)-(b)), and thus act-
ing as two-oscillator systems, were used to provide ad-
equate phase and amplitude control of light. Such V-
shaped antennas can be used as the basic building blocks
of a new class of flat optical components using phase
discontinuities1–3, since they enable the creation of ar-
bitrary phase and amplitude masks with subwavelength
’pixel’ size.

We present here the results of numerical solutions for
the current distribution and scattered fields of V-shaped
antennas, and in doing so obtain a detailed picture of
their near- and far-field properties. In particular, we are
able to accurately map their amplitude, phase and polar-
ization responses in arbitrary directions. The convenient
modeling tool presented here enables one to select and

FIG. 1. (a) and (b) Schematic of the first-order (a) symmet-
ric and (b) anti-symmetric modes supported by a V-shaped
antenna excited by an incident electric field polarized either
(a) along the antenna symmetry axis or (b) perpendicular to
the antenna symmetry axis. The arrows indicate the instan-
taneous direction of the current in each arm while the colored
shading represents qualitatively charge density (the darker the
more charges). (c) Schematic of a geometry used for FDTD
simulations with h = 1.2 µm and ∆ = 60◦. The rectan-
gular arms are 200 nm wide and 100 nm thick. Antennas
with different opening angle ∆ are obtained by rotation about
the connecting corners of the rectangular arms (green dot).
The junction is formed by adding a triangular section. (d)
Schematic of the geometry used for the Method of Moments
calculations. Each antenna arm is modelled as a cylinder of
diameter 2a, but the geometry will be effectively reduced to
that of a wire antenna (dashed line). The V-shaped antennas
have an opening angle ∆ and a total length h.

assemble various V-shaped antennas into more complex
optical systems, in addition to giving detailed insight into
the behavior of the antenna, illustrating for example the
effects of near-field coupling between the two arms.
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II. METHOD AND APPROXIMATIONS

Models describing the response of antennas have been
extensively studied4–7. One of the main challenges is that
the integral equations governing the behavior of antennas
have no exact analytical solutions. However, with the de-
velopment of numerical methods in the last few decades,
we can obtain accurate numerical solutions in an effi-
cient manner. This work is presenting how the Integral
Equation Method of Moments (MoM)6–10 can be used to
study the behavior of V-shaped plasmonic antennas de-
scribed by a Pocklington-type integral equation11. This
numerical technique is very general and has been used to
compute the characteristics of complex radio-frequency
and microwave antenna geometries6. The Pocklington
equation is often used to determine the current distribu-
tion on cylindrical wires of small radius5–7.

We study here how the methods and approximations
used for long-wavelengths apply to the mid-infrared spec-
tral range, where plasmonic properties play a signifi-
cant role, by comparing our numerical results with the
results of finite-difference time-domain (FDTD) simula-
tions. We emphasize that we use a series of approxi-
mations to simplify the calculations as much as possible,
effectively reducing the problem to one dimension. While
full three-dimensional MoM simulation techniques could
be implemented on our geometry, our main goal here
was to propose a fast and efficient simulation method to
probe a large design parameter space, bringing in the
meantime radio-frequency methods to the attention of
the plasmonics community. Since our numerical solution
is one dimensional, it gives direct access to integral quan-
tities such as the current distribution on the antenna,
enabling straightforward interpretation of nanoantennas
as circuit elements12–14. In contrast, three-dimensional
FDTD simulations give access to a current density, whose
integration into a one-dimensional quantity can be chal-
lenging, in particular at corners and edges. Finally, our
method is approximately five orders of magnitude faster
than FDTD simulations, enabling the accurate mapping
of the properties of V-antennas over various geometric
parameters.

The geometry considered is that of gold V-shaped an-
tennas fabricated at the interface between a silicon sub-
strate and air. Light is incident on the antenna from
the silicon substrate. The antennas are 200 nm wide and
100 nm thick. For all the results presented, the incident
wavelength is λ0 = 7.7 µm. The two arms of the an-
tennas have equal length (h/2), in order to preserve the
symmetry of the structure and thus simplify the under-
standing of the two orthogonal plasmonic modes. We
note however that the calculation presented here could
very easily be generalized to non-symmetric geometries.
As shown in Fig. 1 (c), antennas with different opening
angles are obtained by rotation of the rectangular arms
about their connecting corners. While this exact geome-
try is simulated in our FDTD calculations, we use several
approximations in our MoM calculations (see Fig. 1 (d)):

(1) We assume the antennas to be cylindrical with a ra-
dius a = 100 nm. The optical properties of the antennas
are moderately affected by the cross-section dimensions
since they are much smaller than the length of the an-
tenna. We verified that our results have limited depen-
dence on the value of a chosen. (2) We use the thin-wire
approximation (a << λ and a << h, with a the an-
tenna radius and h its total length) which enables us to
consider the current distribution on the antenna to be
purely axial and azimuthally invariant6,7, i.e. invariant
for rotations around the antenna axis (see Appendix).
This approximation transforms the geometry studied to
that of an infinitely thin antenna and thus enables to
reduce the problem to an effective one-dimensional prob-
lem, which results in the dramatic increase observed for
the computation speed. Information on the finite dimen-
sion of the cross section (radius a) is however preserved
in our equations, in particular in the expression of the
effective distance between two points of the antenna (see
Appendix). While fully justified at long wavelengths, this
approximation may seem crude for mid-infrared anten-
nas for which typically λ/a ≃ 5 and h/a ≃ 10. Our first
concern will thus be to validate our results by compar-
ing them with the results of well established simulation
tools. For this purpose, we use here FDTD simulations
realized with a commercial software (Lumerical FDTD)
as a reference. (3) We consider the antenna to be sur-
rounded by a uniform medium with an effective index
neff = 2.6. This value is such that the scattering res-
onance curve for a straight rod antenna embedded in a
uniform dielectric of index neff overlaps with the scatter-
ing resonance curve of the same antenna located at an
interface between silicon and air, both curves being ob-
tained by FDTD simulations. Although imperfect, our
approach offers the advantage to preserve simplicity and
comparisons with FDTD simulations will show that it is
accurate enough to guide the design of optical compo-
nents, answering doubts expressed in the past that the
numerical solution presented here would accurately han-
dle wire antennas in a space partially filled with dielectric
medium15,16, such as antennas defined on a dielectric sub-
strate. (4) The finite conductivity of gold is taken into
account in our calculations (details in the Appendix) and
is derived from the optical constants found in [17].

Our solution follows the outline of the derivation pre-
sented in [7] for the numerical integration of Pockling-
ton’s equation in the case of a straight cylindrical rod
antenna. We first derive the integral equation governing
the behavior of V-shaped cylindrical antennas, reduce
the two-dimensional problem to one dimension, and im-
plement a numerical solution based on the MoM. We first
obtain the current distribution driven at the surface of
the antenna by a known incident field. The far-field scat-
tered by the antenna in any direction, with amplitude,
phase and polarization information, is then calculated as
the coherent sum of the fields scattered by a series of
infinitesimal current elements distributed along the an-
tenna and having their amplitude and phase given by
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FIG. 2. (a) and (c) (resp. (b) and (d)): Amplitude (resp.
Phase) of the scattered field in the direction normal to the
plane of the antenna, for an incident electric field oriented
parallel to the symmetric mode (see insets and Fig. 1), ob-
tained with FDTD calculations ((a) and (b)) and our MoM
numerical solution ((c) and (d)), for different antenna geome-
tries. (e)-(h) are similar to (a)-(d), but for an incident electric
field oriented parallel to the anti-symmetric mode. Details of
the FDTD simulations are provided in the Appendix. For the
phase plots, the colors encode the phase and we superposed
a white mask whose transparency is proportional to the am-
plitude of the scattered field: the lower the amplitude, the
whiter the pixel (see color bar). This enables to highlight the
significant areas of the plot only, i.e. the one were the scat-
tered amplitude is strong. A white frame is added in (e) and
(g) to highlight the region where our approximations are least
valid and where the main differences are observed between our
MoM calculations and FDTD simulations. The FDTD maps
have 57x37 cells, each corresponding to a different three di-
mensional simulation. The MoM maps have 100x100 cells.

the current distribution, using an analytical expression
for the radiation pattern of interfacial dipoles18. The
numerical solution is detailed in the Appendix.

III. RESULTS

A. Comparison with FDTD

In order to compare our results with FDTD simula-
tions, we calculated the far-field amplitude and phase of
the scattered field, for different antenna lengths h, rang-
ing from 0.6 µm (total length) to 3.2 µm, and different
opening angles ∆, ranging from 0 to 180◦. The antenna
is illuminated by a plane wave coming at normal inci-
dence with respect to the antenna plane. The details of
the FDTD simulations are provided in the Appendix. In
Fig. 2, we present the calculated amplitude and phase re-
sponse of the V-shaped antennas, in the direction normal
to the antenna plane, for an incident electric field oriented
either along the symmetric ((a)-(d)) or anti-symmetric
((e)-(h)) plasmonic mode (see inset schematics).
We observe a very good agreement between FDTD cal-

culations and our MoM calculations, demonstrating that
our calculations give an accurate picture of the phase and
amplitude response of nanoscale V-shaped antennas. Im-
portantly, each point on the map is calculated in about
10 ms on a desktop computer using our method, com-
pared to about 15 minutes for the corresponding FDTD
simulation. In order to obtain the full map with 57x37
points, each corresponding to a different geometry and
thus requiring a new three dimensional simulation, three
weeks of computation is needed for FDTD, while only
about 100 seconds is required with our method to obtain
100x100 points.
In the symmetric mode (Fig. 2 (a)-(d)), excited by an

incident electric field parallel to the axis of symmetry of
the antenna, the current distribution in each arm approx-
imates that of an individual straight antenna of length
h/2 and therefore the first-order antenna resonance oc-
curs at h/2 ≃ λ0/(2.neff)

19. In the antisymmetric mode
(Fig. 2 (e)-(h)), excited by an incident electric field per-
pendicular to the axis of symmetry of the antenna, the
current distribution in each arm approximates that of
one half of a straight antenna of total length h and the
condition for the first-order resonance of this mode is
h ≃ λ0/(2.neff). These features can be observed in Fig.
2, where a maximum of the scattered field amplitude is
observed when a resonance condition is satisfied. We also
observe a phase shift of magnitude approximately equal
to π across the resonances, as is expected across any res-
onance.
The scattered field amplitude vanishes for large (resp.

small) opening angles ∆ for a symmetric (resp. anti-
symmetric) excitation, corresponding to the evolution of
the scattering cross-sections with opening angle. We note
that for the symmetric mode, the results from our numer-
ical solution are still in very good agreement with FDTD
for small ∆, where near-field interactions between the
two arms are expected to be maximum. This suggests
that distortions of the current distributions induced by
coupling effect between the two arms are well accounted
for in our numerical solution.
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The scattering amplitude at small opening angles (∆ <
90◦) and close to the first anti-symmetric resonance (Fig.
2 (e) and (g), within the white frame), shows the main
divergence between our calculations and FDTD simula-
tions. This region (the lower left corner) corresponds
to the region where the thin-wire approximation is the
least valid since the arm length is only two to three times
larger than the antenna diameter. We observe that the
scattering amplitude decays faster in our MoM calcula-
tions than in FDTD simulations as the opening angle is
reduced. The geometry simulated by FDTD (see Fig. 1
(b)) is such that there is always a significant portion of
the antenna, in particular at the junction, that is oriented
parallel to the anti-symmetric excitation (i.e. perpendic-
ularly to the antenna symmetry axis). This is a result
of the finite width of the arms. We thus expect a slow
decrease of the scattering cross-section with decreasing
opening angle. In contrast, the effective geometry con-
sidered in our MoM calculations is that of an infinitely
thin wire. This effect is thus not taken into account and
we expect the scattering cross-section to decrease faster
with decreasing opening angles. In the rest of this work,
we will leave out this region in our discussion of the re-
sults.

One could expect in a first order approximation that as
the opening angle is reduced for a fixed antenna length,
the resonance position does not move and only the scat-
tering cross section is reduced. However, the ’tilted’
shape of the symmetric resonance in Fig. 2 (a) and (c)
suggests the opposite. The red-shift (resp. blue-shift)
of the resonance as the opening angle is reduced for the
symmetric (resp. anti-symmetric) mode is a result of
the interaction between the two arms of the V-shaped
antennas. Charges of similar (resp. opposite) signs accu-
mulating at both extremities of the antenna contribute
to a weaker (resp. stronger) restoring force in the sym-
metric (resp. anti-symmetric) mode, and thus a red-shift
(resp. blue-shift). We note that we use the expressions
red- and blue-shift even though our results are for a fixed
wavelength because we translate a resonance shifting to
a longer (resp. shorter) antenna length as a blue-shift
(resp. red-shift) of the resonance.

The polarization of the scattered radiation is the same
as that of the incident light when the latter is polarized
parallel or perpendicular to the antenna symmetry axis.
However, for an arbitrary incident polarization, both an-
tenna modes are excited with different amplitude and
phase because of their distinct resonance conditions. As
a result, the scattered light can have a different polariza-
tion from that of the incident light. In Fig. 3 (a) and
(b), we show the amplitude and phase of the scattered
field component polarized perpendicularly to the incident
polarization, which is itself polarized at 45◦ with respect
to the symmetry axis of the antenna. the plots are ob-
tained with our MoM numerical solution. The two areas
of highest amplitude correspond to the resonant excita-
tion of either the symmetric or the antisymmetric mode.
Across each of these resonances, a π phase shift is ob-

FIG. 3. Amplitude ((a) and (c)) and Phase ((b) and (d)) of
the scattered field component polarized perpendicularly to the
incident polarization for different antenna geometries. The
incident electric field is polarized at 45◦ with respect to the
symmetry axis of the antenna. (a) and (b) are obtained with
our MoM numerical solution while (c) and (d) are obtained
with FDTD simulations. Details of the FDTD simulations are
provided in the Appendix. (e) and (f) correspond respectively
to the absolute difference between (a) and (c) (amplitude) and
(b) and (d) (phase). A white frame is added in (e) and (f) to
highlight the region where the main differences are observed
between our MoM calculations and FDTD simulations.

served, so that overall a coverage of almost the full 2π
range can be achieved1.

In Fig. 3 (c) and (d), we show for comparison pur-
poses the same quantities as in Fig. 3 (a) and (b), as
obtained with FDTD simulations. The absolute differ-
ences between the results of the two calculation meth-
ods are shown in Fig. 3 (e) and (f), respectively for the
amplitude and the phase of the cross-polarized scattered
field. Except for the lower left corner already discussed
above, the two methods are in agreement to within≈ 0.15
in amplitude, and π/10 in phase. These results demon-
strate that resonant mid-infrared plasmonic antennas are
within the domain of validity of our approximations. The
errors observed (lower left corner) stem from distortions
of the antenna response created by the finite width of the
antenna. Provided the antenna geometry has a sufficient
aspect ratio between the width and the length of the an-
tenna, on the order of 1:4, such errors remain small.

Using the maps presented in Fig. 3 (a) and (b), one
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FIG. 4. (a) Current distribution along an antenna of total
length h = 2.4 µm for opening angles ∆ from 30 to 180◦. The
incident electric field is polarized along the symmetric mode
(see inset). The incident wavelength is λ0 = 7.7 µm. The
height indicates the amplitude of the current while the phase
is given by the color. (b) is similar to (a), for an incident
electric field polarized along the anti-symmetric mode (see
inset). The black line are drawn at regular intervals of 30◦

in order to outline the amplitude variations of the current
distribution. The position along the antenna is indicated by
the curvilinear coordinate running along the antenna from
one end to another, with its origin at the junction. Black
arrows on the inset schematics of the antennas indicate the
direction of the current in each arm for the symmetric and
anti-symmetric modes.

can quickly explore a large design-parameter space for
V-shaped antennas, choose antennas with specific am-
plitude and phase response in the cross polarization, and
assemble them to form an arbitrary phase and amplitude
profile. For examples, for the phase-gradient plate used
in [1], antennas with similar scattering amplitudes and
regularly spaced scattering phases were chosen.

B. Current distribution

As mentioned above, we approximate the current to
be purely axial. The current distribution is then fully
described once given the complex value of the current
as a function of the curvilinear coordinate running along
the antenna length, as plotted in Fig. 4 for a constant
antenna length h = 2.4 µm and for opening angles ∆
varying from 30◦ to 180◦. The π phase difference be-
tween the two arms for the symmetric mode (Fig. 4 (a))
indicates that the current flows in opposite direction in
the two arms. We note here that we define the direction
of the current with respect to the curvilinear coordinate
orientation running from one end of the antenna to the
other. There is a node of current at the center of the

FIG. 5. (a) Amplitude and (b) Phase of the current along
an antenna with opening angle ∆ = 45◦ and total antenna
length varying from to 0.6 to 10 µm. The incident electric
field is polarized along the symmetric mode. The incident
wavelength is λ0 = 7.7 µm. The labels A, B and C indicate
the position of the first three resonances observed. (c) and
(d) are similar to (a) and (b) for an incident electric field
polarized along the anti-symmetric mode and for an opening
angle ∆ = 135◦.

antenna. This agrees well with the picture of the sym-
metric mode being analogous to the mode supported by
two parallel individual straight antennas of length h/2.
In contrast, the asymmetric mode (Fig. 4 (b)) features a
single lobe consistent with it being approximately equiv-
alent to the mode of a single straight antenna of total
length h.
The small distance between the two arms leads to near-

field coupling translating into distortions of the current
near the junction, especially for small opening angles.
This is illustrated by the central dip which appears in
the current distribution of the anti-symmetric mode for
small opening angles. This feature can be easily under-
stood since, for ∆ < 90◦, the electric field radiated by the
current in one arm opposes the current in the other arm.
On the contrary, a small increase of the current near the
junction can be observed for the symmetric mode (and
for ∆ < 90◦), since now the electric field radiated by one
arm contributes to drive the current in the other arm.
Fig. 5 shows the current distribution along the an-

tenna (with the position indicated by the curvilinear co-
ordinate) for opening angles ∆ = 45◦ ((a) and (b), with
the incident electric field polarized along the symmetric
mode) and ∆ = 135◦ ((c) and (d), with the incident elec-
tric field polarized along the anti-symmetric mode) and
different arm-lengths h/2. We can observe the appear-
ance of the higher order modes with increasing length.
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For the symmetric mode (Fig. 5 (a)-(b)), the single lobe
observed in each arm for h/2 ≃ λ0/(2.neff) (A) splits
into three lobes for h/2 ≃ 3λ0/(2.neff) (C). This is again
consistent with the picture of the symmetric mode being
analogous to the mode supported by two parallel indi-
vidual straight antenna of length h/2. Interestingly, we
observe an intermediate resonance for h/2 ≃ 2λ0/(2.neff)
(B), whose excitation should be prohibited by symme-
try considerations. The coupling between the two arms
enables to couple energy into this mode. Other details
of the current distribution indicate the effects of near-
field coupling between the two arms, such as the asym-
metry in the three-peak high-order pattern observed in
each arm for h/2 = 4 µm (C): the side-lobe closer to
the junction does not have the same shape as the one
close to the extremity of the antenna. For the anti-
symmetric mode (Fig. 5 (c)-(d)), the single lobe ob-
served at h ≃ λ0/(2.neff) splits into three (and then five,
seven,...) lobes for h equal to odd integer multiples of
λ0/(2.neff), in agreement with it being approximately
equivalent to the mode of a single straight antenna of
total length h.

C. Far-field radiation pattern

We now study the far-field radiation pattern of a given
V-shaped antenna with ∆ = 135◦ and h/2 = 1.2 µm.
The geometry and the definition of the far-field coordi-
nates are represented in Fig. 6 (a) and the current distri-
bution is shown in Fig. 6 (b). The angle α between the
symmetry axis of the antenna and the incident polariza-
tion is 45◦. The current distribution is a superposition
of a symmetric and an anti-symmetric mode, featuring
two lobes reminiscent of the first order symmetric mode
and a non-vanishing current at the junction as for the
anti-symmetric modes.
In Fig. 6 (c), we show the amplitude of the cross-

polarized scattered field. The far-field is calculated as
the coherent sum of the far-fields radiated by infinitesi-
mal current elements distributed along the antenna, hav-
ing phase and amplitude following the current distribu-
tion plotted in Fig. 6 (b). The cross-polarized scattered
field, i.e. the scattered field component resulting from
a 90◦-polarization conversion process, is obtained as the
coherent sum of the fields radiated by the projections of
these current elements on the x-axis. The information on
the position of the current elements one relative to the
other along the antenna is kept in order to calculate the
interference of the fields radiated by different current ele-
ments. Note that the phase difference between the fields
radiated by different current elements contains a geomet-
ric term as well as a term coming from the non-uniform
phase of the current distribution along the antenna. We
observe that the main lobe is not in the direction normal
to the plane of the antenna, as a result of interference
between the fields radiated by different sections of the
antenna. The symmetry of the antenna is not preserved

FIG. 6. (a) Schematic with definition of the far-field coor-
dinates (θFF, ϕFF). The incident electric field is propagat-
ing along the z-axis and is polarized along the y-axis. The
antenna is in the x-y plane. (b) Current distribution (am-
plitude and phase) for a V-shaped antenna with ∆ = 135◦

and h/2 = 1.2 µm. The angle α between the symmetry axis
of the antenna and the incident polarization is 45◦ (see in-
set schematic), in order to excite both symmetric and anti-
symmetric modes. (c) Corresponding amplitude and (d)
phase of the cross-polarized scattered field for different far-
field coordinates (θFF, ϕFF). The distance to the center of
the plot is proportional to θFF, with θFF = 0 at the center
and θFF = π/2 at the edge. The white circles represent values
of θFF regularly spaced from 0 to π/2. The azimuthal angle
of the plot is equal to ϕFF.

in the far-field since the incident electric field is not along
one of the antenna symmetry or antisymmetry axis. The
asymmetric amplitude and phase profile of the current
distribution in Fig. 6 (b) also illustrates this point. The
scattered intensity vanishes in all directions parallel to
the antenna plane. This is a known result for dipoles
located at an interface between two different dielectric
media18.
The phase of the cross-polarized scattered field is

shown in Fig. 6 (d). It is interesting to observe that it
is not constant, with variations on the order of π/8 over
the main scattering lobe. A good knowledge of the ampli-
tude and phase profile of the scattered field over the full
half space is important to optimize optical components
relying on the precise engineering of the scattering of the
antennas at large angles, such as short focal-distance flat
lenses.

IV. CONCLUSION

In summary, using the Integral Equation Method of
Moments, we presented an accurate and efficient numer-
ical computation of the current distribution in V-shaped
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antennas excited by an electric field of arbitrary polariza-
tion. Using this information, we extracted the far-field
phase, amplitude and polarization response of these ele-
ments in any direction. We demonstrated the accuracy
of our numerical solution by comparing the results with
FDTD simulations. The key element leading to the in-
creased computational efficiency is the use of the thin-
wire approximation which effectively reduces the prob-
lem to one dimension. This approximation necessitates
aspect ratios of at least 1:4 between the width and the
length of the antenna. We discussed details of the cur-
rent distribution related to near-field coupling between
the two arms of the antennas. The numerical method
presented here enables a fast probing of the large design-
parameter space of V-shaped antennas, that have been
shown to be essential building blocks for optical elements
relying on phase discontinuities1.
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APPENDIX

1. General problem

Our solution is inspired by the derivation found in [7] of
the numerical integration of Pocklington’s equation in the
case of a straight rod antenna. After deriving the integral
equation governing the behavior of V-shaped antennas,
we generalize the numerical solution to a two-dimensional
problem.
We initially want to solve for the current distribution

driven at the surface of the antenna by a known inci-
dent field Einc. By either assuming that the antenna is
made of perfect electric conductor (PEC), or by model-
ing accurately the finite conductivity of a real metal, we
obtain a relation between the incident and the scattered
electric field Escat, valid at the surface of the antenna.
Using Maxwell’s equations for the scattered field we fur-
ther link the scattered field at the surface of the antenna
and the current that radiates it. We thus finally obtain
an integral equation expressing the scattered field as a
function of the current distribution. Using a numerical

FIG. 7. (a) Schematic of a cylindrical antenna of radius a and
total length h. We represented the vector potential A(r) at

point r(ρ, θ, z), radiated by the element of current I(z′) ρ
′dθ′

2πa

at point r′(ρ′, θ′, z′). (b) Schematic of a V-shaped antenna
with opening angle ∆. Note that the vector potential radiated
by an element of current in one arm is not parallel to the
other arm. The orientation of the antenna with respect to
the incident electric field is defined by the angle α between
the axis of symmetry of the antenna and the electric field
polarization.

method, we can then invert this equation and solve for
the current. Once the current distribution is known, we
are able to derive the electric field Escat scattered by
the antenna in all space (we initially only knew Escat at
the surface of the antenna) and thus infer the far-field
response in amplitude, phase and polarization, in any di-
rection. Fig. 7 (a) describes the geometry and defines
the parameters used in the following derivation.

We start from Maxwell’s equations to connect the scat-
tered fields Escat and Bscat to the current and charge
sources20:

∇ ·Bscat = 0, (1a)

∇×Escat = −jωBscat, (1b)

∇ ·Escat =
ρ

ǫ0ǫr
, (1c)

∇×Bscat = µ0J+
jωn2

c2
Escat (1d)

We assume here that the antenna is embedded in a uni-
form dielectric medium with refractive index n =

√
ǫr.

From Eqs. (1a) and (1b), we infer the existence of the
magnetic and electric potentials A and ϕ satisfying:

Escat = −∇ϕ− jωA, (2a)

Bscat = ∇×A (2b)

Substituting Eq. (2) and the Lorenz gauge ∇ · A +
jωµ0ǫ0ǫrϕ = 0 into Eqs. (1c) and (1d), we obtain the
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Helmholtz wave equation for the potentials:

∇2ϕ+ k2ϕ = − ρ

ǫ0ǫr
(3a)

∇2
A+ k2A = −µ0J (3b)

where k = ωn/c.
In order to find a solution to Eq. (3b), we introduce

the Green function G(r), solution of the Green problem
∇2G(r) + k2G(r) = −δ(r), where δ is the Dirac delta
distribution. In a three-dimensional space, the solution

is given by G(r) = e−jk|r|

4π|r| . We then write the solution

of Eq. (3b) as the convolution of G(r) with the current
source µ0J :

A(r) = (G ∗µ0J)(r) =
µ0

4π

∫∫∫

R3

J(r′)
e−jk|r−r

′|

|r− r′| dr′ (4)

For a rod made of a perfect electric conductor with
vanishing skin depth, conservation of the tangential com-
ponent of the electric field at the rod surface gives:

ẑ · (Escat(ρ = a) +Einc(ρ = a)) = 0, (5)

where ẑ is a unit vector tangential to the antenna at the
point where Eq. (5) is evaluated. In the case of a straight
antenna, ẑ is parallel to the antenna axis. We study later
how this relation is modified in the case of a real metal
with finite conductivity. We consider the current to be
limited to the surface of the rod (ρ = a). This is exact
in the case of a perfect electric conductor and represents
an approximation in the case of real metals. Further-
more, using the thin-wire approximation (a << λ and
a << h), we can consider the current distribution J(r)
to be axial and azimuthally invariant16. We can thus de-
fine the quantity I(z) such that J(r) = ẑI(z)δ(ρ−a) 1

2πa .
A sharp angle on the antenna, as in the case of the V-
antennas discussed later, could break down this approx-
imation. However, since a current element at one point
affects the vector potential at another point with a mag-
nitude decaying as the inverse of the distance between
the two points (see Eq. 4), the perturbation introduced
by a sharp angle will remain local so that we can still con-
sider the approximation valid along the entire antenna,
except in the immediate vicinity of the junction.
We can now rewrite Eq. (4) as:

A(r) =
µ0

4π

∫∫∫

R3

ẑ
′I(z′)δ(ρ′ − a)

e−jk|r−r
′|

2πa|r− r′|ρ
′dρ′dφ′dz′

=
µ0

4π

∫ h
2

−h
2

ẑ
′I(z′)dz′K(|r− r

′|), (6)

where we introduced the kernel K(|r− r
′|) as:

K(|r− r
′|) ≡ 1

2π

∫ 2π

0

e−jk|r−r
′|

|r− r′| dφ′, (7)

Additionally, substituting the Lorenz gauge in Eq.
(2a), we obtain:

Escat =
1

jωµ0ǫ0ǫr
[∇(∇ ·A) + k2A] (8)

Writing this equation at the surface of the antenna,
where we can express Escat as a function of the known
incident field Einc, we can solve Eqs. (6) and (8) for
the current distribution I(z). Once the source current
is known, we can determine Escat in any point of space.
Because we approximate the current as flowing only along
a wire, we are only solving for a scalar quantity. Thus,
solving a scalar equation is enough and we will use the
projection of Eq. (8) on the tangent to the antenna at
each point to obtain J .
Combining Eqs. (5), (6) and (8) leads to a

Pocklington-type equation11. This equation has no exact
analytical solution. However, it can be studied numeri-
cally. In order for the numerical solution to be tractable
in a reasonable time, we use an approximation for the ex-
pression of the kernel defined in Eq. (7). Using again the
thin-wire approximation, we can simplify the kernel by
observing that the distance |r− r

′| is basically indepen-
dent of φ′ and, in the case of a straight antenna, approx-
imately equal to Rr =

√

(z − z′)2 + a2. We will refer to
this simplified expression as the effective distance. We

thus obtain the reduced kernel Kr(z−z′) = e−jkRr

Rr
. This

approximation is valid as long as | z−z′

a
| is not too close

to zero. Indeed, we notice that Kr(0) = e−jka

a
whereas

the exact kernal K diverges for |r − r
′| → 0. We will

come back to this issue when explaining the details of
our numerical solution.

2. V-shaped antennas

We now consider the case of a V-shaped antenna as
represented is Fig. 7 (b). The two arms of the antenna
are Γ1 and Γ2, respectively in the directions γ̂1 and γ̂2.
For convenience, we choose γ̂1 to be collinear to the ẑ

axis. The angle between the two arms, oriented in the
positive direction from γ̂1 to γ̂2, is ∆. We consider the
curvilinear coordinate l along the antenna length, with
origin at the junction point O, positive on Γ1 and nega-
tive on Γ2. For the sake of simplicity, we consider that the
two arms have equal length h/2. However, the solution
could be easily generalized to an asymmetric configura-
tion with two different arm-lengths.
The effective distance between a current source at

coordinate l′ and the observation point (x, z) for the
vector potential can be written as Rr(x, z, l

′,Ψ) =
√

a2 + (z + l′ cos(Ψ))2 + (x− l′ sin(Ψ))2, where Ψ = π
if l and l′ are on the same arm, and Ψ = ∆ otherwise.
We note that the expression for a linear antenna is re-
covered by setting Ψ = π, l′ = z′ and x = 0. The term
a2 comes from the thin-wire approximation. Using this
effective distance, we can define a reduced kernel as in-

troduced above: Kr(x, z, l
′) = e−jkRr

Rr
. We consider here

that the observation point is in the z-x plane of the an-
tenna. This is justified by the thin-wire approximation
for which azimuthal variation of the current on the wire
surface is neglected. In other terms, we consider that the
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current is only a function of the curvilinear coordinate l.
Now that the problem is two dimensional, the vector

potential radiated by an element of current at one point
of the antenna is not always parallel to the antenna at
another point. This represents the main challenge of the
calculation presented here. In writing Eq. (8), cross
derivatives now appear for the term ∇(∇ ·A) :

∇(∇ ·A) · ẑ =

[

∂

∂z
(
∂

∂z
Az +

∂

∂x
Ax)

]

(9)

We can directly compute the expression ∂
∂x

Ax from the
analytical expression of Ax, written using the reduced
kernel introduced above:

Ax(x, z) =
µ0

4π

∫ 0

−h
2

I(l′)
e−jkRr(x,z,l

′,∆)

Rr(x, z, l′,∆)
dl′(−γ̂2.x̂) (10)

Note that only the current flowing in Γ2 creates a non-
vanishing component of A along the x-axis, hence the
integration is limited to [−h/2, 0]. We then obtain:

∂

∂x
Ax

∣

∣

x=0
(x, z) = (11)

µ0

4π

∫ 0

−h
2

I(l′)
e−jkRr

R3
r

(1 + jkRr) sin
2(∆)l′dl′

We now write Eq. (8), evaluated in x = 0 and z = l,
for all l ∈ Γ1, using (6) and (11), and we obtain a
Pocklington-type equation generalized to our two dimen-
sional problem:

[

∂2

∂l2
+ k2

]

(

jη

2π

∫ h
2

−h
2

I(l′)K̃1(l, l
′,∆)dl′

)

+

[

∂

∂l

]

(

jη

2π

∫ h
2

−h
2

I(l′)K̃2(l, l
′,∆)dl′

)

= 2kEγ1
(l), ∀l ∈ Γ1 (12)

where:

K̃1(l, l
′,∆) =

− e−jkRr(0,l,l
′,∆)

Rr(0, l, l′,∆)
H(−l′) cos(∆)+

e−jkRr(0,l,l
′,π)

Rr(0, l, l′, π)
H(l′),

K̃2(l, l
′,∆) =

sin2(∆)
e−jkRr(0,l,l

′,∆)

R3
r(0, l, l

′,∆)
(1 + jkRr(0, l, l

′,∆)) l′H(−l′)

The Heaviside function H (defined as H(l) = 1, ∀l ≥ 0
and H(l) = 0, ∀l < 0) was used to distinguish con-
tributions to the vector potential A from Γ1 (l′ > 0)
and Γ2 (l′ < 0), respectively. We introduced two re-

duced kernels K̃1 and K̃2 containing, respectively, the
terms Az (from both arms) and ∂

∂x
Ax (only from Γ2).

The projection of the incident field Einc on γ̂1 is used:

Eγ1
(l) = Einc cos

(

∆
2 + α

)

, where α defines the incident

polarization (see Fig. 1 (c)). The constant η =
√

µ0

ǫ0ǫr
is

introduced.
Eq. (12) is valid for all points along Γ1, i.e. it links

the current distribution over the whole antenna and the
vector potential on the surface of Γ1. We now obtain
the second half of the equation (l ∈ Γ2) by symmetry
considerations (∆ → −∆, I → −I, l → −l and l′ → −l′)
and introducing the projection of the incident field on γ̂2,
Eγ2

(l) = Einc cos
(

∆
2 − α

)

:

[

∂2

∂l2
+ k2

]

(

jη

2π

∫ h
2

−h
2

I(l′)K̃1(−l, l′,∆)dl′

)

−
[

∂

∂l

]

(

jη

2π

∫ h
2

−h
2

I(l′)K̃2(−l, l′,∆)dl′

)

= −2kEγ2
(l), ∀l ∈ Γ2 (13)

We used here the symmetry of our particular geometry
to simplify the derivation. When treating asymmetric
geometries, one has to rederive the equation governing
the second arm, but the general idea of the derivation
remains the same.
We can now gather Eqs. (12) and (13) into a single

equation valid for all l in Γ1 ∪ Γ2:

[

∂2

∂l2
+ k2

]

V (1)(l)

+

[

∂

∂l

]

V (2)(l) = 2kE(l), ∀l ∈ Γ1 ∪ Γ2, (14)

where E(l) = Eγ1
(l)H(l)+Eγ2

(l)H(−l). We introduced:

V (1)(l) ≡ jη

2π

∫ h
2

−h
2

I(l′)
[

K̃1(l, l
′,∆)H(l)

−K̃1(−l, l′,∆)H(−l)
]

dl′ (15)

and

V (2)(l) ≡ jη

2π

∫ h
2

−h
2

I(l′)
[

K̃2(l, l
′,∆)H(l)

+K̃2(−l, l′,∆)H(−l)
]

dl′ (16)

3. Numerical solution

As mentioned above, Pocklington’s integral equation
cannot be solved analytically. Here we extend the nu-
merical solution presented in [7] to a two-dimensional
problem.
The curvilinear coordinate l ∈ [−h

2 ,
h
2 ] is discretized

into a vector L = [l−M , l−M+1, ..., lM ] with N = 2M + 1

points spaced by a constant stepD. We also define Ṽ
(i)
n =

V (i)(ln), i = 1, 2 and Ẽn = E(ln).
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The current I(l) is expanded into a sum of basis func-
tions Bn chosen here to be Dirac functions (Bn(l) =
δ(l − ln)):

I(l) =

M
∑

j=−M

ĨjBj(l) (17)

We note that other basis functions could be chosen, such
as triangular or sinusoidal functions. Choosing a basis
of Dirac functions greatly simplifies the evaluation of the
integral over l′ in Eqs. (15) and (16). We obtain:

Ṽ (i)
n =

M
∑

j=−M

κ
(i)
nj Ĩj , or Ṽ

(i) = κ(i)Ĩ , i = 1, 2 (18)

where κ(i) are the reduced kernel matrices:

κ
(1)
nj =

jη

2π

[

K̃1(ln, lj ,∆)H(ln)− K̃1(−ln, lj,∆)H(−ln)
]

κ
(2)
nj =

jη

2π

[

K̃2(ln, lj ,∆)H(ln) + K̃2(−ln, lj ,∆)H(−ln)
]

The thin-wire approximation used when introducing
the reduced kernel is valid only as long as the distance
between the integration point (lj) and the observation
point (ln) is large enough compared to the radius a of
the antenna. It is thus never valid for the diagonal terms
for which lj = ln. While the exact kernel K diverges for
|r − r

′| → 0, the reduced kernel Kr keeps a finite value.
In order to reduce computation time, we set the value of
the diagonal terms to 2Kr(0), so that the value of the
diagonal term is about twice the value of the neighbor-
ing non-diagonal terms. This reproduces well the sharp
divergence of the exact kernel. Although rather coarse,
this approximation gives accurate results, as was con-
firmed earlier by comparison to FDTD simulations. More
refined strategies have been developed to remove the sin-
gularity from the kernel in Pocklington’s equation and
may be of interest for the reader21,22. With our approxi-
mation, the diagonal terms of the reduced kernel matrices
become:

κ(1)
nn =

jη

π

[

K̃1(ln, ln,∆)H(ln)− K̃1(−ln, ln,∆)H(−ln)
]

κ(2)
nn =

jη

π

[

K̃2(ln, ln,∆)H(ln) + K̃2(−ln, ln,∆)H(−ln)
]

For all non-diagonal terms in the matrices κ(i) we em-
pirically determined that we can safely use the reduced
kernel expression, provided D

a
≥ 0.2. As D is further

reduced, we observed that the solution becomes unsta-
ble since the ’discontinuity’ we introduced by setting the
value of the diagonal terms becomes sharper than the
actual divergence of the exact kernel. A finer computa-
tion of the kernel for the terms neighboring the diagonal
could be used for increased accuracy. However, our main
purpose here is to develop a simple and fast modeling
tool to probe a large parameter space so we used the

approximate evaluation. In our numerical solution, the
total length of the antenna is discretized in 90 points, so
that the minimum step size D for the smallest antenna
calculated is such that D/a > 0.2.
The first and second order derivatives in Eq. (14) are

approximated by the following finite difference schemes
(neglecting round-off error):

∂2

∂l2
V (1)(l)

∣

∣

l=ln
=

Ṽ
(1)
n+1 − 2Ṽ

(1)
n + Ṽ

(1)
n−1

D2
+O(D2)

∂

∂l
V (2)(l)

∣

∣

l=ln
=

Ṽ
(2)
n+1 − Ṽ

(2)
n−1

2D
+O(D2)

We can now write the discretized equation correspond-
ing to Eq. (14):

[

Aκ(1) + Cκ(2)
]

Ĩ = QdẼ, (19)

where

A =
1

D2





























0 0 0 0 0 · · · 0
1 −2α 1 0 0 · · · 0
0 1 −2α 1 0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 1 −2α 1 0
0 · · · 0 0 1 −2α 1
0 · · · 0 0 0 0 0





























,

with α = 1− k2D2

2 ,

C =
1

2D





























0 0 0 0 0 · · · 0
−1 0 1 0 0 · · · 0
0 −1 0 1 0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 −1 0 1 0
0 · · · 0 0 −1 0 1
0 · · · 0 0 0 0 0





























,

and

Q =





























0 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

...
. . .

...

0 · · · 0 1 0 0
0 · · · 0 0 1 0
0 · · · 0 0 0 0





























,

and d = 2k.
Matrices A, C and Q are square N by N matrices.

Note that Q represents the projection on the interior of
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the antenna, i.e. excluding the two end-points. We added
a first row and a last row of zeros in the matricesA, C and
Q. These rows do not add any equation and ensure that
the finite difference schemes are defined for n = ±M .
At this point, Eq. (19) represents a system of N − 2
equations for N unknowns (the N components of the

vector Ĩ). It is therefore not invertible. However, two
unknowns are given by the boundary conditions: I(h2 ) =

I(−h
2 ) = 0, or in matrix form: (IN −Q) Ĩ = 0, where IN

is the N by N identity matrix. We can finally write the
discretized Pocklington equation as:

[

Aκ(1) + Cκ(2)
]

QĨ = QdẼ, (20)

Introducing Z̄ ≡
([

Aκ(1) + Cκ(2)
]

Q
)

2≤n≤N−1
2≤j≤N−1

, Ī =

Ĩ2≤n≤N−1 and Ē = Ẽ2≤n≤N−1, Eq. (20) takes the form:





0 0 0

0 Z̄ 0

0 0 0











0

Ī

0






= d







0

Ē

0







We can thus reduce the system to N − 2 equations for
N−2 remaining unknowns (the N−2 components of the
vector Ī), from which we can calculate the discretized
current distribution:

Ī = dZ̄−1Ē (21)

4. Modeling real metals

We have so far assumed that the antenna is made of
perfect electric conductor. This assumption was only
used in order to derive Eq. 5, i.e. the relation between
the incident and the scattered electric field at the surface
of the antenna. In the case of real metals, the boundary
condition is modified with the introduction of a finite con-
ductivity, and using Ohm’s law, we obtain at the surface
of the antenna20:

E‖(ρ = a) =

ẑ · (Escat(ρ = a) +Einc(ρ = a)) =
1− j

2πa

√

µ0ω

2σ
I,

where µ0 is the magnetic permeability and σ is the AC
conductivity of the real metal, derived from the optical
constants found in [17]. Equation (21) is thus still correct
provided the matrix Z̄ is changed to Z̄+dzintIN−2, with
zint =

1−j
2πa

√

µ0ω
2σ .

5. Far-field calculation

Once the axial current distribution along the antenna
is known, we can calculate the scattered far-field. We
approximate the far-field radiated by the antenna as the

FIG. 8. Schematic of an infinitesimal horizontal electric dipole
located at an interface between air (z > 0) and a dielectric
medium (z < 0) of refractive index n.

coherent sum of the fields radiated by a series of infinites-
imal current elements distributed along the antenna and
having amplitude and phase given by the current distri-
bution solved for. We use an analytical expression for
the radiation pattern of an infinitesimal electric dipole
located on the plane interface between two dielectric half
spaces (air and a medium of refractive index n)18. For
the case of a dipole lying horizontally along the interface,
the radiated field components in air are18:

Eθ =κ
[

cos2 θ
cos θ+(n2−sin2 θ)1/2

− sin2 θ cos θ

· cos θ−(n2−sin2 θ)1/2

n2 cos θ+(n2−sin2 θ)1/2

]

cosφ eik0r

r
,

Eφ = − κ cosθsinφ

cosθ+(n2−sin2 θ)1/2
eik0r

r
,

where the angles θ and φ are defined in Fig. 8.

6. FDTD simulation details

FDTD simulations realized using a commercial soft-
ware (Lumerical FDTD) are used to validate our numer-
ical solution. A realistic geometry is simulated, corre-
sponding to fabricated V-shaped antennas1. Both arms
have a rectangular cross-section, 200 nm wide and 100 nm
thick. The antennas are defined on a silicon substrate.
The interface between silicon and air lies at the center
of the simulation area, which spans 4.5 µm x 4.5 µm x
6 µm (width x depth x height). Perfectly Matched Lay-
ers (PML) enclose the simulation area. The mesh cells
are 30 nm x 30 nm x 15 nm in size in the plane of the
antenna and within a 300 nm-thick layer encompassing
the silicon-air interface (and the 100 nm-thick antenna
itself). Beyond this layer, the vertical dimension of the
mesh cells (height) is gradually increased to about 280
nm in air and 90 nm in silicon (or about 1/25th of the
wavelength in the medium). The simulation is stopped
when an auto shutoff condition is reached correspond-
ing to the fields in all cells being smaller than 10−5E0,
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where E0 is the incident electric field amplitude. The
time step is smaller than 0.037 fs. The optical constants
are obtained by fitting the values found in Palik17 to a
multi-coefficient model.
We use a Total-Field Scattered-Field (TFSF) plane

wave source encompassing the antenna. The dimensions
of the total field region are 4.2 µm x 4.2 µm x 4 µm. The

plane wave is launched in the direction perpendicular to
the antenna, from the silicon side. A monitor is placed
outside this region to isolate the scattered fields. A near-
to far-field transform is then used to calculate the scat-
tered field radiated in the direction perpendicular to the
plane of the antenna.

1 N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne,
F. Capasso and Z. Gaburro, Science 334, 333 (2011).

2 P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blan-
chard, Z. Gaburro and F. Capasso, Appl. Phys. Lett. 100,
13101 (2012).
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