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3South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA

(Dated: Feb14, 2012)

Magnetic anisotropies in quantum dots (QDs) doped with magnetic ions are discussed in terms of
two frameworks: anisotropic g-factors and magnetocrystalline anisotropy energy. It is shown that
even a simple model of zinc-blende p-doped QDs displays a rich diagram of magnetic anisotropies
in the QD parameter space. Tuning the confinement allows to control magnetic easy axes in QDs
in ways not available for the better-studied bulk.

PACS numbers: 73.21.La, 75.75.-c, 75.30.Gw, 75.50.Pp

I. INTRODUCTION

Once the origin of magnetic ordering in a specific ma-
terial is understood, it is often important to determine
its magnetic anisotropy (MA) and hard and easy mag-
netic axes in particular. A shift of focus towards MA has
already occurred for the studies of bulk dilute magnetic
semiconductors (DMS),1,2 but not yet fully for magnetic
quantum dots (QDs) where it could play certain role, for
example, in context of transport phenomena,3 the forma-
tion of robust magnetic polarons,4–7 control of magnetic
ordering,8–12 nonvolatile memory,13 and quantum bits.14

In epilayers of (Ga,Mn)As, a prototypical DMS, the
magnetocrystalline anisotropy energy (MAE) has been
found to be a significant and often dominant source of
MA15–17 caused by a strong spin-orbit (SO) coupling. It
turns out that the easy axis direction depends on hole
concentration, magnetic doping level as well as on other
parameters. For example, when (Ga,Mn)As was used
as a spin injector, the effects of strain (by altering the
choice of a substrate) were responsible for changing the
in-plane to out-plane easy axis.18 While the strong SO
coupling19 is also present in p-type QD of zinc-blende ma-
terials doped with Mn, its effect on magnetic anisotropies
will be significantly modified by the confinement. The en-
ergy levels in such ‘nanomagnets,’20–23 where the Mn-Mn
interaction is mediated by carriers, depend on the magne-
tization direction eM = (nx, ny, nz). It is often assumed
that the interaction of magnetic moments with holes in
quantum wells (QWs) or, equivalently in flat QDs, is ef-
fectively Ising-like.14,24 Here we quantify this assumption
and explore MA using two frameworks: (i) an effective
two-level Hamiltonian with a carrier g–tensor,25 which
is widely employed also in theory of electron spin reso-
nance, and (ii) MAE, which is commonly used to study
bulk magnets.

While previous studies focused on specific nonmagnetic
QDs26 and properties sensitive to system details (such as
precise position of magnetic ions22,27), we explore more
generic magnetic QD models, which can also serve as
a starting point for more elaborate work. We consider
a Hamiltonian comprising non-magnetic and magnetic

parts,

Ĥ = ĤQD + Ĥex. (1)

The former encodes both QD confinement and SO inter-
action, which is prerequisite for magnetic anisotropies,
the latter expresses the kinetic-exchange coupling be-
tween holes and localized magnetic moments. For
transparency, we disregard the magnetostatic shape
anisotropy28 and assume that the QD contains a fixed
number of carriers. We mostly focus on the case of
a single hole; realistically, such system can be a II-VI
colloidal5 or epitaxial6 QD with a photoinduced carrier.
Magnetic moments of the Mn atoms are taken to be per-
fectly ordered (collinear) and are treated at a mean-field
level. The magnetic easy axis is then the direction eM for
which the zero-temperature free energy F (eM ) is mini-
mized. In this article, we take two different points of view
on F (eM ). On one hand, we discuss the lowest terms of
F (eM ) expanded in powers of the direction cosines of
magnetization (n2

x + n2
y + n2

z = 1), inspired by the stan-
dard ‘bulk MAE phenomenology’ and pay special atten-
tion to the case of perfectly cubic QDs, F (eM ) = F0(eM ).
The anisotropies in F0 stem purely from the crystalline
zinc-blende lattice. On the other hand, F (eM ) acquires
additional terms in systems with less symmetric confine-
ment. We therefore discuss the anisotropic g-factors as a
useful framework to handle such systems, e.g. cuboid
QDs (orthogonal parallelepiped; extremal cases are a
cube and an infinitely thin slab, i.e., a QW) and show
how the expansion

F (eM ) = F0(eM ) + AF1(eM ) + A2F2(eM ) + . . . (2)

can be constructed using powers of A which reflects the
anisotropy in g-factors. We begin by discussing this lat-
ter topic in Section II (quantity A is defined by Eq. (8)
at the end of Sec. IIA), then proceed to the phenomeno-
logic (symmetry-based) expansions of F0 in Section III
and conclude that Section with calculations of F1 in sit-
uations that are beyond the applicability of the g-factor
framework.
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II. EFFECTIVE TWO-LEVEL HAMILTONIAN

Since ĤQD is invariant upon time reversal, its spec-
trum consists of Kramers doublets.29 To study the
ground-state energy in the presence of magnetic mo-
ments, we examine how these doublets are split by
Ĥex(eM ) where eM is treated as an external parame-
ter (related to classical magnetization; single-Mn doped
QDs where the Mn magnetic moment behaves quantum-
mechanically30 require different treatment) and represent
them by an effective two-level Hamiltonian of Eq. (6). We
consider two example systems: a simple four-level one
where completely analytical treatment is possible, and a
more realistic envelope-function based model of a cuboid
QD.

A. Four level model

Related to the Kohn-Luttinger Hamiltonian of a
QW,23,31 the arguably simplest non-trivial model de-
scribing anisotropy of a flat QD is

Ĥ1 = aĴ2
z +

1

3
heM · Ĵ (3)

representing hole levels in a zinc-blende structure
whose confinement anisotropy and exchange splitting are
parametrized by a and h, respectively (the term aĴ2

z

implies that the strongest confinement is along the z-
direction and this term also encodes information about
the SO coupling). Ĵx,y,z are 4 × 4 spin- 3

2
matrices. In

terms of Eq. (1), we now choose Ĥ = Ĥ1 and the first

(second) term in Eq. (3) plays the role of ĤQD (Ĥex).

Anisotropic behavior of eigenvalues of Ĥ1, to linear or-
der in h/a, is illustrated in Fig. 1(a). It can be extracted
from the exact eigenvalues,

E±

hh(h) =
5

4
a± 1

6
h +

√

a2 +
1

9
h2 ∓ 1

3
ah (4)

E±

lh(h) =
5

4
a± 1

6
h−

√

a2 +
1

9
h2 ∓ 1

3
ah (5)

in the case nx = 1 (or ny = 1), shown in Fig. 1(b), which
clearly differ from the case nz = 1 where the eigenvalues
are strictly linear functions of h (E±

hh = 9a/4 ± h/2 and

E±

lh = a/4 ± h/6); subscripts refer to the E±

hh(0) = 9a/4

(‘heavy-hole’, HH) and E±

lh(0) = a/4 (‘light-hole’, LH)
doublets, respectively. In the limit of weak exchange,
h/a ≪ 1, splitting of each of the Kramers doublets is
symmetric and it can be characterized by three param-
eters |∂E/∂(hnp)|, p = x, y, z, for h → 0 as depicted
in Fig. 1(a). These parameters can be plausibly called,
by analogy with the Zeeman effect, the anisotropic g-
factors gp. From Eqs. (4),(5), we straightforwardly ob-
tain (gx, gy, gz) = (0, 0, 1/2) and (1/3, 1/3, 1/6) for the

HH and LH doublet of the Hamiltonian Ĥ1, respectively.
This result is known from the context of QWs.31,32 We

FIG. 1. (Color online) Splitting of levels E(h) in a flat QD
described by Eq. (3). (a) For the particular Kramers doublet,
E(h) depends on eM and the g-factors (by convention non-

negative) are ∂E/∂~h = (gx, gy, gz). (b) Beyond the linear
regime in h/a, ∂E/∂(hnx) will be different for the upper and
lower level of the split doublet, it will depend on h and may
even change sign, indicating that the Ĥeff of Eq. (6) based on
parameters gx,y,z fails.

emphasize that these g-factors of the model specified by
Eq. (3) are independent of the parameters a, h (except
for the requirement h ≪ a which represents the h → 0
limit).

If we focus on one particular Kramers doublet, it is
straigtforward to show that Ĥ1 projects to

Ĥeff = h [nxgxτ̂x + nygyτ̂y + nzgz τ̂z] (6)

for a suitably chosen basis |K1〉, |K2〉 of the doublet. Here
τ̂i are Pauli matrices and we have mapped two eigenstates
of the original Hamiltonian ĤQD on a pseudospin |~τ | =

1/2 doublet |+〉, |−〉, where τ̂z |±〉 = ±|±〉. For Ĥ = Ĥ1,
the eigenstates are only four-dimensional (spanned by
the |Jz = 3/2〉, |Jz = −1/2〉,|Jz = 1/2〉,|Jz = −3/2〉
basis). We present another example of Ĥ in Sec. IIB
where advantage of the projection becomes more appar-
ent. The choice of basis |+〉, |−〉 is crucial to obtain

Ĥeff in the simple form (6); considering the HH dou-
blet: |+〉 = |Jz = 3/2〉, |−〉 = |Jz = −3/2〉 leads
to Eq. (6) while for other basis choices the mapping

Ĥex = (h/3)eM · Ĵ 7→ Ĥeff = heM · g · τ̂ may lead31 to
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non-symmetric tensor g = gij , i, j ∈ {x, y, z}. In general,
if the mapping is to produce gij = diag (gx, gy, gz) the
‘suitable choice of the basis |K1〉, |K2〉’ where |K1〉 7→ |+〉
is such that 〈K1|Ĵx,y|K1〉 = 0, 〈K1|Ĵz|K1〉 ≥ 0 (and |K2〉
is the time-reversed image of |K1〉 which is mapped to
|−〉).

Let us now consider a general system described by
Eq. (1). Assuming that the downfolding of Ĥ into Ĥeff is
possible for given |K1〉, |K2〉 (this assumption is discussed
in Appendix A), the anisotropic g-factors can readily be
determined as ∂E/∂h for the particular Kramers doublet
level E. This is equivalent to perturbatively evaluating
the effect of Ĥex on two degenerate levels to the first
order of h as follows: (i) specify the Kramers doublet
of interest, and find any basis |K1〉, |K2〉 of this dou-

blet, (ii) extract the operators t̂x,y,z from Ĥex by taking

t̂p = ∂Ĥex/∂(nph) (for example, t̂x = Ĵx/3 for Ĥeff ap-

pearing in Ĥ1), (iii) evaluate their matrices

t̃x,y,z =

(

〈K1|t̂x,y,z|K1〉 〈K1|t̂x,y,z|K2〉
〈K2|t̂x,y,z|K1〉 〈K2|t̂x,y,z|K2〉

)

(7)

in the two-dimensional space spanned by |K1〉, |K2〉,
and (iv) the non-negative eigenvalue of t̃p equals gp
(p = x, y, z). We emphasize that while gp depends on

system parameters in ĤQD and Ĥex, it also depends on
which Kramers doublet we choose. Higher doublets be-
come relevant for QDs containing higher (odd) number
of holes, for example.

The effective Hamiltonian in Eq. (6) can be used for
various purposes, e.g., for studies of fluctuations of mag-
netization in magnetic QDs33, spin-selective tunneling
through non-magnetic QDs34 or excitons in single-Mn
doped QDs.35 If the magnetic easy axis is of interest,
the g-factors immediately provide the answer: F (eM )
based on Eq. (6) is minimized for eM in the direction
of the largest gp (e.g. for the HH doublet in Fig. 1(a),
it is nz = 1 because gz > gx, gy). If the full form of
F (eM ) is needed (e.g, for ferromagnetic resonance2), it
can be straightforwardly obtained by diagonalizing the
2× 2 matrix of Ĥeff . Assuming gx = gy, the (modulus of
the) eigenvalue can be expanded in terms of parameters
A and k as derived in Appendix B. It is meaningful to
call

A = (g2z − g2x)/(g2z + g2x) (8)

the asymmetry parameter since it vanishes in a perfectly
cubic QD (gx = gy = gz) and it is with respect to this
parameter that we can identify

AF1(eM ) = −Akn2
z (9)

A2F2(eM ) = +
1

8
A2k(2n2

z − 1)2 (10)

in Eq. (2) to linear order of k ∝ h.

B. A cuboid quantum dot model

With this general scheme at hand, we take one step
in the hierarchy of models towards a more realistic de-
scription of magnetic QDs. We consider a zinc-blende
structure p-doped semiconductor shaped into a cuboid
of size Lx × Ly × Lz such as can be described by four-
band Kohn-Luttinger Hamiltonian.23 Also in this system,
Ĥ = Ĥ2 is a sum of Ĥex and ĤQD but this time, ĤQD

comprises of blocks 〈mxmymz|ĤKL|m′
xm

′
ym

′
z〉 with

ĤKL =
~
2

2m0

{(γ1 + 5
2
γ2)p2 − 2γ2[Ĵ2

x p̂
2
x + Ĵ2

y p̂
2
y + Ĵ2

z p̂
2
z]

−2γ3[(ĴxĴy + ĴyĴx)p̂xp̂y + c.p.] (11)

Here, |mxmymz〉 denotes the basis of envelope functions,
γ1,2,3 the Luttinger parameters, m0 the electron vacuum
mass, p̂x,y,z the momentum operators and c.p. denotes
the cyclic permutation (see Appendix C for details). The
envelope function is conveniently developed into har-
monic functions with mp − 1 nodes in the p = x, y, z
direction:

〈~r|mxmymz〉 = N sin
mxπx

λxL
sin

myπy

λyL
sin

mzπz

L
. (12)

We have introduced the dimensionless aspect ratios
λx,y = Lx,y/L and the normalization factor N . Our sys-
tem can be viewed as an infinitely deep potential well
with V (x, y, z) = 0 for 0 < x < Lx, 0 < y < Ly and
0 < z < Lz ≡ L and infinite otherwise.

For fixed material parameters (Luttinger parameters
in ratios γ2/γ1, γ3/γ2) and QD shape (λx, λy), all matrix

elements of all blocks 〈mxmymz |ĤKL|m′
xm

′
ym

′
z〉 scale

as 1/L2. The spectrum, consisting of Kramers dou-
blets which occasionally combine into larger multiplets,
is specified by a sequence of dimensionless numbers E/E0
where

E0 = ~
2π2γ1/(2m0L

2). (13)

For a cubic QD [λx = λy = 1; see Fig. 2(a)] the s-like
state shown in the inset of Fig. 2(a) forms a quadruplet,
and depending on the value of γ2/γ1 (and to somehow
lesser extent also of γ3/γ2) this state competes with the
next doublet for having the lowest energy. The critical
value (see Appendix C)

cR = (2 + 128/9π2)−1 ≈ 0.29 (14)

can be taken to distinguish materials with small (γ2/γ1 <
cR, ground state quadruplet) and large (γ2/γ1 > cR,
ground state doublet) splitting between light and heavy
holes in the bulk; these can be ZnSe and CdTe, respec-
tively, their values of γ̄2/γ1 based on approximating γ2
and γ3 by their average γ̄2 = (γ2 + γ3)/2 are indicated
in Fig. 2(a). By numerical diagonalization we have de-
termined the lowest 7 Kramers doublets in slightly de-
formed QDs (λx = λy ≡ λ = 1.01) in these materi-
als (γ1/2/3 = 4.8/0.67/1.53 for ZnSe and 4.1/1.1/1.6 for
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CdTe)36 and executed the procedure (i)-(iv) above to ob-
tain the g-factors which are listed in the table on the right
of Fig. 2 (gx = gy due to λx = λy). To avoid confusion,
we remark that in (i), |K1〉, |K2〉 are vectors of dimension
864 in the basis |mxmymz〉 ⊗ |Jz〉 (see the discussion of

cut-off in Appendix C) and in (ii), t̂x = (1/3)Ĵx ⊗ 11xyz,
where 11xyz is the identity operator in the space of the
envelope functions given by Eq. (12). Evaluation and di-
agonalization of the 2×2 matrices in Eq. (7) requested in
(iii,iv) is performed numerically. The possibility to map

the action of Ĥex = (h/3)eM · Ĵ⊗ 11xyz on the Kramers

doublets |K1〉, |K2〉 implied by ĤQD of a cuboid p-doped
QD is discussed in Appendix A.

The slight deformation of the QD makes the quadru-
plet split into two doublets (with energies 71.7 and
71.9 meV for ZnSe) whose g-factors approach (0, 0, 1/2)
and (1/3, 1/3, 1/6). Similar situation occurs for the dou-
blet pair with energies 52.8 and 53.0 meV for CdTe. The
actual ground state in this material is, however, a dou-
blet of different orbital character than the quadruplet
(we stress that this is due to the confinement, see Ap-
pendix C); it evolves from the E = 6E0 level of γ2/γ1 = 0
as shown by the solid line in Fig. 2(a) and its g-factors
are isotropic, (1/6, 1/6, 1/6) in the limit λ → 1. This
doublet, however, remains the ground state only in rather
symmetric QDs (λ ≈ 1.25 in CdTe) and for more strongly
deformed QDs, the lower doublet of the E = 3E0 (at
γ2/γ1 = 0) quadruplet becomes the ground state just
as it is the case for ZnSe for arbitrarily small deforma-
tions λ > 1. In Fig. 2(b), we show how the g-factors
of the CdTe QD ground state depend on λ beyond the
mentioned value ≈ 1.25. These results, including the g-
factors, are independent of the QD size L, except for the
energies which scale as 1/L2 as mentioned above.

From Fig. 2, one may conclude that the Ising-like
Hamiltonian is often an excellent approximation (gx =
gy = 0, as others assume14,24,33–35) for the lowest
Kramers doublet. To be more specific, we now discuss
materials with small and large HH/LH splitting sepa-
rately. For γ2/γ1 < cR, the out-of-plane g-factor (gz)
overwhelmingly exceeds the in-plane one (gx = gy) even
for minute deformation of the QD; this can be seen from
the numeric ZnSe data in Fig. 2. We find gz = 0.464
and gx = gy = 0.012 for λ − 1 as small as 0.01. For
CdTe, which represents the other class (γ2/γ1 > cR), we
find similar values (gz = 0.418) for the second Kramers
doublet while the lowest doublet remains rather isotropic
(gx = gy = 0.166 and gz = 0.164). As we make the QD
deformation larger, these two doublets cross, so that the
ground state doublet is Ising like while the second lowest
doublet remains more isotropic. This crossing occurs for
λ ≈ 1.25 in CdTe and data in Fig. 2(b) are only shown
for λ > 1.25.

We now elaborate on the properties of the low-energy
sector of Ĥ2 (at h = 0). Coupling between blocks of dif-
ferent |mxmymz〉 vanishes when γ3/γ1, γ2/γ1 → 0, and
Eq. (3) becomes in this limit the exact effective Hamilto-
nian of the lowest four levels (mp = 1 for all p = x, y, z).

c R

.

 0.42

 0.44

 0.46

 0.48

 0.5

 1  1.5  2  2.5  3  3.5
 0

 0.02

 0.04

λ

(b)

gz
gx

E [meV] gx = gy gz
71.7 0.012 0.464
71.9 0.305 0.171
92.1 0.167 0.160
126.1 0.274 0.237
129.6 0.076 0.069
130.0 0.082 0.045
141.0 0.205 0.212

49.9 0.166 0.164
52.8 0.027 0.418
53.0 0.269 0.176
78.5 0.162 0.169
84.1 0.010 0.129
84.4 0.064 0.004
85.6 0.203 0.279

Z
n

S
e

C
d

T
e

FIG. 2. (Color online) (a) Levels in a cubic dot (with γ3 = γ2)
in units of E0 defined by Eq. (13). Solid lines indicate ana-
lytic result obtained when mixing between remote levels is
disregarded. Note that their crossing (which we use to dis-
cern the weak and strong HH/LH splitting materials, dashed
line) is very close to the actual crossing when level mixing is
taken into account. Values representing ZnSe (γ̄2/γ1 ≈ 0.23)
and CdTe (γ̄2/γ1 ≈ 0.33) QDs are indicated. Inset: squared
wavefunction modulus of the ZnSe QD ground state in the
z = L/2 section. (b) Dependence of the g-factors associated
with the ground state Kramers doublet in a CdTe QD on
its shape (λx = λy ≡ λ). Right: Energies and g-factors in
slightly deformed QDs (λ = 1.01) for the lowest 7 Kramers
doublets for ZnSe and CdTe, where E0 ≈ 28 meV and 24 meV,
respectively, for L = 8 nm.

They form a quadruplet for λ = 1, which splits into two
doublets upon deformation of the QD; we can see it by
writing

〈111|ĤKL|111〉 = 3E0
[

114f(λ) − Ĵ2
z (1 − λ−2)

2

3

γ2
γ1

]

(15)
where 114 is a unit 4 × 4 matrix and f(λ) is a certain
function with limλ→1 f(λ) = 1. The lower doublet of this
4×4 effective Hamiltonian has gz = 1/2 (when λ > 1 and
γ2 > 0) and therefore the values of gz deviating from 0.5
(appearing in Fig. 2) occur only due to admixtures from
higher-orbital (mp > 1) states of LH character. Indeed,
going from ZnSe to CdTe, the mixing becomes stronger
and gz of the HH-like level drops from 0.464 to 0.418
(λ = 1.01, numerical data in Fig. 2). While Eq. (3)
may remain the effective Hamiltonian of the two doublets
originating from |mxmymz〉 = |111〉 even for γ2/γ1 > cR
(CdTe levels of 52.8 and 53.0 meV in Fig. 2), for λ close
to 1, there is the more isotropic doublet on the stage
(49.9 meV in Fig. 2). Nevertheless, if λ is sufficiently

large, the Ĵ2
z term in Eq. (11) will eventually dominate,

it will suppress all mixing between HH and LH states
and the lowest doublet will again approach (gx, gy, gz) =
(0, 0, 0.5) as it is shown in Fig. 2(b).
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III. MAGNETOCRYSTALLINE ANISOTROPY

ENERGY

In analogy to the bulk systems, even cubic QDs retain
anisotropies. However, these cannot be described within
the previous framework: for instance, gx, gy, gz are all
equal to 1/6 in the cubic CdTe QD ground state hence
A = 0 in Eq. (8). One could replace gij by a higher
rank tensor to capture these effects, but MAE formalism
of bulk magnets seems more customary and informative.
Unlike the g-factors, MAE analysis does not invoke the
concept of Kramers doublets. The zero-temperature free
energy F (eM ) of a magnetic QD with a single hole is
now simply the lowest eigenvalue of Eq. (1) and it can be
expanded in powers of nj . The lowest terms compatible
with cubic symmetry are39

F0 = Kc(n
4
x + n4

y + n4
z) + 27Kc2n

2
xn

2
yn

2
z. (16)

For data calculated by numerically diagonalizing Ĥ = Ĥ2

(model described in Sec. IIB) it turns out that Eq. (16)
suffices to obtain good fits; for instance, lower solid line
in Fig. 3(a) corresponds to Kc = 0.83 meV and Kc2 =
0.075 meV with easy axis along [111]. There we have
chosen Cd1−xMnxTe as the material, L = 16 nm and
h = 50 meV which corresponds to h = JpdNMnSMn

with x ≈ 2.3% (we take36 |Jpd| = 60 meV · nm3, SMn =
5/2 and NMn = 4x/a2l with CdTe lattice constant al =
0.648 nm). Results in Fig. 3 are again subject to scaling,
similar to the non-magnetic spectra in Fig. 2(a). When
the material parameters (specifically, γ2/γ1 and γ3/γ2)

are fixed, the spectrum of Ĥ2, expressed in the units of
E0, depends on a single dimensionless parameter

Ž = h/E0 ≡ 2m0hL
2/(γ1π

2
~
2). (17)

This scaling relates the spectra of e.g. cubic dots of dif-
ferent sizes and Mn contents (if their respective values
of Ž are equal). Data in Fig. 3 therefore apply both to
x = 2.3% at L = 16 nm (if left as they are) and x = 9.2%
at L = 8 nm (if scaled by a factor of 4). It turns out that
the g-factor analysis presented in the previous section is
meaningful for Ž . 0.1 while now we have stepped out of
this limit. When the exchange field h becomes stronger,
levels cross and cease to depend linearly on h as required
by Eq. (6); for Ĥ = Ĥ1, this is illustrated in Fig. 1(b).
This limit was determined for CdTe cubic QDs but it will
typically not be too different for other materials and/or
aspect ratios λ unless accidental (quasi)degeneracies oc-
cur at Ž = 0.

MAE shown in Fig. 3 describe systems well beyond
this limit of small Ž (linear regime). We first focus on a
perfectly cubic CdTe QD where there are no anisotropies
in the linear regime. As already mentioned, the lowest
energy hole state in Fig. 3(a) exhibits a [111] easy axis
with Kc = 0.83 meV at L = 16 nm and h = 50 meV,
i.e. Ž ≈ 2.8, (this corresponds to a realistic x ≈ 2.3%
Mn doping). In bulk DMSs, [111] would be an unusual
magnetic easy axis direction15 and we surmise that the

cubic deformed
ZnSe CdTe ZnSe CdTe

h [meV] Ž Kc Kc Kc Ku Kc Ku

10 0.55 0.11 0.24 0.23 -3.79 0.35 -3.90

20 1.1 0.20 0.43 0.36 -5.52 0.62 -6.21

30 1.7 0.28 0.59 0.44 -6.29 0.83 -7.59

40 2.2 0.35 0.71 0.50 -6.72 1.01 -8.56

50 2.8 0.41 0.83 0.56 -7.01 1.16 -9.30

TABLE I. Magnetic anisotropy constants (in meV) for a 16×
16 × 16 nm3 (cubic) and 16 × 16 × 8 nm3 (deformed) ZnSe
and CdTe magnetic QD as a function of exchange splitting
(or dimensionless parameter Ž as for CdTe).

reason for this is that for instance in (Ga,Mn)As grown
on a GaAs substrate, there is a sizable compressive strain
which prefers either parallel or perpendicular orientation
of eM with respect to the growth axis.

We note that in a QD containing two holes (closed-
shell system11) the anisotropies will also be present and
they will be different from the single-hole case. Free en-
ergy, taken as a sum, F0(eM ) = E1 + E2, of the lowest
two single-hole states [shown e.g. in Fig. 3(a)], is not a
constant independent of eM as one could naively expect.
This intuition reflects Ĥeff in Eq. (6) where the two hole
states have opposite spin (hence their energies add up to

zero). Once we leave the linear regime (Ž & 0.1), Ĥeff

ceases to be a good approximation. Qualitatively, the
same behaviour is found for ZnSe (not shown), a smaller
value of Kc = 0.41 meV is accounted for by the smaller
HH/LH splitting. The value of this constant is a com-
plicated function of system parameters and it can even
change sign as shown in Fig. 3(c) where Kc = −0.63 meV.
Parameters used in this figure (γ1/γ2/γ3 = 4.0/1.5/1.6
and h = 20 meV) do not strictly correspond to published
values of any semiconductor but they can be viewed as
reasonable given the uncertainty in experimental deter-
mination of the Luttinger parameters. Dependence of
the anisotropy constants for ZnSe and CdTe QDs on h is
summarized in Tab. I.

Let us now return to non-cubic QDs. As already
explained, the sizable g-factor anisotropies shown in
Fig. 2(b), relevant to the case of weak magnetism (Ž ≪
1), translate into an additional term AF1 = Kun

2
z in the

free energy of Eq. (2) where Ku = −kA up to linear or-
der in Ž ∝ k. Typically, Ku exceeds Kc already for small
QD deformation (λ slightly over one) and the data in
Fig. 3(b) imply Ku almost an order of magnitude larger
than Kc for λ = 2 (see also data in Fig. 2 where gz ≫ gx).
Regardless of the contributions to Ku of higher order in
Ž, data in Tab. I imply an out-of-plane easy axis (in the
[001] direction) as it is the case in QWs. However, upon
deforming of a QD the easy axis does not abruptly jump
from [111] to [001] but smoothly interpolates between
these two directions. Similar effect, easy axis shifting as
a function of some system parameter, is also known in
bulk DMS [(Ga,Mn)As epilayers in particular, see Fig. 8
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FIG. 3. (Color online) Magnetocrystalline energy as a function of magnetization direction (E1); the data labelled E2 are
explained in the text. CdTe QD with 2.3% Mn (a) 16 × 16 × 16 nm3, (b) 16 × 16 × 8 nm3. (c) Fictitious material with
parameters described in the text; note that the sign of Kc implied by Eq. (16) has changed compared to (a,b). (d) Color-coded
easy axis positions for CdTe QDs as a function of aspect ratio (λ) and effective exchange splitting Ž. Black squares (1) indicate
easy plane perpendicular to z-direction, hollow squares denote an isotropic magnet; white region (2) corresponds to easy-axis
[001]; red squares (3) denote systems with [111] easy axis which gradually shifts towards [001] with increasing λ. This plot is
universal as far as L is concerned.

in Ref. 15]. Easy axes as a function of QD shape (oblate
dots, λ > 1) and effective exchange splitting Ž are sum-
marized in Fig. 3(d) and the mentioned gradual shift of
easy axis is indicated by shading between regions (3) and
(2) (easy axes [111] and [001], respectively). On the other
hand, the easy axis position changes abruptly between
(1) and (3) or (1) and (2); region (1) corresponds to easy
axis in the plane perpendicular to [001] (with anisotropies
within this plane being very small). The abrupt changes
reflect ground state crossings, such as the one with λ de-
scribed below Eq. (14), while the gradual ones stem from

level mixing caused by Ĥex.

Finally, we comment on MA in QDs occupied by more
than one hole. As already mentioned above, one pos-
sible approach is to discuss open-shell and closed-shell
systems separately. This notion is based on the concept
of the QD being an artificial atom whose levels are or-
ganized into shells comprising of spin-up and spin-down
orbitals. Whenever a shell is completely filled (closed),
the numbers of spin-up and spin-down carriers are equal
hence their total spin is zero. If the QD is magnetically
doped, no magnetic ordering is expected and also no MA.
However, strong SO coupling puts this concept into ques-
tion since it mixes different shells and also invalidates
the spin-up and down labels of individual orbitals. The
MA as a function of particle number Np strongly varies,
both quantitatively and qualitatively. By comparing the
Np = 1 and Np = 2 cases of a cubic CdTe QD, that is

F0(eM ) = E1 and F0(eM ) = E1 + E2 of Fig. 3(a), we
find that while the easy axis [111] in the former case is
relatively ‘soft’ (energy difference between eM ||[111] and
[110] is ‘only’ ≈ 0.1 meV), the QD with two holes has a
‘robust’ easy axis [110] and the corresponding minimum
in F0(eM ) is as deep as 0.3 meV. MA as a function of
Np displays rich behavior and one can therefore envision
control of nanomagnetism by electrostatic gating, illumi-
nation (used to photoinduce carriers) and possibly also
temperature, known to alter the magnetic ordering in the
bulk-like structures.18,40

IV. CONCLUSIONS

We have discussed two approaches to magnetic
anisotropies in quantum dots (QDs) described by a
generic model in Eq. (1). An effective Hamiltonian for
individual Kramers doublets allows to express the ener-
getics of a magnetically doped QD in terms of only three
parameters (anisotropic g-factor) if the exchange split-
ting due to the magnetic ions is relatively small. On
the other hand, if the exchange splitting is large or the
QD’s symmetry is too high, the symmetry-based expan-
sion of the magnetocrystalline energy in powers of the
direction cosines of magnetization may in principle con-
tain infinitely many terms (each of them quantified by
one parameter). Focusing on manganese-doped semi-
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conductor QDs, we find that only first few terms are
appreciable, present their values and show in Fig. 3(d)
a diagram of magnetic anisotropies in the QD param-
eter space. While we focus on a relatively small pa-
rameter range in that diagram, and the barriers be-
tween individual free energy minima are relatively low,
it demonstrates that the QDs may have rich magnetic
anisotropies. In spintronics,18,19,41 these systems could
thus enable confinement-controlled multi-level logic. Our
results provide a starting point for further studies of
nanoscale magnetism in QDs. Such studies could relax
the mean-field approximation, include multiple-carrier
states,22,42 or the effect of strain.
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APPENDIX A

The downfolding of ĤQD + Ĥex to Ĥeff is indeed possi-
ble for the two example systems discussed in Sec. IIA
and IIB. To prove this, we first transform the basis
|K1〉, |K2〉 to |K ′

1〉, |K ′
2〉 where t̃z of Eq. (7) is diagonal

and then verify that the diagonal elements of t̃x and t̃y
vanish. This procedure has to be applied to each Kramers
doublet of interest. In the case of Ĥ1 in Eq. (3), this is
done simply by construction (e.g. |K ′

1〉, |K ′
2〉 for the up-

per doublet in Fig. 1(a) is just |Jz = 3/2〉, |Jz = −3/2〉).
In the model described by Ĥ2, one can split the Hilbert
space into two disjunct subspaces H1, H2 and the above
assertion can be shown to hold if |K ′

1〉 ∈ H1 and |K ′
2〉 ∈

H2. (The decomposition H1 ⊕ H1 relies on Ĥex being
independent of space coordinates; relaxing the mean-field
treatment of Mn magnetic moments thus introduces cor-
rections to Ĥeff .) Finally, one adjusts the relative phase
between |K ′

1〉 and |K ′
2〉, so that the matrix t̃x is real and

t̃y purely imaginary.

APPENDIX B

This Appendix explains the relation between the
anisotropic g-factors and Eq. (2). The eigenvalues of Ĥeff

are two numbers of equal magnitude and opposite sign,
the lower of which is

−h
√

n2
xg

2
x + n2

yg
2
y + n2

zg
2
z . (18)

Let us consider for example single hole in a cuboid QD of
dimensions λL× λL× L (such as it corresponds to data
in Fig. 2) so that gx = gy. Expression (18) which now

equals F (eM ) can be rewritten as

−h
√

g2x + g2z√
2

√

1 +
g2z − g2x
g2z + g2x

(n2
z − n2

x − n2
y) (19)

and developped in terms of a small parameter A = (g2z −
g2x)/(g2z + g2x) which quantifies the QD asymmetry as

−k(1 − 1
2
A) −Akn2

z + 1
8
A2k(2n2

z − 1)2 + . . . (20)

where k = h
√

(g2x + g2z)/2. The first term does not de-
pend on the magnetization direction, hence it can be dis-
regarded for the purposes of magnetic anisotropy analy-
sis.

APPENDIX C

We derive Eq. (14) in this Appendix and discuss the
details of the model considered in Sec. IIB. Energies E/E0
in Fig. 2(a) are calculated by numerical diagonalization

of Ĥ2 with h = 0, a matrix constructed of 4 × 4 blocks
〈mxmymz|ĤKL|m′

xm
′
ym

′
z〉/E0 introduced at the begin-

ning of Sec. IIB. The basis of ĤQD consists thus of direct
product states |mxmymz〉⊗ |Jz〉 where |Jz〉 are the four-
spinors of total angular momentum J = 3/2 which are

eigenstates to Ĵz. For practical purposes, we cut-off the
basis by mx,my,mz ≤ 6, resulting in ĤQD of dimension
864. Eigenvalues are typically converged to better than
0.1 meV for this cut-off.

The matrix ĤQD/E0 is block-diagonal for γ2 = γ3 =
0 and the block mx,my,mz has a four-fold degenerate
eigenvalue

(mx/λx)2 + (my/λy)2 + m2
z. (21)

Dimensionless energies on the left of Fig. 2(a) correspond
to λx = λy = 1 and are hence integers. The lowest
level E/E0 = 3 belongs to (mx,my,mz) = (1, 1, 1) while
the first excited state E/E0 = 6 entails an additional
threefold geometric degeneracy corresponding to orbital
states (1, 1, 2), (1, 2, 1) and (2, 1, 1); the E/E0 = 6 level
for γ2 = γ3 = 0 is thus twelve-fold degenerate.

Next, we can treat the HH-LH splitting as a perturba-
tion when γ2 and γ3 are turned on. In the lowest order,
mixing between different (mx,my,mz) blocks can be ne-
glected except for the case when their energies were equal
at γ2 = γ3 = 0 as in the case of the three blocks of the
E/E0 = 6 level. With coupling to the remote levels dis-
regarded, we are left with a 12 × 12 matrix in this case
which can be diagonalized analytically. It turns out to
have two four-fold degenerate eigenvalues

E±

4 /E0 = 6 +
64

3π2

γ2
γ1

(

s±
√

s2 +
81π4

1024

)

(22)

and two two-fold degenerate ones

E±

2 /E0 = 6 − 128

3π2

γ2
γ1

(

s∓ 9π2

64

)

. (23)
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The lowest of these four energies is E−

2 and it is shown
in Fig. 2(a) for s ≡ γ3/γ2 = 1 as a solid line which
crosses the horizontal line E/E0 = 3 corresponding to the
(mx,my,mz) = (1, 1, 1) quadruplet which does not shift
in energy to the first order of this perturbation analysis.
Eq. (14) is the solution of E−

2 = 3E0 for γ2/γ1 under the
assumption s = 1. Such level crossing (as a function of
γ2/γ1) is genuinely due to the confinement and no level
crossings occur in in bulk as long as 0 < γ2/γ1 < 1/2.
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Lett. 101, 207202 (2008).

9 A. O. Govorov, Phys. Rev. B 72, 075359 (2005); A. O.
Govorov, ibid. 72, 075358 (2005).

10 D. A. Bussian, S. A. Crooker, Ming Yin, M. Brynda, A. L.
Efros, and V. I. Klimov, Nature Mat. 8, 35 (2009).
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