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The exact ground-state exchange-correlation functional of Kohn-Sham density functional theory
yields the exact transmission through an Anderson junction at zero bias and temperature. The
exact impurity charge susceptibility is used to construct the exact exchange-correlation potential.
We analyze the successes and limitations of various types of approximations, including smooth and
discontinuous functionals of the occupation, as well as symmetry-broken approaches.

Since the pioneering experiments of Reed and Tour
on dithiolated benzene [1], there has been tremendous
progress in the ability to both create and characterize
[2] organic molecular junctions. But accurate simulation
of these devices remains a challenge, both theoretically
and computationally [3]. The essential physics has been
well understood since the ground-breaking work of Lan-
dauer and Büttiker [4, 5] in the context of mesoscopic
devices, including both Coulomb blockade and Kondo
effects [6, 7]. Calculations with simple model Hamilto-
nians demonstrate such effects at a qualitative level [8].
On the other hand, organic molecules connected to metal
leads [9] require hundreds of atoms and thousands of ba-
sis functions for a sufficiently accurate calculation of their
total energy, geometry, and single-particle states. Such
conditions are routine for modern density functional the-
ory (DFT) calculations [10], but the ability of present
functional approximations to predict accurate currents
remains an open question [11].

The standard DFT method for calculating current
through such a device is to perform a ground-state Kohn-
Sham (KS) DFT calculation [12] on a system upon which
a difference between the chemical potentials of the left
and right leads has been imposed (the applied bias), and
calculate the transmission through the KS potential us-
ing the Landauer-Büttiker formula. But there is nothing
in the basic theorems of DFT that directly implies that
such a calculation would yield the correct current, even
if the exact ground-state functional were used.

The limit of weak bias is more easily analyzed than the
general case, because the Kubo linear response formalism
applies [13, 14]. In that case one finds that, in princi-
ple, there are exchange-correlation (XC) corrections to
the current in the standard approach [15], but little is
known about their magnitude [16, 17]. Even without
these corrections, one can ask if the standard approx-
imations used in most ground-state DFT calculations
(i.e., generalized gradient approximations [18] and hy-
brids of these with Hartree-Fock exchange [19, 20]) are
sufficiently accurate for transport purposes. The answer
appears definitively no! Because of self-interaction errors,
such approximations are well-known [21] to produce po-

tentials with incorrectly positioned KS eigenvalues, both
occupied and unoccupied. These errors become severe
when the molecule is only weakly coupled to the leads
[22, 23]. Calculated transmission can be too large by sev-
eral orders of magnitude due to this incorrect positioning
of the levels. Recent calculations [24] using beyond-DFT
techniques to correctly position the levels show greatly
improved agreement with experiment.

But this progress returns us to the earlier concern:
Even with an exact ground-state XC functional, are there
XC corrections to the Landauer-Büttiker result? The an-
swer appears to be yes in general [15], but in a previous
work [25] we argued that, under a broad range of condi-
tions applicable to typical experiments, such corrections
can vanish. This result was shown by exact calculations
on an impurity model (Anderson model) employing the
exact XC functional. Similar results were achieved in-
dependently by other groups at about the same time
[26, 27]. In the present work, we analyze different ap-
proximate treatments, applied to the Anderson junction,
and calculate their errors. The implications for DFT cal-
culations of transport in general are discussed.

The Anderson model [28] is a single interacting site
(C) connected to two non-interacting electrodes (L,R).
The Hamiltonian of the system is H = HC +HT +HL,R.
Each lead is represented by a non-interacting Fermi gas:
HL,R =

∑
kσ∈L,R εkσn̂σ, with chemical potential µ and

the central interacting site is: HC = ε (n̂↑ + n̂↓)+Un̂↑n̂↓,
where n̂σ = d†σdσ is the number operator for spin σ and
U is the charging energy representing on-site interaction.
HT is the tunneling between leads and the central site.
The tunneling width Γ is a constant in the broad-band
limit. A schematic is shown in Fig. 1. Real molecules
can be mapped onto the Anderson model [29, 30].

In a previous work [25], we calculated the exact rela-
tion between occupancy on the central site and on-site en-
ergy ε for an Anderson junction, using the Bethe ansatz
(BA) [31]. We showed that exact KS DFT yields the
exact transport at zero temperature and in the linear re-
sponse regime, although the KS spectral function differs
from the exact one away from the Fermi energy. This
is because the Anderson junction has only one site and
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FIG. 1. (Color online) A cartoon for Anderson model. The
model consists of two featureless leads and a central region
with on-site interaction U . Γ is the tunneling width. Two
many-body levels of the central region are shown.

transmission is a function of occupation number due to
the Friedel-Langreth sum rule [32, 33]. The connection
to transport was pointed out in Refs. [24, 34]. Thus, for
this simple model, all failures of approximate XC calcu-
lations of transmission can be attributed to failures to
reproduce the exact occupation number, i.e., there are
no XC corrections to the standard practice of applying
KS DFT to the ground-state and finding transmission
through the single-particle potential. On the other hand,
the standard approximations in use in DFT calculations
of transport have a variety of shortcomings. The most
prominent one, as we shall see, is the lack of a disconti-
nuity in the XC potential with particle number [35].

Before studying approximations, we refine our previous
numerical fit of BA results, using analytic results from
many-body theory. We re-introduce [28] reduced vari-
ables y = Γ/U , which measures the ratio of lead-coupling
to the onsite Coulomb repulsion, while x = (µ− ε)/U is
the difference between the leads’ chemical potential and
the onsite level energy, in units of U . For x < 0, the cen-
tral site is above the chemical potential, at x = 0 they
match.

The occupation in the KS system is given by self-
consistent solution of the KS equation for occupation:

〈nC〉 =
1

2
+

1

π
arctan

(
µ− εS(〈nC〉)

Γ

)
. (1)

where the KS level is written as

εS(〈nC〉) = ε+
U

2
〈nC〉+ εXC(〈nC〉), (2)

with the second term being the Hartree contribution and
the third being the XC contribution (in fact, only cor-
relation, as exchange is zero for this model), which is a
function of the occupation. Considered in reverse, this is
a definition of the exact εXC, if the occupation is known,
as it is from the BA solution. The KS transmission is
then

T (E)E=µ = sin2
(π

2
〈nC〉

)
, (3)
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FIG. 2. (Color online) Dimensionless susceptibility χ̃c =
Uχc(1) as a function of y = U/Γ for the Anderson junction
[exact, [5,6]-Padé fit (see text), RHF and UHF].

and matches the true transmission in the many-body
system, by virtue of the sum-rule. The exact ground-
state functional yields the exact transmission, including
the Kondo plateau at zero temperature and weak bias
[25, 36].

As shown in Ref. [25], the XC potential can be very
accurately parametrized with the form:

εXC

U
=
α

2

[
1− 〈nC〉 −

2

π
tan−1

(
1− 〈nC〉

σ

)]
(4)

The tan−1 term jumps by π as 〈nC〉 passes through 1,
leading to discontinuous behavior with occupation. Thus
σ determines the width of this region, while α determines
its strength. Both σ and α are functions of y = Γ/U and
were extracted numerically by fitting to the exact solu-
tion, and were roughly fit by simple Padé approximations
there.

However, we can greatly improve the fit of σ. A central
object in the Anderson junction is the charge susceptibil-
ity, χc(〈nC〉) = d 〈nC〉 /dµ. At half-filling, this is known
analytically[37, 38]:

χ̃c =
1

π

√
2

y

∫ ∞
−∞

dt
e−πyt

2/2

1 +
(

(2y)
−1

+ t
)2 , (5)

where χ̃c = Uχc(1) is dimensionless, and is plotted in
Fig. 2. This curve can be readily fit to a [5,6] Padé form:

χ̃mod
c (y) =

5∑
k=1

aky
k/

6∑
k=0

bky
k, (6)

whose 11 independent coefficients are chosen to recover
the Taylor-expansion around y = 0 (strongly-correlated
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limit)1 exactly to 5 orders, around y → ∞ to 6 orders,
and are given in Table I. The weak-correlation limit
can also be extracted via the Yosida-Yamada perturba-
tive approach [41–43]. The quantity χ̃c has the physical
meaning of the slope at particle-hole symmetry point in

the 〈nC〉 vs. (µ− ε)/U curve (see Figs. 3 and 4). It has
a maximum at about y = 0.291, and as y varies from ∞
(weakly-correlated limit) to 0 (strongly-correlated limit),
the slope at the symmetric point increases at first. Be-
yond the maximum value, the slope decreases, and the
Coulomb blockade pleateau gradually develops.

TABLE I. Coefficients in the [5,6]-Padé approximation [Eq. (6)].

k ak bk

0 − π3(π6 + 6π4 − 225π2 + 675)

1 8π2 −12π2(π6 + 54π4 − 945π2 + 3105)

2 −576π(8π4 − 120π2 + 405) 12π(π8 − 30π6 + 555π4 − 6525π2 + 29700)

3 64(π8 − 36π6 + 153π4 + 135π2 + 8910) 96(π8 − 80π6 + 975π4 − 2925π2 + 1350)

4 256π(4π6 − 204π4 + 1530π2 + 945) 48π(π8 − 30π6 − 225π4 + 3375π2 + 8100)

5 128π2(π6 − 42π4 + 315π2 + 135) 576π2(π6 − 50π4 + 375π2 + 225)

6 − πa5/2

By taking derivatives on both sides of Eq. (4), the two
coefficients α and σ are constrained by χ̃c:

σ =
2α

π (2/χ̃c − yπ + α− 1)
. (7)

Retaining the simple form of Ref. [25], a [0,1] Padé, α =
1/(1 + 5.68y), we determine σ from the Padé fit to the
susceptibility and Eq. (7). This yields highly accurate
occupations, KS potentials, and transmissions, including
the Kondo plateau. It agrees very well with the numerical
fit to the BA results of Ref. [25], and matches more
closely than the simpler analytic fit used there.

We now move on to the central topic of this work,
which is the accuracy of approximate functional treat-
ments. In such treatments, εXC is approximated as a
function of 〈nC〉 in Eq. (2), and the resulting Eq. (1) is
solved self-consistently for 〈nC〉. The simplest such ap-
proximation is to simply set εXC = 0, i.e., Hartree-Fock
(HF), and should be accurate when correlation is weak.
In Fig. 3, we plot several quantities for U = Γ, both ex-
actly and in HF, showing that HF is very accurate here.
We find [28]:

χ̃HF
c =

2

1 + yπ
, (8)

which is correct to leading order in y−1:

χ̃c → 2/(πy)− 2/(πy)2 + 2γ/(πy)3 + · · · y →∞, (9)

1 In Refs. [39] and [40], this expansion was reported incorrectly,
with minus sign on the second term. We believe it is corre-
sponding to Wilson ratio R = 1, however this is not true in
strongly-correlated limit.

where γ = 3 − π2/4 exactly, but γ = 1 in HF. Thus
we regard U . Γ as the weakly correlated regime. On
the other hand, in Fig. 4, we show the same plots for
U = 10 Γ. Now, in the exact occupation, the slope near
x = 0.5 is much weaker, leading to a transmission plateau
(the Kondo plateau) for 0 ≤ x ≤ 1. The plateau effect
is missed entirely by HF, because of the too-smooth de-
pendence (in fact, linear) of its KS level on occupation
(see bottom panel). Note that at temperatures equal
to or above the Kondo temperature, the Kondo effect
is destroyed, and the central plateau in transmission is
replaced by two Hubbard peaks around x = 0 and 1.
Then the behavior of the HF curve is exactly as qualita-
tively predicted in Ref. [15], smearing out the two sharp
features into one peak midway between them. This is be-
cause the KS level shifts linearly with occupation in HF,
instead of more suddenly with occupation in the exact
solution. More generally, all smooth density function-
als, such as the local density approximation [12] and the
generalized gradient approximation [18], suffer from the
same qualitative failure, and so would produce incorrect
peaks centered at x = 0.5. All these errors arise from the
approximations to the functional; the exact ground-state
functional reproduces the exact occupation by construc-
tion, and so yields the exact transmission.

There have thus been several suggestions to incorpo-
rate the discontinuous behavior with occupation into ap-
proximations in transport calculations. At the practical
level, Toher et al. [22] showed in a model calculation how
self-interaction corrections would greatly suppress zero-
bias conductance in local density approximation calcu-
lations for molecules weakly coupled to leads. More re-
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FIG. 3. (Color online) Upper panel: transmission as a func-
tion of x = (µ − ε)/U ; middle panel: occupation as a func-
tion of x; lower panel: KS potential as a function of occupa-
tion. Results are shown for Bethe ansatz or exact KS DFT
(exact), Hatree-Fock (HF), and discontinuous approximation
[disc, Eq. (10)]. U = Γ in all cases.
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FIG. 4. (Color online) Upper panel: transmission as a
function of x = (µ − ε)/U ; middle panel: occupation as a
function of x; lower panel: KS potential as a function of
occupation. Results are shown for Bethe ansatz or exact
KS DFT (exact), restricted Hatree-Fock (RHF), unrestricted
Hartree-Fock (UHF), and discontinuous approximation [disc,
Eq. (10)]. U = 10Γ in all cases.

cently, the Bethe Ansatz Local Density Approximation
(BALDA) [44], developed for the 1D Hubbard model,
was used to investigate the transport properties of the
Anderson model [45]; a smoothing of the derivative dis-
continuity was also introduced [45], but with a different
functional form than Eq. (4). For simple models, all of
these can be considered as LDA+U -like. The methodol-
ogy of LDA+U [46] has become increasingly popular in
recent years, especially for those focused on moderately
correlated systems such as transition metal oxides, for
which LDA and GGA often have zero KS band gap. In
some fashion, a Hubbard U is added to some orbitals of
a DFT Hamiltonian. Sometimes U is regarded as an em-
pirical parameter, while others have found self-consistent
prescriptions. In any event, despite not fitting in the
strict DFT framework, it is a method borne of practical
necessity for many situations [47].

To gain a qualitative understanding of the effects of
such models, we define a very simple XC potential that
has a discontinuity. To do this, we simply take the
Hartree form, symmetrize it around the half-filled point,
and replace U by a screened Ũ . We find that a sim-
ple fit Ũ = U/(1 + 0.25/y) works well. Ũ being different
from U and particle-hole symmetry guarantee an explicit
derivative discontinuity of εS with respect to occupation
number. This yields

εS[n] =
1

2
Ũnθ(1−n) +

[
U +

1

2
Ũ(n− 2)

]
θ(n− 1), (10)

where θ(x) is the Heaviside theta function and for sim-
plicity, n is just 〈nC〉.

While this model does contain a discontinuity, and
yields the exact result as y → 0, curing the worst de-
fects of HF, it misses entirely the finite slope of the KS
potential at half-filling for finite U , which is determined
by the susceptibility. The explicit derivative discontinu-
ity is exact in the strongly-correlated limit with infinite
U/Γ, but should be “rounded” in finite U/Γ [25, 40], or
in finite temperature [27]. To see this for finite (but very
large) U/Γ, in Fig. 5, we show similar results as in Figs.
3 and 4, but with U = 100Γ and we only show the region
around 〈nC〉 = 1 at x = 0, where the rounded derivative
discontinuity occurs. The transmission is accurate both
for weak and strong correlation, but is not so everywhere
in between. In particular, it is overestimated for 〈nC〉 just
above 0 (and just below 1) for U = 10Γ because of this
lack of a finite slope. This is where we expect the great-
est errors in such models, but the region of inaccuracy
(on the scale of x) shrinks as U/Γ→∞.

Finally, we discuss a different class of approximations.
A well-known (and much debated) technique for mim-
icking strong correlation is to allow a mean-field calcula-
tion to break symmetries that are preserved in the exact
calculation. Perhaps the most celebrated prototype of
such a calculation is for HF applied to an H2 molecule
with a large bond distance. At a crucial value of the
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bond distance (called the Coulson-Fischer point), an un-
restricted calculation, i.e., one that allows a difference
in spin occupations, yields a lower energy than the re-
stricted one. This remains the case for all larger separa-
tions, and the unrestricted solution correctly yields the
sum of atomic energies as R→∞, whereas the restricted
Hartree-Fock (RHF) solution dissociates to unpolarized
H atoms with the wrong energies. This is the celebrated
symmetry dilemma: with a mean-field approximation,
for large separations, one can either get the right symme-
try (RHF) or the right energy [unrestricted Hartree-Fock
(UHF)], but not both. The same issues arise in approx-
imate DFT treatments of this problem [48]. Of course,
the exact functional manages to get the correct energy
with the correct symmetry, and there have been many
attempts to reproduce this with various more sophisti-
cated approximations. But a more pragmatic approach
is to accept the results as they are, interpreting the good
energetics as the result of applying the approximate func-
tional to a frozen fluctuation of the system. The true
ground-state wavefunction fluctuates between configura-
tions with one spin and then the other (left and right
localized for stretched H2), and the true ground-state
density has unbroken symmetry. But the approximate
functionals give most accurate energies when applied to
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FIG. 5. (Color online) Upper panel: transmission as a func-
tion of x = (µ− ε)/U ; middle panel: occupation as a function
of x; lower panel: KS potential as a function of occupation.
Results are shown for Bethe ansatz or exact KS DFT (exact),
unrestricted Hartree-Fock (UHF), and discontinuous approx-
imation [disc, Eq. (10)]. Also shown in the upper panel is
UHF results for transmission using (incorrect) spin densities
[UHF(SB), with symmetry breaking], and 〈m〉 = 〈n↑〉 − 〈n↓〉
for UHF as a function of x as an inset in the middle panel.
U = 100Γ in all cases, and only the region near 〈nC〉 = 1 and
x = 0 is shown.

the frozen fluctuations. Thus, one can interpret both the
total density and energy as being accurate from such a
calculation, but not the individual spin-densities. In fact,
an alternative approach is to interpret another variable,
such as the ontop pair density, as being accurately ap-
proximated in such treatments [48].

We apply the same reasoning to the Anderson junction,
just as was done by Anderson when creating the model
we are using [28]. The symmetries are different, but the
principle is the same. We allow the mean-field calculation
to break spin-symmetry if this leads to lower energy on
the central site, with spin equations:

〈n↑〉 =
1

2
+

1

π
arctan

(
µ− ε− U 〈n↓〉 − εXC (〈n↑〉 , 〈n↓〉)

Γ

)
,

(11)
and reverse for 〈n↓〉, and 〈nC〉 = 〈n↑〉+ 〈n↓〉. Again, the
simplest calculation is UHF, where εXC = 0. The solu-
tions are identical to those found in the original problem
by Anderson [28]. For y > 1/π, i.e., U < πΓ, there is no
spontaneous symmetry-breaking, and UHF=RHF. But
beyond that critical value, the spin-density difference be-
comes finite, and the unrestricted solution differs. Define
the density difference as 〈m〉 = 〈n↑〉−〈n↓〉 in UHF, which
satisfies:

tan
(π

2
〈m〉

)
=
〈m〉
2y

. UHF (12)

For y > 1/π, 〈m〉 = 0, but otherwise a solution with 〈m〉
finite exists. In all cases, we take only the total density
from the UHF calculation, and we know the true 〈m〉 = 0
always. In particular, as y → 0 (strong correlation),
χ̃c → 0 with the correct linear term:

χ̃c → (8/π)y + (96γ/π2)y2 + · · · y → 0, (13)

where γ = 1 in the exact solution, but γ = 1/3 in UHF.
So UHF recovers the leading term. The green curve in
Fig. 2 shows the UHF value of χ̃c, demonstrating both its
accuracy for both strong and weakly correlated systems,
and the discontinuous change at 1/π.

Even beyond the “Coulson-Fisher point” of 1/π, the
symmetry-breaking only occurs for 0 ≤ 〈m〉 ≤ 1, i.e.,
outside this region, the UHF solution is that of RHF, as
can be seen in the inset of middle panel in Fig. 5. But the
density is very accurately given by UHF (considering the
scale of horizontal axis), and the KS potential develops
the correct derivative discontinuity as y → 0.

To demonstrate this accuracy, we plot the correspond-
ing transmissions in Fig. 4, using Eq. (3). The fig-
ure shows how the transmission using 〈nC〉 from UHF is
almost exact (considering the scale of horizontal axis).
To demonstrate the error in ignoring the fact that the
UHF produces incorrect spin densities, we also plot the
transmission through such a solution, which is completely
wrong (see dark red curve in upper panel of Fig. 5, only
one peak is present because only region near x = 0 and
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〈nC〉 = 1 is shown there). Our results are consistent with
those of [28], justifying the use of the broken symmetry
solution to deal with strong correlation.

To summarize, we have studied approximate treat-
ments of the zero-temperature weak-bias conductance
of the Anderson junction. RHF and approximate DFT
treatments work well for weak correlation, but fail for
moderate and strong correlation because of the smooth
dependence of their KS potentials on occupation num-
bers. Imposing an explicit discontinuity consistent with
particle-hole symmetry can yield a discontinuity with oc-
cupation which guarantees correct behavior in the strong
correlation limit. This also greatly improves results for
moderate correlation, but still contains errors. Finally,
simple symmetry-breaking in UHF produces remarkably
accurate conductances, once the transmission is calcu-
lated as if the symmetry had not been broken.
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