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The ν = 0 quantum Hall state in a defect-free graphene sample is studied within the framework
of quantum Hall ferromagnetism. We perform a systematic analysis of the “isospin” anisotropies,
which arise from the valley and sublattice asymmetric short-range electron-electron (e-e) and
electron-phonon (e-ph) interactions. The phase diagram, obtained in the presence of generic isospin
anisotropy and the Zeeman effect, consists of four phases characterized by the following orders: spin-
polarized ferromagnetic, canted antiferromagnetic, charge density wave, and Kekulé distortion. We
take into account the Landau level mixing effects and show that they result in the key renormaliza-
tions of parameters. First, the absolute values of the anisotropy energies become greatly enhanced
and can significantly exceed the Zeeman energy. Second, the signs of the anisotropy energies due
to e-e interactions can change upon renormalization. A crucial consequence of the latter is that
the short-range e-e interactions alone could favor any state on the phase diagram, depending on
the details of interactions at the lattice scale. On the other hand, the leading e-ph interactions
always favor the Kekulé distortion order. The possibility of inducing phase transitions by tilting the
magnetic field is discussed.

PACS numbers: 73.43.-f, 71.10.-w, 71.10.Pm

I. INTRODUCTION

Quantum Hall effects in graphene1–3 were observed
shortly after4,5 the discovery of the material and have at-
tracted a lot of attention ever since (for general reviews
on graphene, see Refs. 6–8). Besides the “anomalous”
sequence of the orbital Landau levels9–11 (LLs), Fig. 1,
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characteristic of the Dirac nature of electron spectrum in
graphene, an additional to spin, two-fold valley degener-
acy brings in extra richness to physical phenomena [In
Eq. (1), n takes integer values, v is the Dirac velocity,
lB is the magnetic length dependent on the perpendic-
ular component B⊥ of the magnetic field, and we put
~ = 1 throughout the paper]. Among all, the n = 0 LL
really stands out: it is located exactly at the Dirac point
ε0 = 0 and, in each valley, K or K ′, its wave-functions
reside solely on one of the sublattices, A or B, Fig. 2. For
n = 0 LL, the valley KK ′ “isospin” is, therefore, equiv-
alent to the sublattice AB “pseudospin”, and is referred
to as just the “isospin” below.

As the quality of graphene devices progressed,
the strongly correlated quantum Hall physics clearly
emerged12–19 at integer and fractional filling factors ν.
To date, one of the most intriguing questions concerns
the nature of the ν = 0 quantum Hall state, in which
the orbitals of the n = 0 LL, four-fold degenerate in the
KK ′⊗ s isospin-spin space in the absence of the Zeeman
effect, are occupied on average by two electrons, Fig. 1.
The interest is largely motivated by the strongly insu-
lating behavior of the state, initially observed in samples
on SiO2 substrate13,14, later – in suspended samples15,17,

and quite recently – in samples on boron nitride sub-
strate18. The tendency of the higher quality samples to
be more resistive signifies that the insulating behavior is
an intrinsic property of an ideal defect-free system, rather
than it is due to disorder-induced localization effects. Al-
though the interaction-driven character of the insulating
ν = 0 state is apparent, its precise nature remains an
open challenge in the graphene field.

A lot of theoretical activity has been de-
voted20–25,27–32,34–38 to the properties of the ν = 0
quantum Hall state in graphene (see also Refs. 39,40
for reviews). Due to the quenched kinetic energy, in
sufficiently clean samples and/or high enough magnetic
fields, electrons in a partially filled LL present a strongly
interacting system. While at arbitrary (e.g., fractional)
filling factors ν such systems pose a formidable theoreti-
cal challenge, an appealing property of the integer fillings
is that, in the leading approximation, the family of the
many-body ground states can be found exactly. For all
integer ν in graphene, including ν = 0, this solution
is provided by the general theory of quantum Hall
ferromagnetism20,21,41–43 (QHFM) for multicomponent
systems, in which spin and valley degrees of freedom are
united into one SU(4) “spin”. (Alternative views on the
ν = 0 state based on the idea of “magnetic catalysis”
can be found in Refs. 34–38.)

The idea of constructing the exact solution can be
traced back to the Hund’s rule in atomic physics: specif-
ically for the ν = 0 state, the energy of the repul-
sive Coulomb interactions is minimized by the many-
body states, in which the four-dimensional (4D) KK ′⊗s
isospin-spin subspace of each orbital of the n = 0 LL is
occupied by two electrons in exactly the same way, Fig. 1.
Two key provisos that make this result exact are (i) ab-
sence of the single-particle or many-body perturbations
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FIG. 1: Landau levels (LLs) [Eq. (1)] in monolayer graphene.
Neglecting the Zeeman effect, the orbitals (i.e., eigenstates
of the orbital part of the single-particle Hamiltonian) of each
LL are four-fold degenerate due to two projections of spin and
two valleys (splitting shown for illustration purpose and not
implied). At ν = 0 filling factor, each orbital of the n = 0
LL is occupied on average by two electrons, while LLs with
n < 0 (n > 0) are filled (empty). The many-body states with
identical occupation of the KK′ ⊗ s isospin-spin subspaces
of all orbitals (only one possible occupation is shown) ex-
actly minimize the energy of the Coulomb interactions, SU(4)-
symmetric in the KK′⊗ s space. Such states form the family
of degenerate ground states of the ν = 0 quantum Hall ferro-
magnet.
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FIG. 2: Graphene honeycomb lattice and the structure of
the wave-functions of the n = 0 LL at the lattice scale. In
each valley, K or K′, the wave-functions reside on only one
sublattice, A (left) or B (right).

that break the SU(4) symmetry in the KK ′ ⊗ s space
and (ii) absence of the interaction-induced electron tran-
sitions between different LLs (LL “mixing”). For SU(4)-
symmetric Coulomb interactions, the ground state is de-
generate with respect to the choice of occupation of the
isospin-spin space and there is no preference between or-
dering of the spin vs. isospin degrees of freedom.

This exact result is the cornerstone of the theory of the
ν = 0 state. In a real graphene system, neither of the
conditions (i) or (ii) is satisfied precisely, and the result
is generally not exact. However, it is possible to develop
the low-energy quantum field theory for the ν = 0 quan-
tum Hall ferromagnet (QHFM), in which the deviations

from these conditions are consistently taken into account.
As we show here, for Coulomb interactions of moderate
strength e2/v ∼ 1, as is the case in graphene, the ef-
fects of LL mixing can be systematically taken into ac-
count in the large-N approximation. Further, the factors
that break the symmetry in the AB ⊗ s space typically
have smaller energy scales than the Coulomb interactions
and can be taken into account perturbatively. They are,
nonetheless, extremely important, as they lift the rich
degeneracy of the ground state favoring certain orders,
the physical properties of which may differ substantially.

The simplest single-particle mechanism is the Zee-
man effect, which breaks the spin symmetry and nat-
urally favors the fully spin-polarized ferromagnetic (F)
state21,23,24. Since spin-orbit interaction is weak in
graphene, the Zeeman effect is practically the only rele-
vant factor that affects the spin symmetry, while other
key perturbations break the isospin symmetry. An anal-
ogous regular “Zeeman” field for the KK ′ isospin is vir-
tually impossible to implement in a controlled way in
real graphene, although a random one can arise from the
short-range disorder.

However, even in an ideal defect-free sample electron-
electron (e-e) and electron-phonon (e-ph) interactions
necessarily break the valley and sublattice symmetry
at the lattice scales22,25,29–31. Having many-body ori-
gin, these mechanisms give rise to the isospin anisotropy
rather than the Zeeman-type fields. Existing studies22,29

of the lattice effects of e-e interactions on the ν = 0 state
in the framework of the QHFM theory were carried out
using the tight-binding extended Hubbard model, with
adjustable interactions at the lattice scale and Coulomb
asymptotic at larger distances. Depending on the in-
teractions at the lattice scale, the competition between
the F and charge-density-wave (CDW) ground states was
predicted in Ref. 22, while the numerical mean-field anal-
ysis of Ref. 29 predicted either the CDW or the antifer-
romagnetic (AF) ground state. Electron-phonon inter-
actions, on the other hand, were predicted to favor the
fully isospin-polarized states with either the Kekulé dis-
tortion30,31 (KD) or CDW32 orders. We also mention
that similar phases were predicted in Ref. 37 within a
different framework of “magnetic catalysis”.

The variety of the proposed ground states poses a ques-
tion whether the above list is exhaustive, i.e., whether,
for a given source of the isospin anisotropy, one can find
all possible orders that could be realized in a general case
scenario. Attempting to answer this question, in this
paper, we perform a systematic analysis of the isospin
anisotropies of the ν = 0 QHFM arising from the short-
range e-e and e-ph interactions, without appealing to
any specific lattice model. Starting from the most gen-
eral form of e-e interactions allowed by symmetry in the
Dirac Hamiltonian and taking the leading e-ph interac-
tions into account, we derive the low-energy QHFM the-
ory in the presence of the isospin anisotropy and obtain
a phase diagram for the ν = 0 state. The diagram ob-
tained by separately minimizing the energy of the generic
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isospin anisotropy (i.e., considered without any assump-
tions about the nature or properties of the underlying
interactions, whether e-e or e-ph, repulsive or attrac-
tive) consists of four phases: SU(2)-spin-degenerate F
and AF phases, and spin-singlet CDW and KD phases
with Z2 and U(1) isospin degeneracies, respectively. In-
cluding the Zeeman effect does not alter the CDW or KD
phases, but removes the degeneracy of the F phase and
transforms the AF phase into a canted antiferromagnetic
(CAF) phase with noncollinear spin polarizations of sub-
lattices.

We also consider the critical renormalizations of the
isospin anisotropy by the long-range Coulomb interac-
tions and address the question whether one can rule out
certain states from the phase diagram based on the re-
pulsive nature of the Coulomb interactions and attrac-
tive nature of the phonon-mediated interactions. We
arrive at an important conclusion that the short-range
e-e interactions could favor essentially any state on the
generic phase diagram: F, CAF, CDW, or KD. The rea-
son for this are peculiar properties of the renormaliza-
tions, which allow for sign changes of the e-e coupling
constants, switching the interactions from repulsive to
attractive in certain valley-sublattice channels. As a re-
sult, unless a reliable numerical estimate for the bare
short-range e-e coupling constants is provided, one can-
not theoretically rule out any possibility. In contrast,
the phonon-mediated interactions remain attractive un-
der renormalizations and the leading e-ph interactions
always favor the KD order.

Among potential practical applications of the present
work, we also study the transitions that could be induced
between the obtained phases by the tilting magnetic field.
Once combined with a more details analysis of the charge
excitations of these phases, to be presented elsewhere33,
our findings could be used to identify the particular phase
realized in the experimentally observed13–15,17,18 insulat-
ing ν = 0 state.

The rest of the paper is organized as follows. In Sec. II,
the low-energy Hamiltonian, which describes electron dy-
namics in the vicinity of the Dirac point, is presented,
the basic properties of Landau levels in graphene are dis-
cussed, and the projected Hamiltonian for the n = 0
Landau level is derived. In Sec. III, the low-energy quan-
tum field theory for the ν = 0 quantum Hall ferromagnet,
which includes the effects of the isospin anisotropy, is de-
rived. In Sec. IV, the Landau level mixing effects are
considered in the large-N approximation and the criti-
cal renormalizations of the isospin anisotropies are stud-
ied. In Sec. V, the phase diagram of the ν = 0 quantum
Hall ferromagnet in the presence of the isospin anisotropy
and Zeeman effect is obtained. The possibility of in-
ducing phase transitions by tilting the magnetic field is
discussed. Concluding remarks and connection to the
experiment are presented in Sec. VI.

II. MODEL AND HAMILTONIAN

We start the analysis by writing down the low-energy
Hamiltonian

Ĥ = Ĥ0 + Ĥe-e + Ĥe-ph, (2)

which describes electron dynamics in graphene in the
vicinity of the Dirac point. The terms Ĥ0, Ĥe-e, and
Ĥe-ph, describing noninteracting electrons, e-e and e-ph
interactions, respectively, are discussed in the next three
subsections. Our Hamiltonian and the choice of basis are
identical to those of Refs. 44,45, with some differences in
notation.

A. Basis and single-particle Hamiltonian

At atomic scales, the single-particle electron Hamilto-
nian can be written as

Ĥ0 =

∫
d3~r Ψ̂†σ(~r)

[
− ∂2

~r

2m
+ U(~r)

]
Ψ̂σ(~r). (3)

Here, Ψ̂σ(~r) is the electron field operator, ~r = (x, y, z) is
a continuous three-dimensional (3D) radius-vector, and
σ =↑, ↓ is the spin projection (summation over σ is im-
plied). The self-consistent periodic potential U(~r) of the
graphene honeycomb lattice constrains electrons around
the z = 0 plane and has a C6v point group symmetry
within the plane. This symmetry dictates the following
properties of the graphene band structure. Exactly at the
Dirac point, taken to be at zero energy ε = 0, there are
four orthogonal Bloch-wave solutions uKA(~r), uKB(~r),
uK′A(~r), uK′B(~r) of the Schrödinger equation associated
with Eq. (3). The indices K and K ′ refer to different val-
leys in the Brillouin with wave vectors K = 4π

3a20
(a1− a2)

and K′ = −K, respectively (a1,2 are the primitive trans-
lations of the honeycomb lattice, shown in Fig. 2 and
a0 = |a1,2| ≈ 2.46Å is the lattice constant), and the
indices A and B indicate that the wave-functions are
predominantly localized at the positions of the A and
B sites. The solutions corresponding to different valleys
are related as uK′A(~r) = u∗KA(~r) and uK′B(~r) = u∗KB(~r).

For the excitation energies ε much smaller than the
bandwidth, one may expand the electron field in terms
of the ε = 0 solutions,

Ψ̂σ(~r) = ψ̂KAσ(r)uKA(~r) + ψ̂KBσ(r)uKB(~r)

+ ψ̂K′Aσ(r)uK′A(~r) + ψ̂K′Bσ(r)uK′B(~r). (4)

The Dirac field operators ψλσ(r), λ = KA, KB, K ′A,
K ′B, are functions of a two-dimensional (2D) continu-
ous radius vector r = (x, y) and vary at scales much
larger than the atomic one a0. To ensure the standard
normalization of the fields reflected in anticommutation
relation

{ψλσ(r), ψ†σ′λ′(r
′)} = δλλ′δσσ′δ(r− r′),
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where δ(r − r′) is a 2D delta function at large scales
and {, } is the anticommutator, the Bloch wave-functions
uλ(~r) must be normalized as∫

3uc

d3~r u∗λ(~r)uλ′(~r) = 3|[a1 × a2]|δλλ′ , (5)

where the integration is performed over the tripled unit
cell (3uc), which contains six atoms.

The Dirac fields can be joined in a vector as

ψ̂σ(r) =


ψ̂KAσ(r)

ψ̂KBσ(r)

ψ̂K′Bσ(r)

−ψ̂K′Aσ(r)


KK′⊗ĀB̄

. (6)

The advantage of this ordering is that it gives the
most symmetric representation of the Dirac Hamiltonian.
Since this way the sublattice indices in the K ′ valley are
interchanged, to avoid confusion, we denote the sublat-
tice space of the basis (6) as ĀB̄, and the whole 4D space
– as the direct product KK ′ ⊗ ĀB̄. With spin included,
the low-energy electron degrees of freedom are described
by the eight-component field operator

ψ̂(r) =

(
ψ̂↑(r)

ψ̂↓(r)

)
s

(7)

in the direct product KK ′⊗ ĀB̄⊗s of the valley (KK ′),
sublattice (ĀB̄), and spin (s) spaces.

The symmetry properties of the Bloch wave-functions
uλ(~r) at the Dirac point are sufficient to derive the many-

body low-energy Hamiltonian in the basis of ψ̂(r). The
single-particle Hamiltonian, obtained from Eq. (3), has
the form

Ĥ0 =

∫
d2r ψ̂†(r)

[
v
∑
α=x,y

T0α

(
p̂α −

e

c
Aα

)
− εZSz

]
ψ̂(r),

(8)
where p̂α = −i∇α, ∇ = (∂x, ∂y), and v ≈ 108cm/s is
the velocity of the Dirac spectrum. Here and below, for
α, β = 0, x, y, z,

Tαβ = τKK
′

α ⊗ τ ĀB̄β ⊗ 1̂s,

with the unity (τ0 = 1̂) and Pauli (τx, τy, τz) matrices
in the corresponding 2D subspaces. In Eq. (8), we intro-
duced the orbital and spin effects of the magnetic field
[not written in Eq. (3)], described by the vector poten-
tial Aα(r), rotA = (0, 0, B⊥), and the Zeeman term with

εZ = µBB, B =
√
B2
⊥ +B2

‖ , and

Sz = 1̂KK
′

α ⊗ 1ĀB̄β ⊗ τsz .

We assume arbitrary orientation of the total magnetic
field B = (B‖, 0, B⊥) relative to the plane z = 0 of
graphene sample; the z direction in the spin space points
along B and is not necessarily perpendicular to the sam-
ple.

B. Electron-electron interactions

The most general form of the spin-symmetric e-e inter-
actions in the low-energy Hamiltonian (2) can be written
down44 solely based on the symmetry considerations as

Ĥe-e = Ĥe-e,0 + Ĥe-e,1. (9)

Here,

Ĥe-e,0 =
1

2

∫
d2rd2r′ [ψ̂†(r)ψ̂(r)]V0(r− r′)[ψ̂†(r′)ψ̂(r′)]

(10)
describes the long-range Coulomb interactions, V0(r) =
e2/|r|, symmetric in valley-sublattice space KK ′ ⊗ ĀB̄
and

Ĥe-e,1 =
1

2

∫
d2r

∑′

α,β

gαβ [ψ̂†(r)Tαβψ̂(r)]2 (11)

describes the short-range e-e interactions that break the
valley and/or sublattice symmetry. The summation∑′

α,β
includes all combinations α, β = 0, x, y, z, of the

valley α and sublattice β channels, except for the sym-
metric one α = β = 0, which is given by Eq. (10). In
Eqs. (10) and (11), and below, normal ordering of the
operators is understood.

The symmetry of the honeycomb lattice yields the fol-
lowing relations between the couplings44,

g⊥⊥ ≡ gxx = gxy = gyx = gyy,

g⊥z ≡ gxz = gyz, gz⊥ ≡ gzx = gzy,

g⊥0 ≡ gx0 = gy0, g0⊥ ≡ g0x = g0y.

Thus, the asymmetry of the interactions in KK ′ ⊗ ĀB̄
space is described by eight independent coupling con-
stants g⊥⊥, g⊥z, gz⊥, gzz, g⊥0, gz0, g0⊥, g0z.

Although, of course, the origin of both symmet-
ric [Eq. (10)] and asymmetric [Eq. (11)] e-e interac-
tions are the actual Coulomb interactions, for brevity,
we will refer to them as the “Coulomb” and “short-
range/asymmetric e-e” interactions, respectively.

To lowest orders, the expressions for the coupling con-
stants gαβ can be obtained by considering the Coulomb
interactions in the atomic-scale model,

Ĥe-e =
1

2

∫
d3~rd3~r′ Ψ̂†σ(~r)Ψ̂†σ′(~r

′)
e2

|~r − ~r′| Ψ̂σ′(~r
′)Ψ̂σ(~r).

(12)
Substituting the expansion (4) for Ψσ(~r) into Eq. (12)

and using the slow variation of ψ̂(r) at atomic scales,
one obtains Eqs. (9), (10), and (11) with the first-order
expressions44

g
(1)
αβ =

∫
3uc

d3~r

3|[a1 × a2]|

∫
d3~r′ραβ(~r)

e2

|~r − ~r′|ραβ(~r′)

(13)
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for the couplings gαβ . In Eq. (13),

ραβ(~r) =
1

2
u†(~r)Tαβu(~r)

are the real densities in a given valley-sublattice channel
αβ and

u(~r) =

 uKA(~r)
uKB(~r)
uK′B(~r)
−uK′A(~r)


KK′⊗ĀB̄

.

From the orthogonality properties (5) of the Bloch wave-
functions, it is clear that the integrands in Eq. (13), as
functions of ~r − ~r′, decay over several unit cells and the
asymmetric interactions are indeed short-ranged. This
emphasizes the fact that breaking of the valley-sublattice
symmetry arises from atomic scales.

Using the relations u∗K′A(~r) = uKA(~r) and u∗K′B(~r) =
uKB(~r), we see that the densities ρ0α(~r) = ρα0(~r) ≡ 0,

α = x, y, z, vanish identically. Therefore, g
(1)
0⊥ = g

(1)
0z =

g
(1)
⊥0 = g

(1)
z0 = 0, and the couplings g0⊥, g0z, g⊥0, gz0,

although not prohibited by symmetry, vanish in the first

order. The nonvanishing expressions g
(2)
αβ for gαβ , with

α = 0 or β = 0, arise in the second order in the
Coulomb interactions and involve virtual transitions to
other bands; we do not present these expressions here.

For future discussion in Secs. IV and V, we note the
following properties. The first-order microscopic expres-
sions (13) for the coupling constants have the form of
the electrostatic Coulomb energy for the density distri-
butions ραβ(~r). Since it is well known46 that the elec-
trostatic energy is positive-definite, i.e., positive for any
nonvanishing charge distribution, we conclude that all
nonvanishing first-order expressions (13) must be posi-
tive,

g
(1)
⊥⊥ > 0, g

(1)
⊥z > 0, g

(1)
z⊥ > 0, g(1)

zz > 0. (14)

On the other hand, the second-order expressions have to
be negative,

g
(2)
0⊥ < 0, g

(2)
0z < 0, g

(2)
⊥0 < 0, g

(2)
z0 < 0. (15)

One can expect the lowest-order expressions g
(1)
αβ

[Eq. (13)] and g
(2)
αβ to provide accurate estimates for the

couplings gαβ in the limit of weak Coulomb interactions,
e2/v � 1. For stronger interactions, e2/v ∼ 1, as in real
graphene, this is not necessarily the case. The reason is
that the short-range interactions renormalize themselves
at energies on the order of bandwidth v/a0. As an illus-
tration of this fact, the diagrams of the low-energy Dirac
theory involving just the short-range interactions contain
ultraviolet divergencies: schematically, each extra order

produces a relative factor gαβ
∫ 1/a0 dq/v ∼ gαβ/(va0) ∼

e2/v. These renormalizations change the magnitude and,
possibly, the signs of the couplings gαβ in certain chan-
nels.

E2 A1,B1

FIG. 3: In-plane optical phonon modes with the strongest e-
ph coupling. (left) Linear combination of the two degenerate
E2 modes (ûx(r), ûy(r)) with the phonon wavevector at Γ
point. (right) Linear combination of degenerate A1, B1 modes
(ûa(r), ûb(r)) with the wavevector at K,K′ points.

Thus, it is more reasonable to treat the couplings gαβ
in Eq. (11) as the bare inputs of the low-energy theory,
without any assumptions about their signs and relative
values, and consider all possibilities. This is the ap-
proach we choose in the of paper. An order-of-magnitude
estimate for the bare couplings, valid for both weak
(e2/v � 1) and moderate (e2/v ∼ 1) Coulomb inter-
actions, is

gαβ ∼ e2a0. (16)

Anticipating the results of the next sections, the asym-
metric short-range e-e interactions (11), although weaker
than the symmetric Coulomb ones (10), appear to be
play a crucial role in the physics of the ν = 0 QHFM.
Possible relations between and the signs of the couplings
gαβ become especially important, as they determine the
properties of the isospin anisotropy and, as a result, the
favored ground state order. The implications of the po-
tential sign restrictions on gαβ , suggested by Eqs. (14)
and (15), will be discussed in Sec. IV and V.

C. Electron-phonon interactions

Besides the short-range e-e interactions (11), another
source of the isospin anisotropy in the ν = 0 QHFM
comes from e-ph interactions. Electrons in graphene
couple most efficiently to the following in-plane optical
phonons: two E2 modes with the phonon wave-vector at
the Γ point and A1, B1 modes with wave-vector at K,K ′

point (following the classification of Ref. 45), shown in
Fig. 3. The corresponding e-ph interactions can be de-
scribed by the Hamiltonian

Ĥe-ph =

∫
d2r ψ̂†(r){FE2 [Tzyûx(r)− Tzxûy(r)]

+ FA1
[Txzûa(r) + Tyzûb(r)]}ψ̂(r). (17)

The two degenerate E2 modes have the frequency ωE2
≈

0.196eV. The A1 and B1 modes are also related by sym-
metry and have the same frequency ωA1

≈ 0.170eV and
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same coupling constant FA1
= FB1

. The lattice deforma-
tion due to A1, B1 modes is that of the Kekulé distortion.
The two-fold degeneracy of the modes allows for arbitrary
in-plane displacement of a given atom in Fig. 3, (left) and
(right), while the displacements of the remaining atoms
in a tripled unit cell are related by the corresponding
symmetry.

The phonon dynamics is described by the correlation
functions of the displacement operators ûµ(r),

−〈Tτ ûµ(τ, r)ûµ(0, 0)〉 =
s0

2Mωµ
δ(r)

∫ ∞
−∞

dω

2π
e−iωτDµ(ω),

(18)

Dµ(ω) = − 2ωµ
ω2 + ω2

µ

,

in the Matsubara representation. Here, M is the mass of

the carbon atom and s0 =
√

3
4 a

2
0 is the area per carbon

atom. We will perform calculations at zero temperature
only, in which case ω is a continuous frequency.

The order-of-magnitude estimate

Fµ ∼ e2/a2
0 (19)

for the coupling constants follows from the dimensional
analysis of Eq. (17) and the electrostatic origin of e-ph
interactions.

D. Landau levels in graphene

In this section, we briefly present the single-particle
basis of the problem and emphasize the key properties of
the n = 0 LL.

Solving the Dirac equation associated with Eq. (8)
in the gauge A(r) = (0, B⊥x, 0), in the ĀB̄ sublattice
space of each valley K and K ′, one obtains9–11 the wave-
functions

〈r|np〉 =
1√
2

(
φ|n|(x− xp)

sgnnφ|n|−1(x− xp)

)
ĀB̄

eipy√
Ly

(20)

for all integer n 6= 0 and

〈r|0p〉 =

(
φ0(x− xp)

0

)
ĀB̄

eipy√
Ly
, (21)

with the orbital energies εn given by Eq. (1). Here,
φ|n|(x) are the harmonic oscillator wavefunctions, xp =

pl2B is the “guiding center”, and Ly is the size of the
sample in the y direction, introduced to discretize the
momentum quantum number p.

The complete set of the single-particle eigenstates in
the KK ′ ⊗ ĀB̄ ⊗ s space is given by

|npµσ〉 = |µ〉KK′ ⊗ |np〉ĀB̄ ⊗ |σ〉s, (22)

with µ = K,K ′, σ =↑, ↓, and

|K〉 =

(
1
0

)
KK′

, |K ′〉 =

(
0
1

)
KK′

,

| ↑〉 =

(
1
0

)
s

, | ↓〉 =

(
0
1

)
s

.

The field operator (7) can be expanded in the basis (22)
as

ψ̂(r) =

∞∑
n=−∞

ψ̂n(r), ψ̂n(r) =
∑
pµσ

〈r|npµσ〉ĉnpµσ, (23)

where ĉnpµσ are the annihilation operators.
The n = 0 LL with ε0 = 0 is located exactly at the

Dirac point and possesses arguably the most peculiar
properties: in each valley, K or K ′, its wave-functions
(22) resides solely on one (actual) sublattice, A or B, re-
spectively [see Fig. 2, Eq. (21), and recall the accepted
ordering (7)]. Therefore, for each spin projection σ, the
part

ψ̂0σ(r) =
∑
pµ

〈rσ|0pµσ〉ĉ0pµσ =


ψ̂0KAσ(r)

0

ψ̂0K′Bσ(r)
0


KK′⊗ĀB̄

(24)
of the field operator (23) pertaining to n = 0 LL has only

two nonvanishing components, ψ̂0KAσ(r) and ψ̂0K′Bσ(r),
whereas

ψ̂0KBσ(r) = ψ̂0K′Aσ(r) ≡ 0. (25)

Thus, for n = 0 LL the valley (KK ′) and sublattice (AB)
degrees of freedom are essentially equivalent, K ↔ A,
K ′ ↔ B. Further on, when discussing n = 0 LL below,

we refer to this 2D degree of freedom (ψ̂0KAσ, ψ̂0K′Bσ)
as just the “KK ′ valley isospin”. Accordingly, we join
the nonvanishing components of the n = 0 LL operator
(24) in a 4D vector

ψ̃0(r) =


ψ̂0KA↑(r)

ψ̂0KA↓(r)

ψ̂0K′B↑(r)

ψ̂0K′B↓(r)


KK′⊗s

(26)

in the isospin-spin space KK ′ ⊗ s.

E. Projected Hamiltonian for n = 0 LL

When addressing the many-body aspects of the ν = 0
state, as a starting point, one may neglect the contribu-
tions from n 6= 0 LLs and restrict oneself to the dynam-
ics within n = 0 LL, described in terms of the field (26).

From the form (24) of ψ̂0(r), we obtain

ψ̂†0Tαβψ̂0 =

{
ψ̃†0Tαψ̃0, β = 0, z,
0, β = x, y,

(27)

for α = 0, x, y, z, where

Tα = τKK
′

α ⊗ 1s, α = 0, x, y, z. (28)
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are the KK ′-isospin matrices. I.e., electrons in the n =
0 LL couple directly only to the source fields with Tα0

and Tαz vertex structure in KK ′ ⊗ ĀB̄ space. This is
a consequence of the properties of the n = 0 LL wave-
functions.

Substituting ψ̂(r) in the form (23) into Eqs. (10), (11),
and (17) and retaining only the n = 0 LL component
(24), we obtain the bare projected Hamiltonian in terms
of the field (26),

Ĥ(0) = Ĥ
(0)
0 + Ĥ

(0)
e-e,0 + Ĥ

(0)
e-e,1 + Ĥ

(0)
e-ph, (29)

Ĥ
(0)
0 = −εZ

∫
d2r ψ̃†0(r)Szψ̃0(r), Sz = 1̂AB ⊗ τsz , (30)

Ĥ
(0)
e-e,0 =

1

2

∫
d2rd2r′ [ψ̃†0(r)ψ̃0(r)]V0(r−r′)[ψ̃†0(r′)ψ̃0(r′)],

(31)

Ĥ
(0)
e-e,1 =

1

2

∫
d2r

∑
α=x,y,z

gα[ψ̃†0(r)Tαψ̃0(r)]2, (32)

with gα = gα0 + gαz, and

Ĥ
(0)
e-ph =

∫
d2rFA2

ψ̃†0(r)[Txua(r) + Tyub(r)]ψ̃0(r). (33)

In the single-particle Hamiltonian Ĥ
(0)
0 , since the ki-

netic energy ε0 = 0, only the Zeeman term is present.

In Ĥ
(0)
e-e,1 and Ĥ

(0)
e-ph, due to the property (27), only the

short-range e-e interactions with gα0 and gαz, α = x, y, z,
couplings and e-ph interactions with FA1

and FB1
cou-

plings remain. The coupling g0z, although also does not

vanish, produces a symmetric term ∝ g0z[ψ̃
†
0(r)ψ̃0(r)]2,

which may be neglected compared to the Coulomb part
(31). We also mention that the trigonal warping effect
∝ Txz, Tyz does not couple to n = 0 states at the pertur-
bative level.

III. ν = 0 QUANTUM HALL FERROMAGNET
IN GRAPHENE

A. Basic concept and exact result

At integer filling factors ν, interacting multi-
component quantum Hall systems are described by
the general theory of the quantum Hall ferromag-
netism20,21,41–43. Its central point is that, as long as
electron dynamics may be effectively restricted to the
partially filled LL (sufficient conditions for this will be
discussed in Sec. IV) and the interactions are symmet-
ric in the “spin” space of discrete degrees of freedom, the
family of the many-body bulk ground states can be found
exactly as follows. In order to minimize the energy of
the Coulomb repulsion, one makes the orbital part of the

wave-function totally antisymmetric, thus putting elec-
trons, for a given density, as far apart from each other as
possible. Since one has on average an integer number of
electrons per orbital, such wave-function can be realized
if electrons occupy the discrete states of all orbitals in
exactly the same fashion.

Specifically for the ν = 0 state in graphene, which
hosts two electrons per four-fold degenerate orbital of
the n = 0 LL (Fig. 1), the many body wave-function can
be written as

Ψ =

∏
p

 ∑′

λσ,λ′σ′

Φ∗λσ,λ′σ′ c
†
0pλσc

†
0pλ′σ′

 |0〉. (34)

Here, |0〉 is the “vacuum” state with completely empty
n ≥ 0 LLs and completely filled n < 0 LLs. Each fac-
tor in the product

∏
p creates a pair of electrons in the

state Φ = {Φλσ,λ′σ′} (λ, λ′ = A,B and σ, σ′ =↑, ↓) at
orbital p of the n = 0 LL, see Eq. (22) and we identify
K ↔ A and K ′ ↔ B; the antisymmetric two-particle
spinor Φ describes the occupation of the 4D KK ′ ⊗ s
isospin-spin space of each orbital by two electrons. The

sum
∑′

λσ,λ′σ′
in Eq. (34) goes over the upper-right off-

diagonal elements of Φ and we normalize the spinor ac-
cording to the number of particles per orbital,∑

λσ,λ′σ′

|Φλσ,λ′σ′ |2 = 2, (35)

For the purpose of illustrating the said exact property,
in this subsection, we simply neglect the other n 6= 0 LLs.
To make this justified, one may temporarily assume here
that the Coulomb interactions are weak, e2/v � 1, and
in Sec. IV we demonstrate how the LL mixing effects can
systematically be taken into account for stronger inter-
actions e2/v ∼ 1 within the large-N approximation.

Acting with the Coulomb interaction Hamiltonian
(31), symmetric in KK ′ ⊗ s space, on the state (34),
we obtain that Ψ is an eigenstate,

Ĥ
(0)
e-e,0Ψ = E0Ψ,

if and only if Φ satisfies the constraint

ΦK↑,K′↓ΦK↓,K′↑ + ΦK↑,K↓ΦK′↑,K′↓ = ΦK↑,K′↑ΦK↓,K′↓.
(36)

The energy of the state equals

E0 =
1

2

∑
k,k′

[
4V d

0 (k, k′)− 2V e
0 (k, k′)

]
, (37)

where

V d(k, k′) =
1

Ly

∫
dqx
2π

e

[
− q

2
x
2 +iqx(k−k′)

]
l2B
V0(qx, qy = 0),

V e(k, k′) =
1

Ly

∫
dqx
2π

e

[
− q

2
x+(k−k′)2

2

]
l2B
V0(qx, k − k′)
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are the “direct” (Hartree) and “exchange” (Fock) ma-
trix elements, respectively, and V0(q) = 2πe2/|q|, q =
(qx, qy), is the Fourier transform of the Coulomb poten-
tial. The energy E0 can easily be calculated explicitly.

Equation (36) is a necessary and sufficient condition
for the two-particle spinor Φ to be a Slater-determinant
state,

Φ = χa ◦ χb − χb ◦ χa, (38)

described by two orthogonal single-particle spinors χa,b
in KK ′⊗s space; the symbol ◦ denotes the direct product
of KK ′⊗s spaces of two electrons. We see that not every
antisymmetric spinor Φ delivers a many-body eigenstate

of the interaction Hamiltonian Ĥ
(0)
e-e,0: for example, the

spin-singlet isospin-triplet state with zero isospin projec-
tion is not an eigenstate. However, any state (34) with Φ
in the form of a Slater determinant (38) is an eigenstate
with the energy E0 and the ground state47 is, therefore,
degenerate.

Let us count the number of degrees of freedom parame-
terizing the ground state Ψ. An arbitrary antisymmetric
spinor Φ has (six complex)=(twelve real) degrees of free-
dom. Fixing its norm and inconsequential overall phase
factor leaves ten real parameters, and the complex con-
straint (36) reduces this to the final eight real parameters.

Each Slater-determinant state Φ is uniquely specified
by the 2D subspace of the KK ′ ⊗ s space, occupied by
two electrons and generated by the vectors χa,b. This es-
tablishes a one-to-one correspondence between the states
(38) and the elements of the Grassmannian manifold
Gr(2, 4), known as the Plücker embedding in mathemat-
ical literature48; the constraint (36) is called the Plücker
relation. The parametrization of the occupied subspaces,
generated by χa,b, and therefore of the Grassmannian
Gr(2, 4), is efficiently realized by the matrix

Pλσ,λ′σ′ = 〈Ψ|ĉ†0pλ′σ′ ĉ0pλσ|Ψ〉. (39)

Using Eqs. (34) and (38), this gives

P = χaχ
†
a + χbχ

†
b (40)

in the matrix form in the KK ′ ⊗ s space. The single-
particle density matrix P satisfies the properties of a
hermitian projection operator

P † = P, P 2 = P, (41)

and also, for the doubly-filled ν = 0 state,

trP = 2. (42)

The matrix P [Eq. (39)] plays the role of the order pa-
rameter of the broken-symmetry state (34); the observ-
ables and coupling of the state (34) to various perturba-
tions can be expressed through it. The matrix P is re-
lated to the matrix Q (R in Ref. 41), commonly used21,41

in the QHFM theory, as P = 1
2 (1̂ +Q).

Speaking of symmetries, since Ψ [Eq. (34)] is a ground
state for any Slater-determinant state (38), any SU(4)
transformation in the single-particle KK ′⊗s space keeps
the energy E0 invariant. However, any SU(2)× SU(2)×
U(1) transformation, corresponding to independent ro-
tations within the subspace of the occupied states, gen-
erated by χa and χb, and its orthogonal complement –
the subspace of empty states, not only does not change
the energy E0, but also leaves the state Φ intact. There-
fore, the symmetry of the ν = 0 QHFM state Ψ is de-
scribed21,41 by the factor group SU(4)/[SU(2)× SU(2)×
U(1)] = U(4)/[U(2)×U(2)]. This group also determines
the transformation properties of the order parameter P .
The dimensionality of the space of matrices P as an
U(4)/[U(2) × U(2)] manifold is 42 − 22 − 22 = 8, which
agrees with the number of the physical degrees of freedom
of the Slater-determinant states Φ [Eq. (38)].

B. Energy functional of the ν = 0 QHFM

The exact result of the previous section lays down the
basis of the QHFM theory. In the presence of the isospin-
asymmetric interactions (32) and (33), the state (34) will
generally no longer be an exact ground state. Besides, it
is desirable to know not only the ground state of the
system, but also the excitations. Provided the energy
scales (per orbital) of these perturbations and excitations

are small compared to the energy min( e
2

lB
, v
NlB

) of the

screened Coulomb interactions (see Sec. IV A below), the
local deviations of the actual many-body eigenstate from
the QHFM state (34) are also minor. This makes pos-
sible to develop a systematic low-energy quantum field
theory that describes the dynamics of the system. Such
theory has the form of a U(4)/[U(2)×U(2)] sigma-model
for the order parameter P (t, r), which acquires time and
coordinate dependence.

The rigorous derivation41,42 of the sigma-model in-
volves a procedure of projecting onto the QHFM state
with a given order parameter P (t, r). Proceeding along
the standard steps41,42, we arrive at the following La-
grangian of the ν = 0 QHFM

L[P (t, r)] = K[P (t, r)]− E[P (t, r)]. (43)

Here, K[P (t, r)] is the kinetic term containing the time
derivative of P (t, r); it is most simply expressed in terms
of the single-particle spinors χa,b(t, r) [Eq. (40)]

K[P (t, r)] = i

∫
d2r

2πl2B
(χ†a∂tχa + χ†b∂tχb).

The energetics of the ν = 0 QHFM is described by the
energy functional

E[P (t, r)] =

∫
d2r

2πl2B
[E◦(P ) + E�(P ) + EZ(P )]. (44)

Here,

E◦(P ) = ρstr[∇P∇P ] (45)



9

is the gradient term characterized by the stiffness ρs and

EZ(P ) = −εZ tr[SzP ] (46)

is the Zeeman term characterized by the energy εZ =
µBB. Most importantly,

E�(P ) =
1

2

∑
α=x,y,z

uαtα(P ), (47)

tα(P ) = tr[TαP ] tr[TαP ]− tr[TαPTαP ], (48)

is the isospin anisotropy energy arising from the short-
range e-e [Eq. (9)] and e-ph [Eq. (17)] interactions, asym-
metric in the valley-sublattice space. The KK ′-isospin
matrices Tα were introduced in Eq. (28). As we will see
below, due to symmetries of the e-e and e-ph coupling
constants, the anisotropy energies uα for α = x, y isospin
channels are equal,

u⊥ ≡ ux = uy.

Thus, the isospin anisotropy is fully characterized by two
energies, u⊥ and uz.

The expressions (47) and (48) for the isospin
anisotropy energy of the ν = 0 QHFM constitute
one of the key results of the present work. This is
a generic form of the anisotropy, arising from spin-
symmetric two-particle electron interactions (including
phonon-mediated interactions) with arbitrary structure
in the valley-sublattice space.

In Sec. V, we minimize the energy functional (44) to
obtain a phase diagram of the ν = 0 QHFM in the pres-
ence of the isospin anisotropy and Zeeman effect in the
space of parameters (u⊥, uz, εZ). In the rest of this and in
the whole next section, we discuss the expressions for the
stiffness ρs and anisotropy energies u⊥,z in terms of the
microscopic parameters of the Dirac Hamiltonian. Their

bare values ρ
(0)
s and u

(0)
⊥,z, obtained in the lowest order

in interactions, can be determined from the projected
Hamiltonian, Eqs. (29)-(33).

The gradient term E◦(P ) arises from the Fock free-
energy diagram in Fig. 4(a), in which one needs to take
the spatial inhomogeneity of order parameter P (t, r) into
account. This yields the standard expression21,41,42

ρ
(0)
s

2πl2B
=

1

16
√

2π

e2

lB
(49)

for the bare stiffness.
The isospin anisotropy term E�(P ) can be represented

by the free-energy diagrams in Figs. 4(b) and 4(c); the
first and second terms in Eq. (48) arise from the Hartree
(b) and Fock (c) diagrams, respectively. The diagrams
for the short-range e-e [Eq. (32)] and e-ph [Eqs. (18) and
(33)] interactions have the same form and the dashed line
in the figures stands for either the short-range e-e or e-ph
interactions. This way, for the bare anisotropy energies

(a) 0 0 (b)

0

0

(c) 0 0

FIG. 4: Diagrammatic representation of the terms in the en-
ergy functional (44) of the ν = 0 QHFM, defining the bare
(lowest order in interactions) values of parameters. (a) Di-
agram for the gradient term E◦(P ) [Eq. (45)], determining

the bare stiffness ρ
(0)
s [Eq. (49)]; the wavy line stands for the

Coulomb interaction [Eq. (31)]. (b) and (c) Diagrams for the
isospin anisotropy term E�(P ) [Eqs. (47) and (48)], determin-

ing the bare anisotropy energies u
(0)
⊥,z [Eqs. (50), (51), and

(52)]. The dashed line represents either the short-range e-e
[Eq. (32)] or e-ph [Eq. (33)] interactions. The Hartree (b) and
Fock (c) contributions produce the first and second terms in
Eq. (48), respectively.

in terms of the valley-sublattice asymmetric couplings,
we obtain

u(0)
α = u(e-e,0)

α + u(e-ph,0)
α , α =⊥, z, (50)

where

u(e-e,0)
α =

1

2πl2B
(gα0 + gαz), α =⊥, z, (51)

and

u
(e-ph,0)
⊥ = − f⊥z

2πl2B
, u(e-ph,0)

z = 0 (52)

are the anisotropy energies due to short-range e-e and
e-ph interactions, respectively.

In Eq. (52),

f⊥z =
F 2
A1
s0

Mω2
A1

(53)

is the coupling constant of the phonon-mediated interac-
tions between the electrons. Note that the combination
Mω2

A1
is the curvature of the interaction potential be-

tween the carbon atoms, which has electrostatic origin;
therefore, it does not depend on the carbon mass M and
scales as Mω2

A1
∼ e2/a3

0. Together with Eq. (19), this
leads to the order-of-magnitude estimate

f⊥z ∼ e2a0. (54)

Comparing with Eq. (16), we see, that the bare
anisotropies (51) and (52) due to short-range e-e and e-
ph interactions are actually parametrically the same and
can differ only numerically.

The bare expressions (49)-(52) determine the param-
eters of the ν = 0 QHFM, provided one may neglect
the effects of the interaction-induced electron transitions
between different LLs, also known as “Landau level mix-
ing”. As we find in the next section, this is not the case
and, in fact, the parameters are drastically affected by
the LL mixing effects.
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IV. RENORMALIZATIONS OF PARAMETERS
OF THE ν = 0 QHFM BY THE LANDAU LEVEL

MIXING EFFECTS

The weakness of the Coulomb interactions is generally
a sufficient condition for the applicability of the QHFM
theory. For graphene, this is formulated as e2/v � 1, in
which case, since the typical Coulomb energy e2/lB per

orbital is much smaller than the LL spacing ε1 =
√

2v/lB ,
one could expect LL mixing effects to be inefficient and
operate within the n = 0 LL only. However, interac-
tions are not weak in graphene: for suspended samples,
e2/v ≈ 2.2 (taking v = 108cm/s), which may be regarded
as moderate strength. Besides, Coulomb interactions are
known to be marginal49 in graphene: they produce large
logarithmic contributions in the diagrammatic series re-
gardless of the their strength, even if weak. These loga-
rithms come from the wide range of energies |ε| . v/a0

up to the bandwidth and involve many LLs. Therefore,
taking the nonzero LLs into account is essential and the
question arises whether the QHFM theory still holds for
a realistic model of graphene, with e2/v ∼ 1.

In this respect, the large-N expansion in the number
of “flavors” has gained popularity44,50–52 for graphene.
This approach allows one to single out the leading in N
diagrams, in each order in the bare Coulomb interactions,
and perform partial summation of diagrams, formally
analogous to the random-phase-approximation (RPA) se-
ries. The physical justification of the method is that large
N makes screening of the interactions especially efficient.
This reduces the coupling constant from its bare value
e2/v ∼ 1 to that of the screened interactions 1/N � 1,
resulting in the effectively weak-coupling theory.

In this section, we will use the large-N approach to
systematically take into account the effects of LL mix-
ing. In reality, N = 4 in graphene due to two valleys and
two projections of spin. Although this value is not par-
ticularly large, one can still expect the large-N approach
to adequately describe the correlated physics in graphene
for moderate Coulomb coupling e2/v ∼ 1.

The effects produced by LL mixing can be identified
already in the second order in the interactions (10), (11),
and (17). Fig. 5 shows the free-energy diagrams for the
energy functional (44), second order in the Coulomb in-
teractions (10), while Figs. 6 and 7 shows the diagrams,
first order in the Coulomb and in either short-range e-e
(11) or e-ph (17) interactions. As a starting point, one in-
cludes the contributions from all LLs in these diagrams,
using the full field operators (23). One then separates
the contributions from n = 0 and n 6= 0 LLs in the elec-
tron Green’s functions (solid lines), at which point the
following observations can be made.

The diagrams maintain the structure of the lowest-
order diagrams in Fig. 4 with only n = 0 LL present,
but contain the blocks involving n 6= 0 LLs that repre-
sent corrections to either (i) the Coulomb propagator –
diagram in Fig. 5(a0); (ii) two-particle vertex functions
– diagrams in Figs. 5[(a1), (a3)], 6[(b1), (b2), (b3)] and

→ (a0) n n′0 0

→ (a1)

n′

n

0 0 (a2) 0 0

n′n

→ (a3) 0 0

n

n′

(a4) 0 n

0

0

FIG. 5: Diagrams for the energy functional (44), second or-
der in the Coulomb interactions (wavy lines). Diagram (a0)
represents the first-order large-N correction to the Coulomb
propagator. Diagrams (a1)-(a4) diverge logarithmically, but
cancel each other within the logarithmic accuracy.

→ (b1)

0

n

n′

0

(b2)

0

n

n′

0

→ (b3)

0

0

n n′
(b4)

n

0

0 0

FIG. 6: Diagrams for the energy functional (44), first order
in the Coulomb interactions (wavy line) and in either the
short-range e-e or e-ph interactions (dashed line). Diagrams
(b1)-(b4) diverge logarithmically and represent the lowest-
order correction to the Hartree contribution [Fig. 4(b)] to the
anisotropy energy.

→ (c1)

n′

n

0 0 (c2) 0 0

n′n

→ (c3) 0 0

n

n′

(c4) 0 n

0

0

FIG. 7: Same as in Fig. 6, but with respect to the Fock con-
tribution [Fig. 4(c)].
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7[(c1), (c2), (c3)]; (iii) or the self-energy of the n = 0
LL Green’s function – diagrams in Figs. 5(a4), 6(b4),
and 7(c4). Without the magnetic field, the blocks (ii)
and (iii) diverge logarithmically44, since Coulomb inter-
actions are marginal; this remains true in the magnetic
field.

This pattern persists in higher orders, which allows one
to formulate the general recipe for taking the LL mixing
effects into account within the large-N approach. One
first performs a partial summation of the RPA-type series
of blocks (i). This produces the “dressed” propagator of
the screened Coulomb interactions. One then performs
the summation of the blocks (ii) and (iii). The lead-
ing log-divergent diagrams can efficiently be summed up
using the renormalization group (RG) procedure. One
notices that, when combined together, the blocks (ii)
and (iii) describe the critical renormalizations of the
short-range e-e and e-ph interactions44,45 by the screened
Coulomb interactions. At the same time, the Coulomb
interactions themselves are not renormalized44: e.g., the
diagrams (a1)-(a4) in Fig. 5 cancel each other within log-
accuracy.

With these steps performed, we find that, within the
large N -approach, the ν = 0 QHFM theory [Eq. (43)
- (48)] does hold as a controlled approximation for
graphene with moderate strength Coulomb interactions
e2/v ∼ 1, but LL mixing effects result in crucial renor-
malizations of its parameters ρs and u⊥,z. These renor-
malizations are considered in the remaining subsections.

We emphasize that the separation of the contributions
from n = 0 and n 6= 0 LLs in the diagrams, with subse-
quent classification of their blocks according to the types
(i), (ii), (iii), is justified only in the weak-coupling large-
N limit of the screened Coulomb interactions, when the
real occupancy of the n 6= 0 LLs is close to full or zero,
i.e., 〈c†npµσcnpµσ〉 ≈ 1 or 0, for n < 0 or n > 0, respec-
tively. For example, for the general form of the second-
order free-energy diagrams, with all LLs involved (left-
most diagrams in Figs. 5, 6, and 7), one cannot meaning-
fully attribute each diagram to just one of the (i), (ii),
(iii) classes. At the same time, virtual electron transi-
tions between different LLs are quite efficient and result
in the strong screening of the Coulomb interactions.

A. Stiffness for screened Coulomb interactions

The first consequence of the LL mixing effects is that
the stiffness ρs becomes suppressed due to screening, as
compared to its bare value (49). The stiffness is obtained
from the Fock diagram in Fig. 4 (a), in which the bare
Coulomb potential V0(q) = 2πe2/q should be substituted
by the “dressed” propagator

V (ω, q) =
V0(q)

1 + V0(q)Π(ω, q)
(55)

of the screened interaction (the second term of this series
is shown in Fig. 5(a0)). The stiffness is given by the

standard21,41,42 expression

ρs =
l4B

16π

∫ ∞
0

dq q3e−
q2l2B

2 V (ω = 0, q) (56)

in terms of an arbitrary potential. In Eq. (55), Π(ω, q)
is the polarization operator of graphene in the presence
of the magnetic field. Since in Eq. (56) the frequency
is constrained to ω = 0 (the typical energy scales of the
QHMF theory are � v/lB) and the relevant momenta
are q ∼ 1/lB , one has to use the exact expression for the
polarization operator25,53. At filling factor ν = 0, zero
temperature, and neglecting the minor corrections from
the Zeeman effect, the polarization operator reads

Π(0, q) =
N

2πl2B

∑
n>0
n′≤0

2

εn + |εn′ |
|K̄nn′(q)|2. (57)

Here, K̄nn′(q) [q = (qx, qy), q = |q|] are the graphene
magnetic form-factors; they are expressed in terms of the
conventional form-factors

Knn′(q) =

∫ +∞

−∞
dx eiqxxφn

(
x− qy

2
l2B

)
φn′
(
x+

qy
2
l2B

)
(58)

for the quadratic spectrum as

K̄nn′(q) =
1

2
[K|n|,|n′|(q) + sgnn sgnn′K|n|−1,|n′|−1(q)],

if both n 6= 0 and n′ 6= 0, and K̄n0(q) = K|n|,0(q).
The polarization operator Π(0, q) depends only on the

combination qlB . For qlB � 1, Π(0, q) → Nq/(16v)
approaches its expression in the absence of the magnetic
field. At arbitrary qlB , Π(0, q) can be calculated only
numerically.

Since the Coulomb potential V0(q) has no scale and
Π(0, q) depends solely on qlB , the stiffness (56) scales as

ρs
2πl2B

=
v

NlB
R(e2N/v), (59)

where the dimensionless function R(e2N/v) of the cou-
pling strength e2N/v is defined by Eqs. (56), (55), and
(57). In the limit e2N/v � 1 of negligible screening,
V (0, q) ≈ V0(q), one obtains

R(e2N/v � 1) ≈ 1

8

√
π

2

e2N

v
,

recovering the expression (49) for the bare stiffness. The
function R(e2N/v) grows with increasing e2N/v and sat-
urates to the maximum value R(∞) ∼ 1 in the limit
e2N/v � 1 of complete screening, when V (0, q) ≈
1/Π(0, q).

We see that, upon taking the screening effects of LL
mixing into account, the stiffness (59) retains its square-
root scaling ρs(B⊥)/(2πl2B) ∝ √B⊥ with the magnetic
field, but the numerical prefactor of the dependence be-
comes suppressed. The main practical implication of this
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concerns the activation transport through the bulk of
the sample, since the gaps of the charge excitations are
determined by the typical energy of symmetric interac-
tions; e.g., the energy of the unit charge Skyrmions equals
ESk = 2ρs/l

2
B .

B. Renormalization of the anisotropy energies

The second and a more physically significant ef-
fect arising from nonzero LLs is the renormalization of
the isospin anisotropy energies u⊥,z [Eq. (47)] by the

Coulomb interactions. The bare energies u
(0)
⊥,z [Eqs. (50),

(51), and (52)] are determined by the diagrams (b) and
(c) in Fig. 4, while the diagrams in Figs. 6 and 7 rep-
resent the lowest-order corrections to them. Since the
latter diverge logarithmically, one is forced to sum up
the whole series of log-divergent diagrams. Within the
logarithmic accuracy, this can be achieved by means of
the RG procedure. It proves more efficient to consider
the renormalizations of the bare couplings gαβ and f⊥z,

rather than u
(0)
⊥,z directly, and then express the anisotropy

energies u⊥,z in terms of the renormalized couplings.
In the RG procedure for monolayer graphene44,49,50,

one starts with the Hamiltonian (2) of massless weakly
interacting Dirac fermions. Integrating out the high-
energy fermionic modes in the frequency-momentum
space yields the RG equations for the involved cou-
plings. One finds44,49,50 that the Coulomb interactions
are marginally irrelevant and, consequently, weakly in-
teracting electrons in monolayer graphene flow to a fixed
point of noninteracting massless Dirac fermions.

The RG analysis of the renormalizations of the short-
range e-e and e-ph interactions by the Coulomb interac-
tions was carried out in Refs. 44,45. Here, we recover
the essential results and concentrate on the properties of
key relevance to the ν = 0 QHFM theory. Our notation
differs from that of Refs. 44,45.

1. Preparatory remarks

Several comments are in order before we proceed.
(a) In the perturbation theory diagrams, such as in

Figs. 6 and 7, the large logarithms arise from the diver-
gent sums over LLs εn (if one first integrates over the
frequency ω), which have to be cut by the bandwidth at
high energies, |εn| . v/a0. Since such sums involve many
LLs, the discreteness of the spectrum due to the magnetic
field may be neglected: one may use the expressions for
the Green’s functions and polarization operators in the
absence of the magnetic field, substituting the sums over
LLs by the integrals over momenta q. At the lower limit,
these integrals have to be cut by the inverse magnetic
length q ∼ 1/lB , once the influence of the magnetic field
becomes important. Hence, the arising logarithms are∫ 1/a0

1/lB
dq/q ∼ ln(lB/a0).

Therefore, the magnetic field does not affect the very
structure of the RG equations of Refs. 44,45, yet defines a
natural scale, at which the RG flow stops. In the RG ap-
proach, the coupling constants gαβ(l) and f⊥z(l) acquire
a dependence on the running length scale l. The RG flow
starts at the atomic scale l = a, where the couplings are
equal to their bare values [Eqs. (11), (17), and (53)],

gαβ(a) = gαβ , f⊥z(a) = f⊥z,

and stops at the magnetic length l = lB . The magnetic
length lB defines the scale, at which the renormalized
anisotropy energies u⊥,z are to be determined. We define
the atomic scale as a ∼ a0, absorbing the ambiguity of
the cutoffs in it.

(b) Besides the renormalizations arising from the in-
teractions in the process of “integrating out” higher en-
ergy degrees of freedom (“mode elimination” part, in
the terminology of Ref. 54), the full RG scheme also in-
cludes the renormalizations due to rescaling of frequen-
cies, momenta, and quantum fields (scaling, or “tree-
level”, renormalization). While the former represent ac-
tual physical processes, described explicitly by the di-
agrams (such as in Figs. 5, 6, and 7), the latter are
introduced in order to restore the original phase space
and thus make comparison of the theories with different
bandwidths meaningful. An important question arises,
whether the latter, tree-level, renormalizations also have
to be taken into account when determining the renor-
malized anisotropy energies u⊥,z. Our understanding
is the answer is negative, as they do not correspond to
any physical processes. The following arguments can be
given.

(b.1) Suppose the logarithmic contributions due to
the Coulomb interactions were absent or negligible: for
the sake of argument, one may certainly consider a
model with well-behaved finite-range symmetric interac-
tions (e.g., Gaussian potential), or the Coulomb interac-
tions so weak or the number of flavors N so large that
min(e2/v, 1/N) ln(lB/a0) � 1. Then, all higher-order
contributions to the anisotropy energy would be small
compared to the first-order contribution, which is given
by the diagrams (b) and (c) in Fig. 4 (the ultraviolet-
divergent contributions, mentioned in Sec. II B, from the
short-range e-e interactions may also be assumed small,
gαβ/(va0) � 1). The renormalized anisotropy energies
u⊥,z would then be determined just by the bare expres-
sions (50), (51), and (52),

u⊥,z → u
(0)
⊥,z. (60)

At the same time, the full RG procedure would con-
sist just of the tree-level (TL) renormalization and the
short-range e-e and e-ph couplings would renormalize as
gTL
αβ (l) = gαβ

a
l and fTL

⊥z (l) = f⊥z al , since their scaling

dimension is −1 (see paragraph (c) below regarding e-ph
coupling). Therefore, taking the scaling renormalization
into account, i.e., using the expression (51) for the renor-
malized energies u⊥,z in terms of the couplings gTL

αβ (lB)
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and fTL
⊥z (lB), one would have to multiply the bare ener-

gies u
(0)
⊥,z by the factor a/lB ,

u⊥,z
?−→ a

lB
u

(0)
⊥,z.

This would, in apparent disagreement with Eq. (60), both
drastically decrease the magnitude of the anisotropy en-
ergies and alter their dependence on the magnetic field.

(b.2) Alternatively, such question and the extra fac-
tor a/lB in u⊥,z never arise, if one starts with the “poor
man’s” formulation of the problem, as to sum up the com-
plicated parquet series of log-divergent diagrams (Figs. 6
and 7 and all higher orders). One can then invoke the RG
procedure, or rather, just its “mode elimination” part, as
the latter is known to be an elegant way of accomplishing
this task.

We, therefore, conclude that the renormalized
anisotropy energies u⊥,z must be expressed through the
couplings ḡαβ(lB) and f̄⊥z(lB), in which only the renor-
malizations arising from the “mode elimination” part of
the RG procedure are taken into account:

uα = u(e-e)
α + u(e-ph)

α , α =⊥, z (61)

u(e-e)
α =

1

2πl2B
[ḡα0(lB) + ḡαz(lB)], α =⊥, z (62)

u
(e-ph)
⊥ = − f̄⊥z(lB)

2πl2B
, u(e-ph)

z = 0. (63)

The couplings ḡαβ(l) and f̄⊥z(l) differ from the couplings
gαβ(l) and f⊥z(l) of the full RG scheme by the tree-level
renormalization,

gαβ(l) = ḡαβ(l)
a

l
, f⊥z(l) = f̄⊥z(l)

a

l
.

(c) Finally, we comment on the peculiarities of e-ph
interactions in graphene. Since the phonon dynamics is
characterized by the phonon frequencies ωµ [µ = E2, A1,
Eq. (18)], the properties of e-ph interactions depend on
the energy scale ε at which considered. At ε � ωµ, the
phonon-mediated electron interactions are effectively in-
stantaneous and, being also short-ranged, are quite anal-
ogous to the short-range e-e interactions; in particular,
they are irrelevant in the RG sense with the scaling di-
mension −1. At energies ε � ωµ, retardation is strong
and phonon-mediated interactions become marginal45:
they produce log-divergencies, which have to be cut by ωµ
at the lower limit, yielding the logarithms ln[v/(a0ωµ)].
As a result, in principle, e-ph interactions renormalize
both themselves and the short-range e-e interactions. In
practice, however, for the typical values of parameters in
graphene, these renormalizations turn out to be numeri-
cally smaller that those due to the Coulomb interactions,
as can be inferred from the analysis of Ref. 45. There-
fore, here, we neglect the renormalizations due to e-ph

interactions. On the one hand, since e-ph interactions
couple different valley channels, including these renor-
malizations would significantly complicate the RG equa-
tions. On the other hand, this should not alter the main
conclusions of the RG analysis, which imply that essen-
tially any algebraic possibility (i.e., including signs) for
the isospin anisotropy energies (u⊥, uz) could be realized
in graphene.

2. RG analysis

We can now proceed with the RG analysis44,45. The
one-loop renormalizations of the short-range e-e and e-
ph couplings by the screened Coulomb interactions are
actually described by the diagrams in Figs. 6 and 7, upon
“dressing” the bare Coulomb lines. The corresponding
RG equations for the coupling constants ḡαβ(l) read44

dḡα0(l)

dξ
= 0 for α = x, y, z, (64)

and

dḡα⊥(l)

dξ
= 2F (w(l))[ḡα⊥(l)− ḡαz(l)], (65)

dḡαz(l)

dξ
= 4F (w(l))[ḡαz(l)− ḡα⊥(l)], (66)

for α = 0, x, y, z. Here, ξ = ln l/a.
One observes that the couplings

ḡα0(l) = gα0, α = x, y, z, (67)

are not renormalized, whereas ḡαx(l) = ḡαy(l) ≡ ḡα⊥(l)
and ḡαz(l), α = 0, x, y, z, are. Different valley channels
α are not coupled, but the ⊥ and z sublattice channels
do couple to each other within each valley channel. The
reason for this are the properties of the electron Green’s
function: while a unit matrix in the KK ′ valley space,
it has nontrivial matrix structure in the ĀB̄ sublattice
space. The symmetric Coulomb interactions themselves
couple neither valley nor sublattice channels.

In Eqs. (65) and (66).

F (w) =
8

π2N

(
1− π

2w
+

arccosw

w
√

1− w2

)
(68)

is a function of the dimensionless coupling constant

w(l) =
πN

8

e2

v(l)
(69)

of the Coulomb interactions, plotted in Fig. 8. The RG
equation44,49,50 for w(l) is also determined by Eq. (68),

dw(l)

dξ
= −F (w(l))w(l). (70)
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FIG. 8: The function F (w) [Eq. (68)] of the Coulomb coupling
constant w [Eq. (69)] describes the renormalizations of the
Dirac velocity v(l), w(l) itself, and the short-range e-e and
e-ph couplings.
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FIG. 9: Renormalization of the Coulomb coupling constant
w(l) [Eq. (69)]. The bare value w(a) = 3.4 was used.

The renormalization of w(l) comes from the renormal-
ization of the Dirac velocity v(l), while the charge e2 is
not renormalized (the diagrams (a1)-(a4) in Fig. 5 cancel
each other within the log-accuracy).

Equation (70) can be solved analytically only the lim-
its of weak (w(l) � 1, interactions are not screened,
F (w) ≈ 2

πNw ) or strong (w(l)� 1, interactions are fully

screened, F (w) ≈ F (∞) = 8
π2N ) coupling. In Fig. 9, we

plot the numerical solution w(l) to Eq. (70) for the bare
value w(a) = w ≈ 3.4 obtained at v(a) = v ≈ 108cm/s,
which should be typical for suspended graphene. As a
general property, w(l) decreases [the velocity v(l) grows]
with increasing the length scale l; therefore, Coulomb in-
teractions flow towards weak coupling. At lB/a = 40
(taking lB ≈ 10nm at B⊥ ≈ 10T and a = a0 ≈ 2.5Å),
we obtain w(lB) ≈ 2.1, i.e., for experimentally relevant
values, Coulomb interactions remain in the intermediate,
moderate strength, regime.

Since the renormalization of the Coulomb coupling
w(l) [Eq. (70)] does not involve the short-range e-e or
e-ph interactions (we neglect the later, see paragraph (c)
in Sec. IV B 1 and Ref. 45), one may regard F (w(l)) in
Eqs. (65) and (66) as a known function of l. The system
of the coupled equations (65) and (66) can then easily
be solved by making a linear transformation to the cou-
plings44

ḡα+(l) =
1

3
[ḡαz(l)+2ḡα⊥(l)], ḡα−(l) =

1

3
[ḡαz(l)−ḡα⊥(l)],

ḡα⊥(l)

ḡαz(l)

0

FIG. 10: RG flows [Eqs. (71), (72), and (73)] of the cou-
pling constants ḡα⊥(l) and ḡαz(l) of the short-range electron-
electron interactions (11).

which translates the equations to

dḡα+(l)

dξ
= 0,

dḡα−(l)

dξ
= 6F (w(l))ḡα−(l).

The solution of these equations is straightforward and,
coming back to ḡα⊥(l) and ḡαz(l), one obtains

ḡα⊥(l) =
1

3
(gαz+2gα⊥)− 1

3
(gαz−gα⊥)Fe-e(l/a, w), (71)

ḡαz(l) =
1

3
(gαz+2gα⊥)+

2

3
(gαz−gα⊥)Fe-e(l/a, w), (72)

Fe-e(l/a, w) = exp

[∫ l

a

dl′

l′
6F (w(l′))

]
, (73)

for α = 0, x, y, z. The function Fe-e(l/a, w) determines
the strength of renormalization. It depends on the bare
Coulomb coupling w as parameter and reaches its maxi-
mum

Fmax
e-e (l/a) = Fe-e(l/a,∞) =

(
l

a

) 48
π2N

in the strong coupling regime w →∞, when the interac-
tions are fully screened. This provides an upper bound
for the strength of renormalization.

The RG flows in the space of couplings (ḡα⊥(l), ḡαz(l)),
defined by Eqs. (71) and (72), are plotted in Fig. 10.
Their key properties are as follows. Starting from the
point (ḡα⊥(a), ḡαz(a)) = (gα⊥, gαz) at the lattice scale
l = a, the RG flow (ḡα⊥(l), ḡαz(l)) follows the straight
line

2ḡα⊥(l) + ḡαz(l) = 2gα⊥ + gαz. (74)

This constraint implies that the sum of couplings∑
β=x,y,z ḡαβ(l) = 2ḡα⊥(l) + ḡαz(l) in different sublattice

channels β is conserved under renormalization.



15

Further, depending on the relation between the bare
values gα⊥ and gαz, eventually, for strong enough renor-
malization, the flow line ends up either in the quadrant

(ḡα⊥(l) > 0, ḡαz(l) < 0), if gα⊥ > gαz, (75)

or in the quadrant

(ḡα⊥(l) < 0, ḡαz(l) > 0), if gα⊥ < gαz, (76)

light red regions in Fig. 10. That is, the initially al-
gebraically larger (smaller) coupling always becomes or
stays positive (negative). Deeper reasons for this inter-
esting behavior could be sought in the chiral nature of
the Dirac quasiparticles, which is the ultimate cause of
coupling between ⊥ and z sublattice channels.

What concerns the renormalizations of e-ph interac-
tions by the Coulomb interactions, the RG equations for

the couplings f̄z⊥(l) =
F 2
E2
s0

Mω2
E2

(E2 phonons) and f̄⊥z(l)

(A1, B1 phonons) read45

df̄z⊥(l)

dξ
= 2F (w(l))f̄z⊥(l),

df̄⊥z(l)
dξ

= 4F (w(l))f̄⊥z(l). (77)

For e-ph interactions, different sublattice channels do not
couple in the renormalization process. The solution to
Eq. (77) is

f̄⊥z(l) = f⊥zFe-ph(l/a, w), (78)

Fe-ph(l/a, w) = exp

[∫ l

a

dl′

l′
4F (w(l′))

]
. (79)

Comparing Eqs. (73) and (79), we see that the renormal-
ization of the e-ph coupling is parametrically weaker than
that of the short-range e-e couplings: Fe-ph(l/a, w) =

[Fe-e(l/a, w)]2/3 due to the factor 4 instead of 6 in the
exponential. The maximum, as a function of w, equals

Fmax
e-ph(l/a) = Fe-ph(l/a,∞) =

(
l

a

) 32
π2N

.

Concluding this section, the renormalizations of the
short-range e-e and e-ph couplings are described by
Eqs. (67), (71), (72), (73), (78), and (79). Since
ḡα0(lB) = gα0, α =⊥, z, are not renormalized and,
according to Eq. (62), ḡ0β(lB), β =⊥, z, do not af-
fect the anisotropies, the main contribution to the

anisotropy energies u
(e-e)
α due to short-range e-e inter-

actions comes from the couplings ḡαz(lB). In the regime
Fe-e(lB/a, w) � 1 of strong renormalization, one may
neglect the first term in Eq. (72) (except for the special

case, when the bare values are close to the unstable line
gα⊥ = gαz) to obtain

u(e-e)
α ≈ 1

2πl2B

2

3
(gαz− gα⊥)Fe-e(lB/a, w), α =⊥, z. (80)

From Eqs. (63), (78), and (79), the anisotropy energies
due to e-ph interactions equal

u
(e-ph)
⊥ = − f⊥z

2πl2B
Fe-ph(lB/a, w), u(e-ph)

z = 0. (81)

Finally, we also mention that the Zeeman energy εZ
[Eq. (46)] is not renormalized44 by the Coulomb inter-
actions, since the Zeeman splitting term in Eq. (8) is
scalar in KK ′ ⊗ ĀB̄ space.

C. Consequences of renormalizations of the
anisotropy energies u⊥,z for the ν = 0 QHFM

The properties of the renormalized isospin anisotropy
energies, obtained in Sec. IV B, have very important con-
sequences for the physics of the ν = 0 QHFM. The con-
clusions below constitute some of the key results of the
present work.

1. Magnitude of the anisotropy energies u⊥,z

The first consequence concerns the absolute values of
the anisotropy energies u⊥,z. As follows from Eqs. (16),
(51), (52), and (54), the bare anisotropy energies can be
roughly estimated as

|u(e-e,0)
⊥,z (B⊥)|, |u(e-ph,0)

⊥ (B⊥)| ∼ e2

a0

(
a0

lB

)2

∼ B⊥[T]K.

(82)
They scale linearly with the perpendicular magnetic field
B⊥ and are on the same order as the Zeeman energy
εZ = µBB ≈ 0.7B[T]K (for moderate tilt angles), as
obtained earlier in Refs. 22,25,30,31.

According to Eqs. (80) and (81),

|u(e-e)
⊥,z (B⊥)| ∼ |u(e-e,0)

⊥,z (B⊥)|Fe-e(lB/a, w) (83)

and

u
(e-ph)
⊥ (B⊥) = u

(e-ph,0)
⊥ (B⊥)Fe-ph(lB/a, w), (84)

i.e., the renormalized anisotropy energies are enhanced
by the factors Fe-e(lB/a, w) and Fe-ph(lB/a, w), com-
pared to the bare values and their functional dependence
on B⊥ is altered.

In Fig. 11, we plot Fe-e(lB/a, w) and Fe-ph(lB/a, w)
as functions of lB/a for the bare Coulomb strength w =
3.4. Some values are (Fe-e(lB/a, w),Fe-ph(lB/a, w)) ≈
(6.6, 3.5), (19, 7), (37, 11) at lB/a = 10, 40, 100, respec-
tively. We see that, in a typical experimental situation
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FIG. 11: The functions Fe-e(lB/a,w) and Fe-ph(lB/a,w)
[Eqs. (73) and (79)], characterizing the strength of renormal-

izations of the isospin anisotropy energies u
(e-e)
α and u

(e-ph)
α

[Eqs. (80) and (81)] due to short-range e-e and e-ph inter-
actions. The value w = 3.4 for the bare Coulomb cou-
pling [Eq. (69)] was used. In a typical experimental range
lB/a ∼ 10 − 100, the anisotropy energies are enhanced by

about one order compared to their bare values u
(e-e,0)
α and

u
(e-ph,0)
α [Eqs. (50)-(53), and (82)].

(lB ∼ 10nm and a ≈ 2.5Å gives lB/a ≈ 40), the renor-
malization of the anisotropy energy is expected to be very
strong. Since the Zeeman energy εZ = µBB is not renor-
malized, u⊥,z can easily exceed εZ by one order. This
implies that the isospin anisotropies play a major, per-
haps, more significant role than the Zeeman effect in the
physics of the ν = 0 QHFM.

2. Signs of the anisotropy energies u⊥,z

The second consequence concerns the possible signs of
the anisotropy energies u⊥,z. According to Eq. (80), in
the regime of strong renormalization Fe-e(lB/a, w) � 1,

the sign of the anisotropy energy u
(e-e)
α , α =⊥, z, is de-

termined by the relation gαz ≷ gα⊥ between the bare
couplings. This follows from the discussed peculiar be-
havior of the RG flows, see Fig. 10 and Eqs. (75) and
(76). This property suggests that,

essentially, any sign combination

u
(e-e)
⊥ ≷ 0, u(e-e)

z ≷ 0 (85)

of the anisotropy energies due to short-range e-e interac-
tions could be realized in a real graphene system, regard-
less of the potential restrictions on the signs of the bare
couplings gαβ, α, β =⊥, z.

To elaborate on this statement, it is instructive to con-
sider the weak-coupling limit e2/v � 1. In this regime,

the bare couplings gαβ = g
(1)
αβ , α, β =⊥, z, obtained in

the first order in the Coulomb interaction, are given by
Eq. (13). The expression (13) in the form of the elec-
trostatic energy leads us to conclude [Eq. (14)] that the

couplings g
(1)
αβ > 0, α, β =⊥, z, are positive, i.e., e-e in-

teractions in these channels are repulsive. Then, accord-

ing to Eq. (51), the bare anisotropy energies u
(e-e,0)
α =

g
(1)
αz /(2πl2B) > 0, α =⊥, z, can also only be positive

(gα0 = g
(2)
α0 � g

(1)
αz , for e2/v � 1).

If the bare expressions u
(e-e,0)
⊥,z provided correct values

for the anisotropy energies, this would significantly re-
strict the variety of possible orders of the ν = 0 QHFM
that could be realized in the system. Anticipating the
results of Sec. V, the fully spin-polarized ferromagnetic
phase would be the only phase favored by the short-range
e-e interactions. However, the positiveness of the bare

couplings g
(1)
αβ > 0 does not impose any sign restrictions

on the renormalized energies u
(e-e)
⊥,z : according to Eq. (80),

the signs of u
(e-e)
α (α =⊥, z) are determined by the rela-

tions g
(1)
αz ≷ g

(1)
α⊥ between the couplings, and not their

signs, and there seems to be no physical restriction on

the relative values g
(1)
αz /g

(1)
α⊥.

This demonstrates that, even if the signs of the bare
couplings gαβ (α, β =⊥, z) were fixed to positive by the
repulsive nature of the Coulomb interactions, the renor-

malized anisotropy energies u
(e-e)
⊥,z can still come in any

possible sign combination, which brings us to the above
statement. We also do not expect the sign restriction on
gαβ (α, β =⊥, z) to necessarily remain in the regime of
stronger interactions, e2/v ∼ 1: the sign change of some
couplings could occur already due to renormalizations at
the lattice scale, see Sec. II B.

What concerns the anisotropies due to electron inter-
actions with in-plane A1, B1 phonons, as follows from
Eqs. (52) and (81), the energy

u
(e-ph)
⊥ < 0 (86)

always remains negative. The negative sign is a conse-
quence of the attractive nature of the phonon-mediated
interactions and appears to stay preserved in the renor-
malization process. We also mention that electron inter-
actions with the out-of-plane phonons result in a negative

anisotropy energy u
(e-ph)
z < 0, which is, however, small,

|u(e-ph)
z | � |u(e-ph)

⊥ | and neglected here.

The discussion of the implications of the properties
(85) and (86) for the physics of the ν = 0 QHFM will be
continued in Sec. V B.

V. PHASE DIAGRAM FOR THE ν = 0
QUANTUM HALL FERROMAGNET

In this section, we obtain the phase diagram of the
ν = 0 QHFM in graphene in the presence of the isospin
anisotropy and Zeeman effect, as described by the energy
functional E[P (t, r)] [Eqs. (44)-(48)]. We will consider
only the “classical” ground states, i.e., time-independent
configurations P (r) that minimize the energy functional;
effects of thermal fluctuations are beyond the scope of
this paper. In the bulk of the sample, the functional
E[P (r)] is minimized by a spatially homogeneous config-
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ν = 0 QHFM state single-particle spinors χa,b order parameter P anisotropy energy E�(P )

spin-polarized isospin-singlet |n〉 ⊗ |s〉, | − n〉 ⊗ |s〉 1̂⊗ Ps −2u⊥ − uz
isospin-polarized spin-singlet |n〉 ⊗ |s〉, |n〉 ⊗ | − s〉 Pn ⊗ 1̂ u⊥(n2

x + n2
y) + uzn

2
z

Pns state |n〉 ⊗ |s〉, | − n〉 ⊗ | − s〉 Pn ⊗ Ps + P−n ⊗ P−s −u⊥(n2
x + n2

y)− uzn2
z

TABLE I: Relevant states of the ν = 0 QHFM. For given values of (u⊥, uz), the anisotropy energy E�(P ) is minimized by one
of these states, see Tab. II

uration P (r) = P that minimizes the sum

E(P ) = E�(P ) + EZ(P ) (87)

of the anisotropy and Zeeman energies. Which P de-
livers the minimum of E(P ) depends on the signs of the
anisotropy energies u⊥,z and their relations between each
other and the Zeeman energy εZ . The results of the pre-
vious section suggest that essentially any scenario for
(u⊥, uz) could take place in real graphene. Therefore,
here, we consider all possibilities and obtain a generic
phase diagram in the space of parameters (u⊥, uz, εZ).

A. Relevant states

According to Sec. III A, the order parameter matrices
P of the ν = 0 QHFM in graphene form a representation
of the eight-dimensional Grassmanian manifold Gr(2,4).
For the purpose of finding the ground states, however,
considering the most general parametrization of P is not
necessary, since the anisotropy terms [Eqs. (47) and (48)]
act explicitly on the isospin only. Here, we will consider
two simpler six-dimensional submanifolds of Gr(2,4) of
physical relevance to the problem. We will find that all
possible ground states belong to these subsets.

First, consider a family of states [see Eqs. (38) and
(40), direct products are in KK ′ ⊗ s space],

χa = |na〉 ⊗ |s〉, χb = |nb〉 ⊗ | − s〉, (88)

Pn = Pna ⊗ Ps + Pnb ⊗ P−s, (89)

in which two electrons occupy the states χa,b with oppo-
site spin (±s) and arbitrary isospin (na,b) polarizations.
Here and below,

Ps = |s〉〈s| = 1

2
(1̂ + τs)

is the density matrix of the spin (isospin, if in KK ′ space)
in the state |s〉; na,b, s, and n, sa,b below, are unit vectors
defining the spin or isospin states. Calculation of the
anisotropy energy [Eqs. (47) and (48)] of the state (89)
gives

E�(Pn) = u⊥(naxnbx + naynby) + uznaznbz (90)

As an important special case of Pn states, for coincid-
ing isospins na = nb ≡ n, one obtains a fully isospin-
polarized (IP) spin-singlet state

P IP = Pn ⊗ 1̂ (91)

CDW

x y

z

n |K〉

|K′〉

FIG. 12: Charge-density-wave (CDW) phase of the ν = 0
QHFM.

KD

x

y

z

n

ϕn

|K〉

|K′〉

FIG. 13: Kekulé-distortion (KD) phase of the ν = 0 QHFM.

with the anisotropy energy

E�(P IP) = u⊥n
2
⊥ + uzn

2
z, n

2
⊥ = n2

x + n2
y. (92)

The observable order of such state depends on the orien-
tation of the isospin n. In particular, when the isospin
is at the poles of the Bloch sphere, n = ±nz, nz =
(0, 0, 1), the state has a charge-density-wave (CDW) or-
der (Fig. 12), with both electrons per orbital occupying
the same sublattice, and energy ECDW

� = uz. When the
isospin is on the equator of the Bloch sphere, n = n⊥ =
(cosϕn, sinϕn, 0), the state has the Kekulé-distortion
(KD) order, represented schematically in Fig. 13, and
energy EKD

� = u⊥. The angle ϕn is related to the orien-
tation of the atom displacements in Fig. 3(right).

The second important family of states is “dual” to Pn,

χa = |n〉 ⊗ |sa〉, χb = | − n〉 ⊗ sb〉, (93)

P s = Pn ⊗ Psa + P−n ⊗ Psb , (94)

Here, two electrons occupy the states χa,b with oppo-
site isospin (±n) and arbitrary spin (sa,b) polarizations.
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F

FIG. 14: Spin-polarized ferromagnetic (F) phase of the ν = 0
QHFM.

AF

FIG. 15: Antiferromagnetic (AF) phase of the ν = 0 QHFM.

Calculation of the anisotropy energy gives

E�(P s) = −(2u⊥+uz)
1 + sasb

2
−(u⊥n

2
⊥+uzn

2
z)

1− sasb
2

.

(95)
As a special case of P s states, for coinciding spins sa =

sb ≡ s, one obtains a fully spin-polarized isospin-singlet
state

PF = 1̂⊗ Ps, (96)

with the ferromagnetic (F) order (Fig. 14) and anisotropy
energy

EF
� = −2u⊥ − uz. (97)

Note that in the isospin-singlet F state, each isospin chan-
nel α = x, y, z contributes −uα to the anisotropy en-
ergy (47).

An intersection of the subsets (89) and (94) is the fam-
ily of states

χa = |n〉 ⊗ |s〉, χb = | − n〉 ⊗ | − s〉

Pns = Pn ⊗ Ps + P−n ⊗ P−s. (98)

Here, two electrons have simultaneously opposite spin
(±s) and isospin (±n) polarizations. For brevity, we will
denote the states (98) with n = n⊥ and n = ±nz as
Pns⊥ and Pnsz , respectively. At n = ±nz, electrons with
opposite spin polarizations ±s reside on different sublat-
tices and Pnsz state has an antiferromagnetic (AF) order
(Fig. 15).

The state (98) has the anisotropy energy

Ens� = −u⊥n2
⊥ − uzn2

z, (99)

as can be obtained from either Eq. (90) or (95). Com-
paring Eqs. (95), (97) and (99), we also notice that, for
arbitrary orientations of spins sa and sb, the anisotropy
energy (95) of the state (94) is a linear combination of
the energies of the F and Pns states, with the weights de-
termined by the product sasb, i.e., by the angle between
the spins.

The properties of the states (91), (96), and (98) are
summarized in Table I.

B. Phase diagram neglecting the Zeeman effect

To get a clear understanding of the orders favored by
the isospin anisotropy, let us first neglect the Zeeman
energy EZ(P ) completely and find the states P that min-
imize the anisotropy energy E�(P ) [Eqs. (47) and (48)]
alone.

We accomplish this by noticing the following property.
For a given isospin channel α = x, y, z, the function tα(P )
[Eq. (48)] belongs to the range

−2 ≤ tα(P ) ≤ 2.

The maximum tα(P ) = 2 is reached at the IP state (91)
with n parallel to the α axis, nα = ±1. For the remaining
components ᾱ, one has tᾱ(P ) = 0.

The minimum tα(P ) = −2 is reached within the subset
(94), when

(1− n2
α)(s+s− − 1) = 0,

i.e., in two cases.
(i) In the first case, s+ = s−, and the minimum is

reached at the F state (96) (hence, n can be arbitrary).
For the remaining components ᾱ, one also has tᾱ(P ) =
−2, see also the comment after Eq. (97).

(ii) In the second case, nα = ±1. For the remaining
components ᾱ, one has tᾱ(P ) = −(1 + s+s−), for which
the maximum tᾱ(P ) = 0 is reached at s+ = −s−, i.e, at
the Pnsα (α =⊥, z) state, and the minimum tᾱ(P ) = −2
– at the F state. The latter just brings us back to the
case (i).

Using these properties, we arrive at the conclusion
that, for given signs and ratio of u⊥ and uz, the
anisotropy energy E�(P ) is minimized by one of the above
states – F, IP, or Pnsα – that either minimize or maximize
tα(P ).

The four possible cases (u⊥ ≷ 0, uz ≷ 0) of sign combi-
nations are considered below; three of them split into sub-
cases, depending on the relative absolute value |u⊥/uz|.

(++): u⊥ > 0, uz > 0. The anisotropy energy is
minimized by the F state (96), which minimizes tα(P ) =
−2 simultaneously for all α = x, y, z, and gives EF

� =
−2u⊥ − uz.
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sign combination u⊥ > 0, uz > 0 u⊥ > 0, uz < 0 u⊥ < 0, uz > 0 u⊥ < 0, uz < 0

subcase u⊥ > |uz| u⊥ < |uz| |u⊥| > uz |u⊥| < uz |u⊥| > |uz| |u⊥| < |uz|
state minimizing E�(P ) F F CDW KD AF KD CDW

minimal E�(P ) −2u⊥ − uz −2u⊥ + |uz| −|uz| −|u⊥| −uz −|u⊥| −|uz|

TABLE II: Minimization of the anisotropy energy E�(P ) [Eqs. (47) and (48)].

u
¦

uz

F

CDW

KD

AF

0

FIG. 16: Phase diagram of the ν = 0 QHFM states minimiz-
ing the isospin anisotropy energy E�(P ) [Eqs. (47) and (48)],
in the space of the anisotropy energies (u⊥, uz). Physical or-
ders of the phases are shown in Figs. 12-15.

(−−): u⊥ < 0, uz < 0. The anisotropy energy is
minimized by one of the IP states (91), which maximize
tα(P ) = 2. For |u⊥| > |uz|, E�(P ) is minimized by the
KD state with EKD

� = −|u⊥|, whereas for |u⊥| < |uz| –
by the CDW state with ECDW

� = −|uz|.
(−+): u⊥ < 0, uz > 0. The anisotropy energy is

minimized by either the KD state with EKD
� = −|u⊥|,

which minimizes the E⊥(P ) = 1
2u⊥[tx(P ) + ty(P )] part

of E�(P ), or the AF state [Eq. (98) with n = ±nz] with
EAF
� = −uz, which minimizes the Ez(P ) = 1

2uztz(P ) part
of E�(P ), E�(P ) = E⊥(P ) + Ez(P ). Comparing these en-
ergies, we obtain that for |u⊥| > uz, the KD state is
realized, whereas for |u⊥| < uz, the AF state is realized.
The F state, which also minimizes Ez(P ), cannot be re-
alized, since EF

� = 2|u⊥| − uz > EAF
� in this regime.

(+−): u⊥ > 0, uz < 0. In this case, one has to com-
pare the energies of three states: the CDW state with
ECDW
� = −|uz|, which minimizes the Ez(P ); the F state

with EF
� = −2u⊥+|uz|, which minimizes E⊥(P ) but maxi-

mizes Ez(P ) at the same time; and the Pns⊥ state [Eq. (98)
with nz = 0] with E�(Pns⊥ ) = −u⊥, which has a higher
E⊥(P ) than the F state, but zero Ez(P ), on the other
hand. Comparing these three energies, we find that only
the first two states are realized: for u⊥ > |uz|, E�(P )
is minimized by the F state, whereas for u⊥ < |uz| –
by the CDW state. The Pns⊥ state is not realized since
E�(Pns⊥ ) > EF

� for u⊥ > |uz| and E�(Pns⊥ ) < ECDW
� for

u⊥ < |uz|.
These cases are summarized in Tab. II. Together, they

combine into the phase diagram of the states of the ν =

state order parameter P E�(P ) symmetry

F 1̂⊗ Ps −2u⊥ − uz SU(2)s

KD Pn⊥ ⊗ 1̂ u⊥ U(1)KK′

CDW P±nz ⊗ 1̂ uz Z2KK′

AF Pnz ⊗ Ps + P−nz ⊗ P−s −uz SU(2)s

TABLE III: States minimizing the isospin anisotropy energy
E�(P ) [Eqs. (47) and (48)] and forming the phase diagram in
Fig. 16. The last column (symmetry) denotes the symmetries
of the ground states in the isospin (KK′) and spin (s) spaces.

0 QHFM that minimize the isospin anisotropy energy,
plotted in Fig. 16. The phase diagram consists of four
states with the following orders: F, AF, CDW, and KD,
shown in Figs. 12-15. The phases are separated by the
first-order transition lines:

u⊥ = −uz > 0 – between the F and CDW phases;

u⊥ = uz < 0 – between the CDW and KD phases;

u⊥ = −uz < 0 – between the KD and AF phases;

u⊥ = 0, uz > 0 – between the AF and F phases.

These transition lines come together at the origin
(u⊥, uz) = (0, 0), where the anisotropy energy vanishes
and all orders P have the same energy.
Without the Zeeman effect, the phases have the fol-

lowing symmetries: the F and AF phase are SU(2)-
symmetric in the spin space [the spin polarization s in
Eq. (96) or (98) can be arbitrary]; the KD phase has
U(1) symmetry [n = n⊥ = (cosϕn, sinϕn, 0) can have
arbitrary orientation ϕn in the nz = 0 plane], and the
CDW phase has Z2 symmetry (n = ±nz, according to
the occupation of either A or B sublattice). Exactly at
the phase transition lines, the symmetry of the ground
state becomes higher; we do not attempt to study the
details of the transitions here. The key properties of the
phases are summarized in Tab. III.

Let us come back to the microscopic origins of
the isospin anisotropy. The conclusions of Sec. IV C
[Eq. (85)] imply that any possibility for the signs and

relative values of the anisotropy energies u
(e-e)
⊥,z could be

realized and, therefore, any phase on the diagram in
Fig. 16 could be favored by the short-range e-e interac-
tions alone. The reason for that are peculiar properties
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of the renormalizations of the short-range e-e interac-
tions in graphene, which allow for sign changes of the
coupling constants (Fig. 10), switching the interactions
from repulsive (ue-e

α > 0) to attractive (ue-e
α < 0) in cer-

tain channels.
In contrast, according to Eq. (86), the leading e-ph in-

teractions always favor the Kekulé distortion order, in
agreement with earlier predictions30,31. Unlike short-
range e-e interactions, different sublattice channels do
not couple in the renormalization process and e-ph cou-
plings retain their negative sign, characteristic of attrac-
tive interactions. We also mention that e-ph interactions
with the out-of-plane phonons, neglected here as weak,

result in u
(e-ph)
z < 0 and favor CDW order, in line with

Ref. 32.
Of course, the values of the bare couplings gαβ are

determined by the details of e-e interactions and band
structure at atomic scale and should be a robust mate-
rial property. Therefore, in real graphene, one can ex-
pect one particular situation for the anisotropy energies

(u
(e-e)
⊥ , u

(e-e)
z ) to be realized [which, in the experimen-

tally relevant regime of strong renormalizations, cannot
be changed by varying B⊥, see Eq. (80) and discussion
in Sec. V E] and one certain order to be favored. In this
sense, a more accurate formulation of the statement (85)
is that one cannot theoretically rule out any possibility

for u
(e-e)
⊥,z , based just on the repulsive nature of the under-

lying Coulomb interactions. Doing so requires a reliable
numerical estimate for the bare couplings.

In the absence of such an estimate, we point out one
case that may be the most relevant to the real system.
For that, we turn again to the first-order expressions

(13) for the couplings g
(1)
αβ , α, β =⊥, z. There, ραβ(~r),

α, β = x, y, and ρzz(~r) are the staggered-type densi-
ties given by the linear combinations of the products
uµA(~r)uµ′A(~r) and uµB(~r)uµ′B(~r), µ = K,K ′, of the
Bloch wave-functions. On the other hand, the densities
ραz(~r) and ρzα(~r), α = x, y, are determined by the over-
laps uµA(~r)uµ′KB(~r) of the Bloch wave-functions peaked
at the atomic sites of different sublattices. Therefore, it

would be reasonable to expect the couplings g
(1)
⊥z and g

(1)
z⊥

to be smaller than g
(1)
zz and g

(1)
⊥⊥, i.e.,

g(1)
zz , g

(1)
⊥⊥ > g

(1)
⊥z , g

(1)
z⊥ > 0.

(This certainly becomes true in the limit of “strongly
localized” atomic orbitals, when the size of the atomic
wave-function is much smaller than the bond length.) In
this case, according to Sec. IV B, ḡzz(lB) > 0 will stay
positive and grow upon renormalization, while ḡ⊥z(lB)
will turn negative and grow in absolute value. This re-
sults in the signs

u
(e-e)
⊥ < 0, u(e-e)

z > 0

of the anisotropy energies [Eq. (62)]. The same holds for
the total anisotropy energies,

u⊥ < 0, uz > 0,

CAF

x
y

z

B sasb

ϕs

θ∗s

FIG. 17: Canted antiferromagnetic (CAF) phase of the ν = 0
QHFM.

once e-ph interactions [Eq. (86)] are included. In this
case, according to Fig. 16 only either KD or AF phase can
be favored by the isospin anisotropy (the latter becomes
canted in the presence of the Zeeman effect, see Sec. V C).

C. Phase diagram in the presence of the Zeeman
effect

We now take the Zeeman effect into account and find
the ground states P that minimize the the sum E(P )
[Eq. (87)] of the anisotropy and Zeeman energies. The
question is how the phase diagram in Fig. 16 is modified
by the Zeeman effect.

We first note that the spin-singlet CDW and KD
phases are unaffected by the Zeeman field and their total
energy E(P ) is equal to the anisotropy energy,

ECDW = uz, EKD = u⊥. (100)

One the other hand, the “spin-active” F and AF phases
are affected by the Zeeman field and, therefore, their
whole sector has to be reconsidered. Since both of these
states belong to the family (94), it is sufficient to mini-
mize the energy

E(P s) = −u⊥ − uz − u⊥sasb − εZ(saz + sbz) (101)

of P s state with n = nz but generally noncollinear spins
sa,b. One can easily check that for a given angle 2θs
between the spins, sasb = cos(2θs), 0 ≤ θs ≤ π/2, which
fixes the anisotropy energy E�(P s), the Zeeman energy
EZ(P s) is minimized by the spin orientations

sa,b = (±
√

1− s2
z cosϕs,±

√
1− s2

z sinϕs, sz), (102)

sz = cos θs, that have equal projections on the direction
of the magnetic field (z) and are antiparallel in the per-
pendicular (xy) plane, as shown in Fig. 17. The total
energy (101) then equals

E(sz) = −u⊥ − uz − u⊥(2s2
z − 1)− 2εZsz. (103)

Minimizing it with with respect to sz, we obtain that,
for u⊥ < −εZ/2, a canted antiferromagnetic (CAF) state
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with the optimal angle θ∗s between the spins (Fig. 18),

s∗z = cos θ∗s =
εZ

2|u⊥|
, (104)

and energy

ECAF = −uz −
ε2Z

2|u⊥|
(105)

is realized, whereas for u⊥ ≥ −εZ/2, the fully spin-
polarized F state (θ∗s = 0, s∗z = 1) with the energy

EF = −2u⊥ − uz − 2εZ (106)

is realized.
We see that in the presence of the Zeeman effect, the

total energy (105) of the CAF state is indeed smaller
than that ECAF = −uz of the AF state with antiparallel
spins: by forming a noncollinear orientation (Fig. 17),
electrons lose some of the anisotropy energy, but gain
more in the Zeeman energy. Therefore, the AF phase in
Fig. 16 is completely substituted by the CAF phase, in
which the optimal angle θ∗s depends on the ratio εZ/|u⊥|.
The antiparallel orientation (θ∗s = π/2, s∗z = 0) is reached
asymptotically for −u⊥ � εZ .

We can now determine the boundaries between differ-
ent phases. As obtained above, the F and CAF phases
are separated by the line

u⊥ = −εZ
2
. (107)

The separation line between the CDW and KD phases
[Eq. (100)] remains at

u⊥ = uz. (108)

Next, comparing the energy (105) of the CAF state with
that (100) of the KD state, we obtain the separation line

u⊥ + uz =
ε2Z

2u⊥
. (109)

Analogously, the phase boundary between the F and
CDW phases is now given by

u⊥ + uz = −εZ . (110)

All four lines (107)-(110) come together and terminate at
point (u⊥, uz) = −(1, 1)εZ/2.

This forms the phase diagram of the ν = 0 quantum
Hall ferromagnet in monolayer graphene in the presence
of the generic isospin anisotropy and Zeeman effect, plot-
ted in Fig. 18. This diagram constitutes the key result of
the present work. The total energy (87) is minimized by
the states with one of the following orders: spin ferromag-
netic (F), charge-density-wave (CDW), Kekulé distortion
(KD), or canted antiferromagnetic (CAF). As compared
to the situation without it (Fig. 16), the Zeeman effect
(i) substitutes the AF phase with antiparallel spins by
the CAF phase with noncollinear spins and (ii) naturally

u
¦

sz
*

1
-ΕZ�2

u
¦

uz

F

CDW

KD

CAF

0

-H1,1L
ΕZ

2

FIG. 18: Phase diagram of the ν = 0 quantum Hall ferro-
magnet in monolayer graphene in the presence of the isospin
anisotropy and Zeeman effect, in the space of the anisotropy
energies (u⊥, uz) and with the Zeeman energy εZ as parame-
ter. Physical orders of the phases are shown in Figs. 12, 13,
14, and 17. Top graph shows the optimal value s∗z [Eq. (104)]
of the spin projection on the direction of the magnetic field
in the CAF and F phases.

state order parameter P E�(P ) + EZ(P ) symm.

F 1̂⊗ Psz −2u⊥− uz−2εZ none

KD Pn⊥ ⊗ 1̂s u⊥ U(1)KK′

CDW P±nz ⊗ 1̂s uz Z2KK′

CAF Pnz⊗Psa + P−nz⊗Psb −uz − ε2Z
2|u⊥|

U(1)s

TABLE IV: States minimizing the sum E�(P ) + EZ(P ) of the
isospin anisotropy and Zeeman energies and forming the phase
diagram in Fig. 18. The last column (symm.) denotes the
symmetries of the ground states in the isospin (KK′) and
spin (s) spaces.

widens up the region of the F phase in the (u⊥, uz) plane.
The discussion of the microscopic origins of the isospin
anisotropies done in Sec. V B can be directly carried over
here. The key properties of the phases are summarized
in Tab. IV.

As far as the symmetries are concerned, the fully
isospin-polarized CDW and KD phases, unaffected by
the Zeeman field, retain their U(1) and Z2 degeneracies
of the isospin orientation. At the same time, the F phase
becomes nondegenerate, with the spin s = sz = (0, 0, 1)
directed along the Zeeman field (i.e., the total magnetic
field), and the CAF phase is U(1)-degenerate with re-
spect to simultaneous rotations of the spins sa,b about
the direction of the Zeeman field [angle ϕs in Eq. (102)].
The continuous U(1) degeneracies of the CAF and KD
phases could be subject to thermal fluctuations, which
we do not addressed here.

Note that, while all phase transitions in Fig. 16 and
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the rest of the transitions in Fig. 18 are first-order (black
lines), the CAF-F transition [Eq. (107), dashed blue line
in Fig. 18] is second-order: upon increasing εZ/|u⊥|, the
CAF phase continuously crosses over to the F phase,
as the AF component (∼

√
1− s∗2z ) of the CAF order

parameter gradually decreases, while its F component
(∼ s∗z) grows; eventually, at the CAF-F transition line
(s∗z = 1), the AF component turns to zero, while the F
component saturates and experiences a jump in deriva-
tive (see top graph in Fig. 18).

D. Relation to earlier works

Here, we discuss the connection of our results to earlier
related studies.

In Refs. 22,29, the lattice effects of e-e interactions on
the ν = 0 QHFM were studied using the tight-binding
extended Hubbard model with adjustable interactions
at the lattice scale and asymptotically Coulomb inter-
actions at large scales. Within this model, the overlap
of the orbitals at different atomic sites is exactly zero
and, neglecting renormalizations, the anisotropy energy

u
(e-e)
⊥ = 0 vanishes exactly and only u

(e-e)
z is present. The

cases u
(e-e)
z > 0 and u

(e-e)
z < 0 are realized when, roughly,

the sum of three nearest-neighbor repulsions is smaller
or greater than the on-site repulsion, respectively. Ac-
cordingly, in Ref. 22, in the presence of the Zeeman ef-
fect, the competition between the F and CDW phases
was predicted, which agrees with the phase diagram in
Fig. 18 at the line u⊥ = 0; the transition point is given by
Eq. (110). In Ref. 29, the comparison between the CDW,
F, and AF phases was done using numerical mean-field
analysis. The conclusion was reached that, ignoring the
Zeeman effect, depending on the details of interactions at
lattice scale, either CDW or AF phase is favored, while
the F phase has higher energy. This is also consistent
with the phase diagram in Fig. 16 at u⊥ = 0. Note
that, at u⊥ = 0 and uz > 0, the system is right at
the transition line between the AF and F phases and
therefore, even minor perturbations (numerical or other)
would drive the system into one of the phases.

One may also draw certain parallels between the ν = 0
QHFM in graphene and the semiconductor quantum Hall
bilayers43,55–57 (QHB) at the total filling factor νQHB =
2. There, the role of the isospin is played by the layer de-
grees of freedom. The leading anisotropy comes from the
difference between the Coulomb interactions within and
between the layers. The resulting “capacitance” effect is
described by the anisotropy uz > 0, while a minor u⊥ > 0
due to the Coulomb interactions is usually neglected in
theoretical studies.

The proximity of the layers results a finite overlap of
the different-layer wave-functions and a possibility of tun-
neling. In the QHFM theory, this is described by an extra
isospin “Zeeman” term Et(P ) = −εttr[TxP ], εt > 0, in
the energy E(P ) [Eq. (87)], i.e., tunneling by itself favors

the isospin-polarized (IPx) state P IPx = Pnx ⊗ 1̂s with
the isospin nx = (1, 0, 0) along the x direction. Remark-
ably, in addition to the F and IPx phases favored by the
Zeeman effect and interlayer tunneling, the CAF phase
with the spin polarizations of the layers as in Fig. 17 was
also predicted55–57 to exist in a finite-size region of the
phase diagram between the F and IPx phases. According
to Refs. 55–57, the antiferromagnetic coupling between
the spins in different layers favoring the CAF phase has
a super-exchange nature and arises from the correlated
two-particle tunneling processes.

It should be emphasized that the physical origin of KD
and CAF phases in graphene and IPx and CAF phases in
QHB is different. On the one hand, the possibility of tun-
neling between the layers is a necessary condition for the
existence of both IPx and CAF phases in QHB. An anal-
ogous ingredient is absent in the bulk of real graphene
samples: creating the isospin “Zeeman” field directed in
the xy isospin plane requires a static “nano-engineered”
Kekulé distortion, Fig. 3(right). On the other hand, in
graphene, the KD phase is favored by large enough neg-
ative anisotropy u⊥ < 0, |u⊥| > |uz|, while the AF phase
(CAF, in the presence of the Zeeman effect) is favored
by the combined anisotropies uz > 0 and u⊥ < 0 at
uz > −u⊥. The negative anisotropy u⊥ < 0 arises from
the attractive interactions in ⊥-isospin channel, provided
by either the e-ph interactions or short-range e-e interac-
tions that turned attractive upon renormalization. Such
mechanisms of u⊥ < 0 are minor or absent in QHB.

E. Inducing phase transitions in the ν = 0 QHFM

Turning to potential practical applications of the
present theory, two important questions can be ad-
dressed: (i) which phase in Fig. 18 is realized in the ex-
perimentally observed insulating ν = 0 state; (ii) whether
one can induce transitions between different phases in a
real system. We address the latter question in this sub-
section and the former in Sec. VI.

The ground state of the ν = 0 QHFM is determined
by the relations between the parameters (u⊥, uz, εZ), the
anisotropy u⊥,z and Zeeman εZ energies, and the ques-
tion is whether one can change these relations in the ex-
periment. Changing the bare couplings gαβ α, β =⊥, z,
in order to modify the relation between u⊥ and uz, seems
quite challenging as they are determined by the details
of the interactions and band structure at atomic scale.
Varying the magnetic field, in magnitude or orientation,
is then virtually the only practical option.

Let us first neglect the Zeeman effect and inquire if the
relation between u⊥(B⊥) and uz(B⊥) could be modified
by varying the magnitude of the perpendicular magnetic
field B⊥. As the RG analysis of Sec. IV B shows, the
short-range e-e couplings ḡαβ(lB) [Eqs. (71), (72), and
(73)] do change their signs and relative values upon renor-
malization, and, as a result, so do the anisotropy energies
u⊥,z(B⊥) [Eqs. (61) and (62)] upon varying the mag-
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FIG. 19: Phase transitions induced by tilting the magnetic
field, which increases the Zeeman energy εZ relative to the
anisotropy energies u⊥,z. The transitions from the CAF
(point a) or CDW (point c) to the F phase occur directly,
while the transition from the KD (point b) to the F phase can
occur only through the CAF phase.

netic field B⊥. However, according to the estimates of
Sec. IV C, these changes occur at magnetic length lB ∼ a
on the order of the lattice scale, where the renormaliza-
tions are still moderate in magnitude, Fe-e(lB/a, w) ∼ 1,
i.e., for unrealistically high magnetic fields. For all labo-
ratory fields, lB/a ∼ 10 − 100 and the renormalizations
are strong, Fe-e(lB/a, w) � 1. In this regime, the signs
and relative value of the anisotropy energies u⊥,z(B⊥)
[Eq. (80)] cannot anymore be changed and, hence, the
transitions cannot be induced, by varying the magnetic
field.

A potentially more fruitful way to induce phase tran-
sitions could be by tilting the magnetic field22,29. The
anisotropy energies u⊥,z(B⊥) depend on the magnetic
field component B⊥, perpendicular to the sample, while
the Zeeman energy εZ(B) = µBB depends on the to-

tal value B =
√
B2
⊥ +B2

‖ . Therefore, tilting the mag-

netic field increases the Zeeman energy εZ relative to the
anisotropy energies u⊥,z, which makes the F phase more
favorable. Provided at perpendicular field orientation the
system is in a different phase, eventually, upon increasing
B/B⊥, the system must end up in the F phase.

Figure 19 shows the evolution of phases as one ap-
plies the parallel component B‖, while keeping B⊥ fixed,
thus changing the Zeeman energy from εZ⊥ = µBB⊥ to
εZ = µBB > εZ⊥ and keeping the anisotropy energies
(u⊥, uz) constant. It is convenient to present the phase
diagram in the units εZ⊥

εZ
(u⊥, uz): this way, the phase

boundaries remain fixed, while the phase point with con-
stant (u⊥, uz) moves along the straight line from its posi-
tion at B‖ = 0 to the origin at B/B⊥ →∞. If the system
is in either the CAF or CDW phases at B‖ = 0, points
a or c, respectively, the transition occurs directly into
the F phase upon increasing εZ/εZ⊥, via a continuous
crossover (ending with a second-order phase transition)
in the former case, and a first-order phase transition in

the latter cases. Remarkably, however, if the system is
in the KD phase at B‖ = 0, point b, the transition to the
F phase cannot occur directly: upon increasing εZ , the
system first makes a first-order phase transition into the
CAF phase, and then crosses over to the F phase.

We note, however, that, since the renormalizations of
the isospin anisotropies are strong, such transitions may
be quite challenging to realize. According to Sec. IV C,

although the bare energies u
(0)
⊥,z ∼ B⊥[T]K [Eq. (82)] are

comparable with the Zeeman energy εZ⊥ = µBB⊥ for
perpendicular field orientation, the renormalized energies
u⊥,z [Eqs. (83) and (84)] can easily exceed εZ⊥ by one or-
der of magnitude. Therefore, achieving the transition by
applying the parallel component B‖, would generally re-
quire large ratios B/B⊥ & 10, i.e., large tilt angles. Since
one should, at the same, maintain a large enough perpen-
dicular component B⊥ to preserve the correlated quan-
tum Hall state above the disorder level (B⊥ ≈ 3 − 5T,
according to Refs. 15,17), the practical maximum of the
ratio B/B⊥ is limited by the maximum achievable mag-
netic field and disorder in the system. An exception con-
cerns the special cases when, for perpendicular field ori-
entation, the system is “anomalously” close to one of the
KD-CAF, CDW-F, or CAF-F transitions lines in Fig. 16
[i.e., the point (u⊥, uz) is ∼ εZ⊥ away from the line] and
is on the KD, CDW, or CAF side, respectively. In this
case, smaller ratios B/B⊥ ∼ 1 would be sufficient for the
phase transition to occur.

VI. CONCLUSIONS

In conclusion, in this paper, we studied the ν = 0 quan-
tum Hall state in monolayer graphene in the framework
of quantum Hall ferromagnetism, with the key empha-
sis on the isospin anisotropies that arise from the valley
and sublattice asymmetric short-range electron-electron
and electron-phonon interactions. The phase diagram in
Fig. 18, obtained in the presence of the generic isospin
anisotropy and Zeeman effect (neglecting thermal fluc-
tuations), consists of four phases characterized by the
following orders: spin ferromagnetic (F), charge density
wave (CDW), Kekulé distortion (KD), and canted anti-
ferromagnetic (CAF). To the best of our knowledge, the
CAF phase has not been predicted before in the con-
text of the correlated quantum Hall states in graphene.
We took into account the Landau level mixing effects
(Sec. IV) and found that they result in (i) the suppression
of the stiffness ρs due to screening and (ii) critical renor-
malizations of the anisotropy energies u⊥,z. The latter
has crucial implications for the physics of the ν = 0 state.
First, the anisotropies are greatly enhanced and can sig-
nificantly exceed the Zeeman energy. Second, and most
importantly, we conclude that the short-range electron-
electron interactions could favor any state on the generic
phase diagram: one cannot theoretically rule out any pos-
sibility based just on the repulsive nature of the underly-
ing Coulomb interactions. The leading electron-phonon
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interactions, on the other hand, always favor the Kekulé
distortion phase.

The main open practical question is then which of the
phases in Fig. 18 corresponds to the strongly insulating
ν = 0 state observed in transport experiments13–15,17,18.
For high quality suspended graphene samples15,17, the
two-terminal resistance was instrument-limited at R ∼
109 − 1010Ohm at B ∼ 10T and T . 1K. In the absence
of an accurate estimate for the anisotropy energies, one
can try to infer about the nature of the real ν = 0 state
by addressing the transport properties of the phases in
Fig. 18.

While the charged excitations of the ν = 0 QHFM are
gapped in the bulk for any order21,22,25,41, the phases
in Fig. 18 are expected to have markedly different edge
transport behavior. Existing studies23,24 suggest that the
F phase has gapless edge excitations. Therefore, an ideal
sample with the F bulk order would have a two-terminal
resistance R = 1/(2e2/h) ∼ 104Ohm, with the factor 2
due to two edges. On the other hand, the CDW29,58,
AF29,58, and KD59 phases were shown to have gapped
single-particle mean-field edge excitations, which implies
that these phase should exhibit insulating behavior. The
edge excitations of the CAF phase have not yet been ad-
dressed. Note, however, that the spin-polarized F phase,
being an isospin singlet, is the only phase of the ν = 0

QHFM that does not break the sublattice symmetry.
This observation could be used as a “rule of thumb” argu-
ment in speculating about the edge transport properties
of the ν = 0 states. Based on this, one can expect all
three phases, CDW, KD, and CAF, to have gapped edge
excitations and exhibit insulating behavior, which makes
them much stronger candidates than the F phase for the
ν = 0 state realized experimentally. Distinguishing fur-
ther between the three insulating phases based on the
transport properties requires a more detailed analysis of
their bulk and edge charge excitations, to be presented
elsewhere33.

VII. ACKNOWLEDGEMENTS

Author is thankful to Eva Andrei, Matt Foster, Piers
Coleman, Andrea Young, and Peter Silvestrov for in-
sightful discussions and acknowledges the hospitality of
the TPIII group at Ruhr-Universität Bochum, Germany,
where part of the work was completed. The work was
supported by the US Department of Energy grants DE-
FG02-99ER45790 at Rutgers and DE-AC02-06CH11357
at ANL.
∗Present address. Email: maxx@physics.rutgers.edu.

1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Science 306, 666 (2004).

2 Y. Zhang, J. P. Small, M. E. S. Amori, and P. Kim, Phys.
Rev. Lett. 94, 176803 (2005).

3 C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng,
Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and
W. A. de Heer, J. Phys. Chem. B 108, 19912 (2004).

4 K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang,
M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A.
Firsov, Nature 438, 197 (2005).

5 Y. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim, Nature
438, 201 (2005).

6 A. K. Geim and K. S. Novoselov, Nat. Materials 6, 183
(2007).

7 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

8 S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev.
Mod. Phys. (in press), arXiv:1003.4731v2 (2010).

9 Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).
10 V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801

(2005)
11 N.M.R. Peres, F. Guinea, and A.H. Castro Neto, Phys.

Rev. B 73, 125411 (2006).
12 Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W.

Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L.
Stormer, and P. Kim, Phys. Rev. Lett. 96, 136806 (2006).

13 J. G. Checkelsky, Lu Li, and N. P. Ong, Phys. Rev. Lett.
100, 206801 (2008); Phys. Rev. B 79, 115434 (2009).

14 L. Zhang, J. Camacho, H. Cao, Y. P. Chen, M. Khodas, D.

Kharzeev, A. Tsvelik, T. Valla, and I. A. Zaliznyak Phys.
Rev. B 80, 241412 (2009).

15 Xu Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei,
Nature 462, 192 (2009).

16 D. A. Abanin, I. Skachko, X. Du, E. Y. Andrei, L. S. Lev-
itov, Phys. Rev. B 81, 115410 (2010).

17 K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer,
and P. Kim, Nature 462, 196 (2009).

18 C.R. Dean, A.F. Young, P. Cadden-Zimansky, L. Wang,
H. Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, and
K.L. Shepard, arXiv:1010.1179 (2010).

19 F. Ghahari, Yue Zhao, P. Cadden-Zimansky, K. Bolotin,
and P. Kim, Phys. Rev. Lett. 106, 046801 (2011).

20 K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 96,
256602 (2006).

21 Kun Yang, S. Das Sarma, A. H. MacDonald, Phys. Rev. B
74, 075423 (2006).

22 J. Alicea and M. P. A. Fisher, Phys. Rev. B 74, 075422
(2006); Solid State Commun. 143, 504 (2007).

23 D. A. Abanin, P. A. Lee, and L. S. Levitov, Phys. Rev.
Lett. 96, 176803 (2006).

24 H.A. Fertig and L. Brey, Phys. Rev. Lett. 97, 116805
(2006).

25 M.O. Goerbig, R. Moessner, and B. Doucot, Phys. Rev. B
74, 161407 (2006).

26 R. L. Doretto and C. Morais Smith, Phys. Rev. B 76,
195431 (2007).

27 P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys.
Rev. B 77, 195430 (2008).

28 S. Das Sarma and Kun Yang, Solid State Commun. 149,
1502 (2009).



25

29 J. Jung and A.H. MacDonald, Phys. Rev. B 80, 235417
(2009).

30 K. Nomura, S. Ryu, and D.-H. Lee, Phys. Rev. Lett. 103,
216801 (2009).

31 C.-Yu Hou, C. Chamon, and C. Mudry, Phys. Rev. B 81,
075427 (2010).

32 J.-N. Fuchs and P. Lederer, Phys. Rev. Lett. 98, 016803
(2007).

33 M. Kharitonov, in preparation.
34 D. V. Khveshchenko, Phys. Rev. Lett. 87, 206401 (2001).
35 E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A.

Shovkovy, Phys. Rev. B 66, 045108 (2002).
36 V. P. Gusynin, V. A. Miransky, S. G. Sharapov, and I. A.

Shovkovy, Phys. Rev. B 74, 195429 (2006).
37 I. F. Herbut, Phys. Rev. Lett. 97, 146401 (2006); Phys.

Rev. B, 75, 165411 (2007); Phys. Rev. B 76, 085432
(2007).

38 E.V. Gorbar, V. P. Gusynin, V. A. Miransky, I. A.
Shovkovy, Phys. Rev. B 78, 085437 (2008).

39 K. Yang, Solid State Commun. 143, 27 (2007).
40 M. O. Goerbig, Habilitation Thesis, arXiv:1004.3396

(2010).
41 D. P. Arovas, A. Karlhede and D. Lilliehook, Phys. Rev.

B 59, 13147 (1999).
42 K. Yang, K. Moon, L. Zheng, A. H. MacDonald, S. M.

Girvin, D. Yoshioka, and Shou-Cheng Zhang, Phys. Rev.
Lett. 72, 732 (1994); K. Moon, H. Mori, K. Yang, S. M.
Girvin, A. H. MacDonald, L. Zheng, D. Yoshioka and S.-C.
Zhang, Phys. Rev. B 51, 5138 (1995); K. Yang, K. Moon,
L. Belkhir, H. Mori, S. M. Girvin, A. H. MacDonald, L.
Zheng and D. Yoshioka, Phys. Rev. B 54, 11644 (1996).

43 K. Hasebe and Z. F. Ezawa, Phys. Rev. B 66, 155318
(2002); Z. F. Ezawa, G. Tsitsishvili, and K. Hasebe, Phys.
Rev. B 67, 125314 (2003); Z. F. Ezawa and G. Tsitsishvili,
Phys. Rev. D 72, 085002 (2005); G. Tsitsishvili and Z. F.
Ezawa, Phys. Rev. B 72, 115306 (2005).

44 I.L. Aleiner, D.E. Kharzeev, A.M. Tsvelik, Phys. Rev. B
76, 195415 (2007).

45 D. M. Basko and I. L. Aleiner, Phys. Rev. B 77, 041409(R)
(2008).

46 L. D. Landau and E. M. Lifshitz, Electrodynamics of Con-
tinuous Media, Course of Theoretical Physics, Vol. 8, Perg-
amon, New York, (1975).

47 It is worth noting that, for generic symmetric repulsive in-
teractions and/or arbitrary integer filling factor, a strict
proof that the QHFM eigenstate is, in fact, a ground state
does not exist in literature. (This is definitely true for point
interactions and singly occupied orbitals21, since in this
case E0 = 0 and the Hamiltonian of repulsive interactions

is positive-semidefinite: 〈Ψ|Ĥ(0)
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