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Motivated by the recent experimental observation [D. A. Abanin et al., Science 332, 328 (2011)] of
nonlocality in magnetotransport near the Dirac point in six-terminal graphene Hall bars, for a wide
range of temperatures and magnetic fields, we develop a nonequilibrium Green function (NEGF)
theory of this phenomenon. In the quantum-coherent regime and strong magnetic field, we find large
Zeeman-splitting-driven spin Hall (SH) conductance in four-terminal bars, where the SH current is
pure only at the Dirac point (DP). In six-terminal Hall bars, this leads to the nonlocal voltage
at a remote location due to direct and inverse SH effect operating at the same time in different
parts of the device. The “momentum-relaxing” dephasing reduces their values at the DP by two
orders of magnitude while concurrently washing out any features away from the DP. Our theory is
based on the Meir-Wingreen formula for spin-resolved charge currents with dephasing introduced via
phenomenological many-body self-energies, which is then linearized for multiterminal geometries to
extract currents and voltages. This provides a generalization of the multiprobe Landauer-Büttiker
formula without employing traditional Büttiker voltage probes to introduce dephasing.

PACS numbers: 72.80.Vp,72.15.Gd,72.10.Bg

I. INTRODUCTION

The recent experiments1 on magnetotransport near the
Dirac point (DP) in graphene have unveiled yet another
exotic electronic property of this one-atom-thick carbon
allotrope2 which involves nonlocality and quantum me-
chanics while manifesting even at room temperature.
The traditional observation of nonlocality, where current
is injected through a pair of terminals and voltage is mea-
sured between another pair of terminals at some remote
location, requires two-dimensional (2D) systems placed
in a strong external magnetic field to generate the inte-
ger quantum Hall effect3 (QHE) or spin-orbit coupling4

(SOC) that can give rise to mesoscopic5,6 or quantum3,7

spin Hall effects (SHEs). In the former case, nonlocality
is due to transport through chiral edge states, while in
the latter case injected longitudinal charge current gener-
ates transverse spin Hall current which is then detected
in the remote part of the device via the inverse-SHE-
induced voltages6,8 on the proviso that spins can survive
dephasing between two locations.

On the other hand, nonlocal voltage was observed in
Ref. 1 even in weak magnetic fields B ' 1 T and at room
temperature T = 300 K which is outside of the integer
QHE regime. Also, high mobility graphene samples were
supported by substrate made of atomically flat hexagonal
boron-nitride that rules out Rashba SOC,4 introduced
by charge impurities from the substrate9 or lattice dis-
tortion by adatoms,10 that would be responsible for the
mesoscopic SHE scenario.5

It turns out that SHE in the absence of SOC has a
simple intuitive explanation based on the classical New-
tonian dynamics of massless Dirac fermions. The classi-
cal Hamiltonian of low-energy quasiparticles close to the

Dirac point (DP) is given by H±(p) = ±vF
√
p2x + p2y,
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FIG. 1: (Color online) Schematic view of the six-terminal
graphene Hall bar, modeled on the tight-binding lattice with
single π orbital per site, which is employed to investigate
nonlocal voltage between leads 5 and 6 due to current in-
jected between leads 1 and 4. The dashed box on the left
marks the four-terminal bar used in the analysis of Zeeman-
splitting-driven SHE where current injected between leads 1
and 4 induces spin current in leads 2 and 3. The active region
of the bar consists of a graphene nanoribbon with armchair
edges (AGNR) and a portion of semi-infinite leads modeled
as GNRs with zigzag edges. For simplicity, external magnetic
field, or many-body interactions responsible for dephasing,
are present only within the illustrated active region.

which in the weak external magnetic field B = ∇×A be-
comes H±(p) = ±vF

√
(px − eAx)2 + (py − eAy)2. The

classical velocity is then given by v±x,y = ∂H±/∂px,y =

±vFΠx,y/
√

Π2, where Π = p− eA, and the correspond-
ing acceleration is

a± =
dv

dt
= ±evFv± ×B√

Π2
=
ev2Fv± ×B

E±
. (1)
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Thus, the quasiparticles with energy E+ above the DP
(or below with energy E−) moving in a weak (i.e., non-
quantizing) perpendicular magnetic field will experience
a transverse force which deflects them to the left (right).
Furthermore, when E± is very close to the DP such de-
flecting force will be very large.

Although the Zeeman splitting ∆Z in 2D electron gases
(2DEGs) is typically small in a weak external mag-
netic field,4 it can play an essential role in graphene for
kBT < ∆Z by shifting the Dirac cones for opposite spins
to induce two types of carriers illustrated in the lower
inset in Fig. 1. The quasiparticles with energy E+ are
spin-↑ polarized while those with energy E− are spin-↓
polarized. These two effects, classical for charge and
quantum for spin, conspire to generate transverse spin
current in response to longitudinal charge current, as il-
lustrated in Fig. 1. Such phenomenology is similar to
SHE in multiterminal 2DEG devices,5,6 even though no
SOC is involved to provide the deflecting force of opposite
direction for opposite spins.11

These simple arguments for the existence of the
Zeeman-splitting-driven SHE (ZSHE) in graphene can be
converted into a quasiclassical transport theory based on
the Boltzmann equation.16 However, quasiclassical the-
ory is valid in high-T and weak-B regime, while experi-
ments1 have observed increasingly more profound nonlo-
cality into the low-T and/or high-B regime so that a uni-
fied theory is called for that can cover such wide range of
parameters. For example, such theory should explain the
nonlocal voltage in strong (quantizing) external magnetic
field but at intermediate temperatures where edge-state
transport mechanism is removed.

Here we develop a fully quantum transport theory of
ZSHE in four-terminal graphene bars, illustrated by the
device within a dashed box in Fig. 1, as well as the non-
local voltage induced by the combination of direct and
inverse ZSHE in six-terminal Hall bars shown in Fig. 1.
Our approach is based on the nonequilibrium Green func-
tion formalism12 (NEGF) which allows one to express
spin-resolved charge currents in the device terminals via
the Meir-Wingreen formula.12,13 The dephasing is intro-
duced via phenomenological14 many-body self-energies
which take into account simultaneous phase and momen-
tum relaxation. We then linearize Meir-Wingreen for-
mula to establish connection between currents and volt-
ages in the terminals, thereby offering a generalization
of the Landauer-Büttiker formula15 for phase-coherent
transport in multiterminal devices to situations where
dephasing is present within the active region of the de-
vice.

Our theory intrinsically accounts for the contributions
of both electrons and holes, which is crucial to describe
transport near the DP,16 and it can also handle arbi-
trary scattering processes (in contrast to the Boltzmann
equation which breaks down18 close to the DP). Our cen-
tral results, summarized in Figs. 2, 3 and 4, interpolate
smoothly between the phase-coherent transport regime
at low-T in the quantizing external magnetic field and

the semiclassical transport regime where dephasing by
many-body interactions destroys features found at low-
T while leaving peaks (of reduced magnitude though) in
the SH conductance and nonlocal voltage around the DP
in accord with experimental observations.1

The paper is organized as follows. The model Hamil-
tonian for the multiterminal graphene Hall bars in Fig. 1
in the external magnetic field is introduced in Sec. II.
In Sec. III, we discuss how to introduce dephasing via
phenomenological many-body self-energies of NEGF for-
malism and extract currents and voltages in the device
terminals in the linear-response transport regime. This
approach is applied in Sec. IV to ZSHE in 4- and 6-
terminal graphene Hall bars from Fig. 1. We conclude
in Sec. V.

II. THE DEVICE HAMILTONIAN

Close to the DP, graphene can be described by the
tight-binding Hamiltonian with a single π-orbital per site

Ĥ =
∑
n

(εn + gµBσB)ĉ†nσ ĉnσ − γ
∑
〈nm〉,σ

eiφnm ĉ†nσ ĉmσ.

(2)
Here εn is the on-site energy, σ = +1 for spin-↑ electron
and σ = −1 for spin-↓ electron so that Zeeman splitting
is given by ∆Z = 2gµBB with g = 2.0, ĉ†nσ (ĉnσ) cre-
ates (annihilates) electron with spin σ in the π-orbital
located on site n, and γ is the nearest-neighbor hopping
parameter.

The active region of the Hall bar in Fig. 1 consists
of graphene nanoribbon with armchair edges (AGNR)
and a portion of semi-infinite ideal leads modeled as
graphene nanoribbons with zigzag edges (ZGNR). The
electronic structure and density of states of AGNR com-
posed of 3p + 2 dimer lines resembles17 (if we assume
that only the nearest-neighbor hopping γ is non-zero)
those of large-area graphene employed experimentally.
Although ZGNRs are insulating at very low tempera-
tures due to one-dimensional spin-polarized edge states
coupled across the width of the nanoribbon, such un-
usual magnetic ordering and the corresponding band gap
is easily destroyed19,20 above T & 10 K so that we employ
them as a model for metallic leads.

The external magnetic field enters through the phase
factor φnm = 2π

φ0

∫m

n
A · ds where the vector poten-

tial A = (By, 0, 0) is chosen in the Landau gauge and
φ0 = h/e is the flux quantum. The weak vs. strong
magnetic field is tuned using the ratio W/`B , where W
is the width of the AGNR channel of the bar in Fig. 1.
All graphene bars studied in Figs. 2, 3 and 4 are placed
in the quantizing external magnetic field, W/`B > 1.
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III. NEGF-BASED MODEL FOR DEPHASING
IN QUANTUM TRANSPORT THROUGH

MULTITERMINAL DEVICES

While the integer QHE and quantum SHE have intro-
duced the intricate physics of Hall conductivity viewed
as a topological invariant,3 the operational description of
these effects used to analyze transport measurements6,7

is typically based on the multiprobe Landauer-Büttiker
formula15

Iα =
e2

h

∑
β

Tαβ(Vα − Vβ), (3)

written here assuming zero temperature. They relate
total charge current Iα in lead α to voltages Vβ in all
other leads via the matrix of transmission coefficients
Tαβ . These formulas are valid when phase coherence is
retained in the active region of the device, while phase
breaking events are assumed to be taking place only in
the reservoirs to which the leads are attached at infin-
ity and where electrons are equilibrated to acquire the
Fermi-Dirac distribution fα(E) = f(E − eVα).

To take into account dephasing effects phenomenologi-
cally, Büttiker introduced21 an elegant concept of voltage
probes attached to the active region where no net current
flows through them. Thus, for every electron that enters
the probe and is absorbed by its reservoir another one
has to come out which is not coherent with the one going
in. For example, to apply this method to the graphene
Hall bar in Fig. 1, one has to attach one-dimensional
leads to each site22 of the honeycomb lattice. This is
equivalent to adding a complex energy −iη to εn in the
Hamiltonian Eq. (2) (parameter η is related to the de-
phasing time η = ~/2τφ). In addition, one has to solve
Eq. (3) by imposing that current through extra 1D leads
is zero thereby ensuring conservation of the total charge
current.22

However, besides washing out quantum-coherence-
generated fluctuations in Tαβ , Büttiker voltage probes
are also introducing additional scattering (i.e., reduction
of Tαβ) in an uncontrolled fashion.14 The NEGF formal-
ism12 provides a rigorous prescription for including any
dephasing process to any order by starting from a micro-
scopic Hamiltonian and by constructing interacting self-
energies due to electron-electron,23 electron-phonon24 or
electron-spin25 interactions. Although the NEGF for-
malism is virtually the only fully quantitative quantum
transport approach capable of scaling to large systems,26

the self-consistent computation of self-energies by start-
ing from some microscopic many-body Hamiltonian is at
present prohibitively expensive for devices containing re-
alistic number of atoms. Thus, to include dephasing pro-
cesses in the device in Fig. 1 containing few thousands
of carbon atoms, we adopt a phenomenological model of
Ref. 14 that is comparable to Büttiker voltage probes in
conceptual and numerical simplicity, and yet allows one
the flexibility of adjusting the degree of phase and mo-
mentum relaxation independently.

The two fundamental objects12 of
the NEGF formalism are the retarded
Gr,σσ

′

nm (t, t′) = −iΘ(t− t′)〈{ĉnσ(t), ĉ†mσ′(t′)}〉 and the

lesser G<,σσ
′

nm (t, t′) = i〈ĉ†nσ′(t′)ĉmσ(t)〉 GFs which de-
scribe the density of available quantum states and
how electrons occupy those states, respectively. Here
〈. . .〉 denotes the nonequilibrium statistical average.12

In stationary problems, Ĝr and Ĝ< depend only on
the time difference t − t′ or energy E after Fourier
transformation. Their matrix representations in the
basis of local orbitals, such as the π ones in Eq. (2) which
define the matrix representation H of the corresponding
Hamiltonian, satisfy the following equations

Gr(E) =

[
E −H−

∑
α

Σr
α(E − eVα)−Σr

int(E)

]−1
,(4)

G<(E) = Gr(E)

[∑
α

Σ<
α (E) + Σ<

int(E)

]
Ga(E). (5)

Here Σr
α(E) is the retarded self-energy determining the

escape rates for electrons to exit into the attached leads,
Σ<
α (E) = −fα[Σr

α(E−eVα)−Σa
α(E−eVα)] is the corre-

sponding lesser self-energy matrix due to the coupling
to the leads, and advanced quantities are defined by
Oa = [Or]†. In the “momentum-conserving” model of
dephasing, the interacting self-energies are given14 by

Σr
int(E) = dpG

r(E), (6)

Σ<
int(E) = dpG

<(E), (7)

while in the “momentum-relaxing” model

Σr
int(E) = D[dmGr(E)], (8)

Σ<
int(E) = D[dmG<(E)]. (9)

The operator D[. . .] selects the diagonal elements of the
matrix on which it acts while setting to zero all the off-
diagonal elements. Any linear combination of these two
choices can be used to adjust the phase and momentum
relaxation lengths independently. When computed self-
consistently together with Gr(E) and G<(E), both of
these choices for Σr

int(E) and Σ<
int(E) ensure the conser-

vation23 of charge current,
∑
α Iα = 0.

The spin-resolved charge current in lead α is given by
the Meir-Wingreen formula12,13

Iσα =
e

h

∫
dE Tr [Σ<,σσ

α (E)G>,σσ(E)−Σ>,σσ
α (E)G<,σσ(E)].

(10)
which assumes that interactions responsible for dephas-
ing are localized within the active region of the graphene
Hall bar (a generalization to situations where interactions
are spread throughout the system, including the leads
and the lead-sample interfaces, can be found in Ref. 27).
The total charge current in lead α is Iα = I↑α + I↓α and
the total spin current is ISα = I↑α − I↓α. The first term in
Eq. (10) gives the current flowing from lead α towards
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the active region [because it is proportional to G>(E)
which describes the empty states in the active region],
while the second term gives the current flowing in the
opposite direction [because it is proportional to G<(E)
which describes the occupied states in the active region].
Likewise, the self-energies Σ≶(E) are proportional to the
occupied lead states and the empty lead states, respec-
tively.

While Eq. (10) is valid both in the linear and non-
linear transport regimes, in its original form it is not
useful for the analysis of currents and voltages in multi-
terminal devices. That is, instead of voltages hidden in
the self-energy and GF matrices, one would like to recast
Eq. (10) into the form similar to Eq. (3) so that such
equations can be easily inverted to get voltages measured
between the terminals for known currents injected into
the device. For this purpose, we expand all quantities
in Eq. (4) and (5) to linear order in Vα: Gr(E) ≈
Gr

0(E) + Gr
0(E) [

∑
α Σr

α(E − eVα)−Σr
α(E)] Gr

0(E);
Σr
α(E − eVα) ≈ Σr

α(E) − eVα∂Σr
α(E)/∂E; and

fα(E) ≈ f(E)− eVα∂f/∂E. Here

Gr
0(E) =

[
E −H−

∑
α

Σr
α(E)−Σr

int(E)

]−1
(11)

is the retarded GF in equilibrium (Vα = const).
For both “momentum-conserving” and “momentum-

relaxing” dephasing (or their linear combination) one has
to solve for Gr

0(E) and Σr
int(E) using a self-consistent

loop where the initial guess is

Gr
0,in(E) =

[
E −H−

∑
α

Σr
α(E)

]−1
. (12)

Then

Gr
0,out(E) =

[
E −H−

∑
α

Σr
α(E)− dpGr

0,in(E)

]−1
(13)

in the case of “momentum-conserving” dephasing or

Gr
0,out(E) =

{
E −H−

∑
α

Σr
α(E)−D[dmGr

0,in(E)]

}−1
(14)

in the case of “momentum-relaxing” dephasing is used as
the input Gr

0,in(E) for the next iteration. We assume that

the loop has converged when ||Gr
0,out(E)−Gr

0,in(E)|| <
10−4.

Using the converged Gr
0(E) matrix, the next step

is to compute G<
0 (E) which proceeds differently for

“momentum-conserving” and “momentum-relaxing” de-
phasing while yielding the same form for the generaliza-
tion of Eq. (3) in the zero temperature limit

Iα =
e2

h

∑
β

(T coh
αβ + T incoh

αβ )(Vα − Vβ). (15)

Here the “coherent” transmission function is

T coh
αβ (E) = Tr {Γα(E)Gr

0(E)Γβ(E)Ga
0(E)}, (16)

while the “incoherent” contribution is given by

T incoh
αβ (E) = Tr {Γα(E)Gr

0(E)Γdβ(E)Ga
0(E)}. (17)

where both are evaluated at E = EF in Eq. (15). Note
that although expression for T coh

αβ in Eq. (16) resem-

bles the transmission function12 for phase-coherent trans-
port of single-particle exhibiting elastic scattering only
(which is a usual feature when re-expressing28 the Meir-
Wingreen formula), it actually takes into account the
many-body interaction effects through Gr

0(E) in Eq. (11)
which includes Σr

int(E).
In the case of “momentum-conserving” dephasing, the

matrix Γdα in Eq. (17) is obtained from

[Gr
0]−1Γdα − dpΓdαGa

0 − dpΓαGa
0 = 0. (18)

This is recognized as the Sylvester equation29 of matrix
algebra, AX + XB + C = 0, where we identify un-
known matrix as X = Γdα while the known coefficients
are A = [Gr

0]−1, B = −dpGa
0 , and C = −dpΓαGa

0 .
In the case of “momentum-relaxing” dephasing, the di-

agonal elements of the matrix Γdα in Eq. (17) are obtained
from

[Γdβ ]jj = dm
∑
v

[Q]jv[G
r
0ΓβGa

0 ]vv, (19)

using30 Q = [1−dmP]−1 and [P]jv = [Gr
0]jv[G

a
0 ]vj . Here

the notation [M]jv denotes the matrix element of M.

IV. APPLICATION OF
“MOMENTUM-RELAXING” MODEL OF
DEPHASING TO ZSHE IN GRAPHENE

Since we find that “momentum-conserving” model
of dephasing cannot reproduce experimental results
of Ref. 1, we focus on “momentum-relaxing” model.
An interested reader can find detailed comparison
of “momentum-conserving”, “momentum-relaxing” and
traditional Büttiker voltage probes21,22 phenomenologi-
cal methods to introduce dephasing in quantum trans-
port in Ref. 14 for a simple example of disordered wire
attached to two ideal semi-infinite leads.

The “momentum-relaxing” model we employ in this
Section accounts for the local simultaneous phase and
momentum relaxation. Also, it can be physically inter-
preted as a highly simplified version (valid in the high-
temperature limit) of the so-called self-consistent Born
approximation12,24 for electron-phonon interaction. We
note that the “momentum-relaxing” model has been em-
ployed before to study dephasing effects in the integer
QHE30 where phenomenological dephasing length is often
invoked31 to account for electron-electron and electron-
phonon scattering without delving into the microscopic
details of such interactions.
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FIG. 2: (Color online) The charge and spin transport quan-
tities in the four-terminal graphene Hall bar: (a) charge
Hall conductance Gxy = I2/(V1 − V4); (b) charge Hall re-
sistance RH = (V3 − V2)/I1; (c) spin Hall conductance
GSH = IS2 /(V1 − V4); and (d) spin Hall angle θSH = IS2 /I1.
The width of AGNR channel is W/`B = 3.42 in the units
of the magnetic length `B and a small “momentum-relaxing”
dephasing dm = 0.04γ in introduced into the active region
shown in Fig. 1.

For phase-coherent transport in multiterminal devices,
which is described by Eq. (3), the recently developed al-
gorithms32,33 that exploit sparse nature of the Hamil-
tonian matrix of an open system, Hopen +

∑
α Σr

α(E),
make it possible to find specific submatrices of the in-
verse matrix E − Hopen (i.e., the retarded GF), which
enter into the computation of T coh

αβ (E) in Eq. (16), even
for large active regions of the size ∼ 1 µm encountered
in experiments. However, in the presence of dephas-
ing Hopen +

∑
α Σr

α(E) + Σr
int(E) is a dense matrix

which then requires brute force (multithreaded or par-
allelized) computation of all elements of Gr

0(E) which is
prohibitively expensive for multiterminal Hall bars of the
size employed in experiments of Ref. 1.

Therefore, since we have to perform such computation
on a grid of energy points, we select much smaller size
for the active region of the device in Fig. 1: W ' 2.7 nm
for 4-terminal graphene Hall bars and W ' 2.0 nm for
6-terminal bars. Given the very small device size in our
simulation, we have to apply unrealistically large exter-
nal magnetic fields in order to bring the device into the
quantizing regime W/`B > 1. Nevertheless, the impor-
tant parameter for comparing our results with experi-
ments is not the absolute value of W or B but their ratio
W/`B which is provided in the caption of Figures below.
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FIG. 3: (Color online) The charge and spin transport quan-
tities in the four-terminal graphene Hall bar: (a) charge Hall
conductance Gxy; (b) charge Hall resistance RH; (c) spin Hall
conductance GSH; and (d) spin Hall angle θSH. The width
of the AGNR channel is W/`B = 1.53 in the units of the
magnetic length `B and large “momentum-relaxing” dephas-
ing dm = 0.4γ in introduced into the active region shown in
Fig. 1.

A. Four-terminal graphene Hall bars

In the analysis of four-terminal bars, voltage V/2 is
applied to lead 1 and −V/2 to lead 4 while voltages on
leads 2 and 3 are set to zero. Figure 2 shows that in
the quantizing external magnetic field W/`B > 1, where

`B =
√

~/|eB| is the magnetic length in graphene, the
four-terminal bar generates large spin Hall conductance

GSH = (I↑2 − I↓2 )/(V1 − V4) and the corresponding SH
angle θSH = GSH/GL with GL = I1/(V1 − V4) being the
longitudinal charge conductance. The spin current IS2 =

I↑2 − I
↓
2 in the ZSHE is carried by spins polarized along

the z-axis orthogonal to the plane of graphene.

The value of GSH is comparable to the one pre-
dicted34 for the Rashba SO-coupled four-terminal 2DEGs
of the size of the spin precession length (on which spin-
↑ precesses to spin-↓ state). Unlike mesoscopic SHE5

in 2DEGs where Rashba SOC induces both the trans-
verse spin deflection11 and spin dephasing which compete
against each other in the processes of generating pure
(not accompanied by any net charge flux) spin current,
in the ZSHE transverse spin current is pure only at the

DP [where charge current I2 = I↑2 + I↓2 becomes zero in
Figs. 2(a) and 3(a)] and spin precession is absent. This
might be advantageous for spintronic applications since
spin dephasing is evaded, as demonstrated by the exper-
imental detection of nonlocal voltage even at distances
∼ 10 µm away from the device region where SH cur-
rent was induced.1 We note that for very strong magnetic
field, as could be achieved in ferromagnetic graphene, the
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FIG. 4: (Color online) Panels (a) and (c) plot charge Hall
resistance RH = (V1 − V4)/I3, while panels (b) and (d) plot
nonlocal resistance RNL = (V5−V6)/I1 as the central quantity
measured in the recent experiments1 on six-terminal graphene
Hall bars. The quantum coherence is retained in panels (a)
and (b) where only a small “momentum-relaxing” dephasing
dm = 0.02γ is present in the active region of the bar, while
much larger dephasing dm = 0.5γ is used for panels (c) and
(d). The width of the AGNR channel in Fig. 1 is W/`B = 3.42
in panels (a) and (b) and W/`B = 1.53 in panels (c) and (d)
in the units of the magnetic length `B .

GSH peaks in Fig.2(c) would become quantized35 as a re-
alization of quantum SHE3 in the absence of SOC.

The introduction of dephasing processes into the four-
terminal bars, which relax both14 the phase and the mo-
mentum of quasiparticles propagating through the active
region, destroys the quantization of the charge Hall con-
ductance Gxy = I2/(V1−V4) or charge Hall resistance RH

and underlying chiral edge states, as demonstrated by the
transition from Fig. 2(a) to Fig. 3(a) for Gxy and from
Fig. 2(b) to Fig. 3(b) for RH. The charge Hall resistance
in four-terminal bars is defined as RH = (V3 − V2)/I1
for the measuring setup where current I1 is injected into
lead 1 and voltages V3 and V2 develop as the response to
it. The SH conductance and SH angle are concurrently
reduced by two orders of magnitude, which are values
similar to those found in quasiclassical approaches16 in
the temperature range T = 200–300 K.

B. Six-terminal graphene Hall bars

In the analysis of six-terminal Hall bars, charge cur-
rent I1 is injected through lead 1 and current −I1 flows

through lead 4 while Iα ≡ 0 in all other leads. We then
compute voltages which develop in the leads α = 2, 3, 5, 6
labeled in Fig. 1 in response to injected current I1. Fig-
ure 4(b) shows peaks in the nonlocal resistance, defined
as RNL = (V5 − V6)/I1, within the phase-coherent trans-
port regime which closely resemble the DP and side peaks
observed experimentally in strong (quantizing) external
magnetic field.1 The transition of RNL from Fig. 4(b)
to Fig. 4(d) shows how dephasing removes both side
peaks while leaving the nonlocal voltage around the DP
which is two orders of magnitude smaller than in the
phase-coherent regime. The Hall resistance in the six-
terminal bar, RH = (V1 − V4)/I3 defined for current in-
jected I3 and voltages measured between leads 1 and 4
(for I1 = I4 = 0), changes smoothly from Fig. 4(a) to
Fig. 4(c) as dephasing in increased, where the curve in
Fig. 4(c) looks exactly the same as those observed exper-
imentally16 for T = 250 K and B = 1–12 T.

V. CONCLUSIONS

In conclusion, we have developed a fully quantum
transport theory of recently observed1 nonlocal voltage
in magnetotransport near the DP in graphene Hall bars
which provides a unified picture of this phenomenon
and the underlying Zeeman-splitting-driven spin Hall ef-
fect from the quantum-coherent transport regime at low
temperatures to semiclassical transport regime at higher
temperatures. At the same time, this approach makes it
possible to take into account arbitrary strength of mag-
netic field or scattering processes by short- and long-
range static impurity potential near the DP where qua-
siclassical Boltzmann equation breaks down18 even for
transport at high temperatures. Our theory starts from
the NEGF-based Meir-Wingreen formula, including phe-
nomenological many-body self-energies that take into ac-
count relaxation of both the phase and the momentum of
Dirac fermions in the active region of the device, which
is then linearized to provide connection between cur-
rent and voltages in different leads thereby generalizing
the usual Landauer-Büttiker formula for phase-coherent
transport in multiterminal geometries.
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