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ABSTRACT 

We have investigated the low-temperature spin-glass-like phase in the intercalated transition-

metal dichalcogenide Mn0.09Ti1.1S2. A departure from Curie-Weiss behavior in the paramagnetic 

regime indicated the formation of small ferromagnetically-correlated clusters. The Vogel-Fulcher 

law provided an excellent description of relaxation times in the vicinity of the transition, 

showing that the glass-like phase occurs due to interaction between the clusters. Cole-Cole plots 

for data close to the transition were linear, which is consistent with a simple exponential 

distribution of cluster sizes. A Monte Carlo simulation of the dichalcogenide system including 

excess self-intercalated Ti ions gave an exponential cluster-size distribution for a relatively 

narrow range of concentration values of Mn and Ti ions, values that were consistent with those 

of the Mn0.09Ti1.1S2 sample. Strong commonality in the relaxation behavior with certain 

ferroelectric relaxor systems suggests underlying similarity in the microscopic structure of the 

clusters in both systems, which may be chain-like or quasi-one-dimensional. 

 

PACS Numbers: 75.30.Hx, 75.50.Lk, 76.60.Es, 77.80.-e  
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I. INTRODUCTION 

 

Intercalated transition-metal dichalcogenides (TMDCs) have been the subject of numerous 

experimental and theoretical studies over the past several decades.1-6 These materials exhibit a 

variety of electronic and magnetic properties resulting from the interplay between the quasi-two-

dimensional anisotropic layered structure of the host and the electronic and magnetic 

characteristics of the intercalated ions. The intercalant ions are incorporated in the van der Waals 

gaps between the Ch-T-Ch trilayer slabs, which are stacked along the c axis. (T signifies 

transition metal and Ch denotes chalcogen.) The occurrence of a charge density wave state in 

TiSe2, its suppression by intercalation and the accompanying enhancement of superconductivity 

is one of the most intriguing aspects of the electronic and magnetic characteristics of the 

TMDCs.7-9 Other notable intercalation-dependent characteristics encompass a wide array of 

magnetic phases including ferromagnetism, antiferromagnetism, and spin-glass or cluster-glass 

states.10-15  

The multiplicity of magnetic states arises because of the type of magnetic intercalant ion, 

the interactions between the intercalant ions, band-structure effects due to the intercalation, and 

the distribution of the intercalant ions. Intercalation of 3d transition-metal ions such as Mn or Fe 

results in localized moments (especially for Mn). In a host TMDC that is a metal (e.g., TaS2) or a 

degenerate semiconductor (e.g., TiS2), the intercalated moments interact via Ruderman-Kittel-

Kasuya-Yosida (RRKY) exchange, which is mediated by electrons in d or p-d bands at the Fermi 

level. The 3d intercalant atoms donate electrons to the conduction band thereby becoming 

divalent or trivalent ions and simultaneously increasing the carrier density of the material. The 

magnetic moments may also interact via superexchange, which likely stabilizes the 
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antiferromagnetic state in some intercalated TMDCs.10 At 25 atomic percent and 33 atomic 

percent concentrations, the intercalant ions can form ordered 2a × 2a and 3a × 3a 

superlattices, respectively, where a is the in-plane lattice parameter.1, 2 At other concentrations, 

the intercalants form short-range ordered structures. In the particular case of TiS2, the fabrication 

process results in significant self-intercalation of Ti atoms.16-18 As an intercalant, Ti tends to 

form Ti3+ or Ti4+ ions.17 These highly charged ions will alter the distribution of the magnetic ions 

that may also be present as intercalants, which in turn will impact the magnetic characteristics of 

the system.6 

In this paper, we present experimental evidence that the spin-glass-like relaxation behavior 

that we have observed in Mn0.09Ti1.1S2 is due to clusters of intercalated Mn ions with an 

exponential size distribution. Monte Carlo investigations support the existence of an exponential 

cluster-size distribution and indicate that the clusters that give rise to this distribution are quasi-

one-dimensional (chain-like). We note that very similar relaxation in the dielectric constant has 

been observed in the ferroelectric relaxors Pb(Mg1/3Nb2/3)O3 + 5% PbTiO3 and Pb2KTa5O15, 

which was explained on the basis of an exponential distribution of dipolar clusters.19  In analogy 

with our findings for the Mn0.09Ti1.1S2 magnetic systems, we posit that an exponential 

distribution of dipolar clusters in the ferroelectric relaxors is also due to chain-like or quasi-one-

dimensional structures formed by the polar units. 

 

II. EXPERIMENTAL DETAILS 

 

Mn-intercalated Ti1+yS2 crystals were grown in a two-step process by the vapor-transport 

method using iodine as a carrier agent. The fabrication details have been discussed in previous 
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publications.6, 20 After growth, the structural properties of the samples were investigated with 

powder x-ray diffraction (PXRD) and energy dispersive x-ray spectroscopy (EDX). The PXRD 

measurements were taken with Cu Kα  radiation on finely ground powder that had been passed 

through a 200-mesh (75-micron) sieve. The measurements showed that the samples were single-

phase with a c-axis expansion consistent with a 9% Mn intercalation level.21 The EDX 

measurements were taken on three or more larger single crystal samples with clean surfaces 

prepared by exfoliation in air just before the sample was mounted. Several readings were taken 

over the surface of each sample that was investigated. These measurements showed that the 

samples had formula unit MnxTi1+yS2, with x = 0.09 ± 0.02 and y ≈0.1. The Mn concentration was 

homogenous, but the measured Ti concentration could vary by as much as 5% over different 

crystals and even different areas of a single crystal. As mentioned before, excess Ti is invariably 

incorporated at intercalation during the growth of TiS2 crystals. The extra Ti ions are located at 

intercalation sites with oxidation states of +4 or +3. 

 The Mn0.09Ti1.1S2 sample used in our investigations consisted of a large number of very 

small single crystals (< 0.1 mm in every dimension) compacted in a cylindrical form. The mass 

of the sample was 0.1861 g. ac susceptibility and dc magnetization measurements were 

performed with a Quantum Design Physical Property Measurement System with the ac/dc 

magnetization option. The magnetic field was applied along the axis of the cylindrical sample. 

To check for orientational effects due to possible texture, test measurements were performed 

with the field perpendicular to the cylindrical axis. These measurements gave qualitatively 

identical behavior compared to the parallel orientation. Quantitative differences in magnetization 

were less than 5%. In performing all the measurements, we allowed enough time for thermal 

equilibration of the sample and sample chamber. When the sample was in “zero field,” i.e., no 
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current in the superconducting magnet, the actual field experienced by the sample was the sum of 

the Earth’s field and the remanent field of the magnet (<10 Oe). The field was oscillated to zero 

from a large value in order to achieve the lowest possible remanent field. 

 

III. RESULTS AND DISCUSSION 

 

Figure 1 shows the PXRD patterns for Mn0.09Ti1.1S2 (black) and the host compound Ti1+yS2 

(red), which was prepared using the same techniques as the Mn-intercalated material and hence 

contained self-intercalated Ti with y ≈ 0.1. The (001), (002), and (003) peaks for Mn0.09Ti1.1S2 

are clearly shifted to the left (smaller angles) signifying a c-axis expansion induced by the 

intercalation of Mn. The relatively small change in the position of the (101) peak indicates that 

the in-plane lattice parameter a is almost completely unaffected by the intercalation of Mn. This 

is confirmed by analysis of the peak positions, which gives lattice parameter values of a = 

3.395 ±0.005 Å and c = 5.683 ±0.003 Å for Ti1+yS2, and a = 3.408 ±0.008 Å and c = 

5.762 ±0.014  Å for Mn0.09Ti1+yS2. These values are consistent with those found in the 

literature.21  

Figure 2 shows a graph of inverse susceptibility versus temperature for Mn0.09Ti1.1S2. The 

Curie-Weiss law χ = C / (T − ΘCW )is closely followed for temperatures 40 K ≤ T ≤ 275 K, 

with C = (3.47 ± 0.01) × 10−3 emu ⋅ K/(g ⋅ Oe) and ΘCW  = 8.3 ± 0.2 K. Using the experimental 

value x = 0.09, we find an effective Mn moment peff = 6.1 ± 0.6, in agreement with the free-ion 

Mn2+ value of 5.92. (The fractional uncertainty in peff is somewhat large due to the propagation 

of the error in x.)  The positive sign of ΘCW  indicates dominant ferromagnetic interactions. At 
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approximately 25 K, the 1 χ data deviate slightly above the Curie-Weiss line, indicating the 

onset of short-range ferromagnetic order.22 

The zero-field cooled magnetization (MZFC) and field-cooled magnetization (MFC) for 

Mn0.09Ti1.1S2 are plotted as functions of temperature in Fig. 3. The cooling (and measuring) field 

was 100 Oe. A bifurcation occurs at the irreversibility temperature Tirr = 5.15 ±0.05  K and the 

separation occurs very close to the peak in MZFC(T). This coincidence of Tirr and Tpeak is 

reminiscent of canonical spin glass (SG) behavior.23-25 Note also that MFC increases strongly at 

temperatures lower than the bifurcation point; this behavior is characteristic of cluster-glasses 

(CG) in systems with a high concentration of magnetic atoms.23, 24 Thus, MZFC(T) and MFC(T) of 

Mn0.09Ti1.1S2 seem to interpolate between CG and canonical SG behavior.  

To further investigate the nature of the magnetically glassy state, we measured Tirr  as a 

function of applied field H. The graph of Tirr  versus H is shown in Fig. 4. Tirr  is a decreasing 

function of H as expected for spin glass-like materials. The mean-field theory of vector spin 

glasses with random anisotropy26 predicts temperature-field transition lines described by the 

expression 

  Tg (H ) = Tg (0)[1− AH p ], (1) 

where Tg(0) is the transition temperature in zero applied field and A is a parameter that depends 

on the anisotropy, exchange, and the number of spin components. The anisotropy is assumed to 

be weak relative to the exchange. The value of the exponent p depends on the strength of the 

anisotropy relative to the magnetic field. In the strong-anisotropy regime, one finds p = 2
3
, which 

corresponds to the de Almeida-Thouless (AT) line for Ising spins. In the weak-anisotropy  

regime, p = 2, which defines the Gabay-Toulouse (GT) line. Using Tirr as a measure of the 
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transition temperature Tg,27, 28 we fitted our data using Eq. (1). The best-fit values were 

Tg (0) = 5.42 ± 0.04 K , p = 0.57 ± 0.02, and A = (3.7 ± 0.7) ×10−3  Oe−0.57 . The best fit line is 

shown in Fig. 4. At the highest magnetic field value used, the reduced field 

h = μH kB Tg (0) < 0.16; thus, h is small, as required. (We took μ = gμB S(S +1)μB
2 3.29 ) 

Clearly, the value of p for Mn0.09Ti1+yS2 is quite close to 2
3 , suggesting an AT-like transition. The 

inset of Fig. 4 shows the fit when p is set at 0.67; the fit is still quite good. We infer that the 

intercalated Mn spin system exhibits relatively strong anisotropy (compared to h). Interestingly, 

the value of the exponent p obtained for Mn0.25Ti1+yS2 was ~ 1
3 ,6 indicating less anisotropy than in 

Mn0.09Ti1+yS2.  

To gain more insight into the nature of the magnetic state below Tirr, we measured the ac 

susceptibility as a function of temperature in the vicinity of Tirr at different frequencies. The dc 

magnetic field was zero in all cases. Figure 5 shows the real part of the ac susceptibility ( ′χ ) 

versus temperature at several different frequencies ( 30 Hz ≤ f ≤ 10 kHz ). The frequency 

dispersion for T < Tmax(f), where Tmax is the temperature of the maximum in ′χ , is characteristic 

of relaxation in glassy (electric dipolar or magnetic) systems. Note that Tmax > Tirr, a feature that 

is also characteristic of glassy systems. If we take Tmax as the (frequency-dependent) spin-glass 

freezing temperature Tg , the shift in Tg  with frequency as measured by the quantity 

ΔTg (Tg Δ log f ) is found to be 0.017 ± 0.004 .  This value is at the upper end of the range for 

canonical spin glasses such as Pd1-xMnx and Ni1-xMnx
30 and consistent with those of cluster 

glasses such as CeNi1-xCux.23 The host materials for the Pd1-xMnx and Ni1-xMnx spin glasses are 

nearly ferromagnetic (Pd) or ferromagnetic (Ni) and therefore the Mn moments are likely to form 
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clusters even at very low concentrations.31 Hence, the frequency shift of Tg is consistent with the 

presence of clustered Mn moments close to and below the spin freezing transition. 

 Figure 6 shows plots for the imaginary part of the ac susceptibility ( ′′χ ) versus 

temperature at various frequencies for Mn0.09Ti1+yS2. The lowest-frequency data (30 Hz) are not 

shown because of the weakness of the out-of-phase signal at low frequencies. One observes that, 

like ′χ , the frequency and temperature dependencies of ′′χ are similar to the behavior seen in 

glassy systems. ′′χ ( f , T )is a sensitive probe of the nature of the low-temperature state because 

of its close relationship to the order parameter.32, 33 In three-dimensional canonical spin glasses, 

′′χ ( f , T ) obeys dynamic scaling based upon relaxation due to critical slowing down in the 

vicinity of the transition:33, 34  

 
 ′′χ T = ε β F( f ε − zν ). (2) 

 

In Eq. (2), ε = T − TC( ) TC , TC is the spin glass transition temperature, F is a scaling function, 

β is the critical exponent for the order parameter, and zν  is the product of the dynamic exponent 

and correlation-length critical exponent, respectively. In Fig. 7, we show our ′′χ ( f , T ) data 

plotted according to Eq. (2) with β , zν , and TC as fitting parameters. Only data at temperatures 

above that of the peak in ′′χ ( f , T ) were included in the scaling plot.33. The best scaling was 

obtained for the following values: Tc = 5.3 ± 0.3 K , β = 0.8 ± 0.6 K , and zν = 12 ± 2. The best 

collapse of the data was determined by fitting plots for a wide range of values of the parameters 

to a fourth-order polynomial and calculating the chi-squared statistic. The smallest value of χ 2  

was obtained for the parameters given above. The uncertainties were obtained by considering 

parameter values for which the plots gave χ 2  values up to 1.5 times the minimum. There is good 
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overlap of the data only in a very narrow region around the abscissa value of 14.  Further, the 

scaling was quite insensitive to the value of β . In addition, though zν = 12 produced the 

smallest value of χ 2 , plots for larger values of zν (i.e., less typical of SG systems) were 

frequently within the accepted χ 2  range. We conclude that scaling according to Eq. (2) is not 

satisfactory and hence the critical slowing down that characterizes continuous phase transitions 

in three dimensions provides an inadequate description of the glass-like transition in 

Mn0.09Ti1.1S2. We further note that the qualitative behavior of ′′χ ( f , T ) for temperatures greater 

than the temperature at the peak is different from that of many spin glass and spin glass-like 

systems. For Mn0.09Ti1.1S2, the decrease in ′′χ  as the temperature increases becomes steeper with 

increasing frequency, which is not the case in spin glass systems that exhibit power-law scaling 

due to critical slowing down.34, 35 The qualitative behavior of ′′χ ( f , T ) for Mn0.09Ti1.1S2 is more 

similar to that exhibited by the imaginary part of the dielectric permittivity in some ferroelectric 

relaxors,19 which is likely an indication of deep underlying similarities in the nature of the 

interactions and the interacting entities in both systems.  

The slow dynamics at a glass or glass-like transition may also be characterized by the 

Vogel-Fulcher (VF) relation36, 37 

 

 τ = τ 0 exp E / k(T − T0 )[ ], (3) 

  

where τ  is the relaxation time, τ 0  is a microscopic relaxation time, E is the activation energy 

and T0 is the ideal glass temperature. In magnetic systems, the VF relation is thought to describe 

the relaxation of magnetic clusters that interact weakly.36 For ferroelectric relaxors, the VF 

relation was derived semi-phenomenologically by assuming the polar nanoregions interact via 
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polarization of the surrounding medium to form clusters and that the mean cluster volume is a 

power-law function of the volume fraction of the polar nanoregions.38 To ascertain the 

applicability of the VF law to Mn0.09Ti1.1S2, we took τ = 1 f  at T = Tmax,39, 40 where Tmax is the 

temperature at which the maximum in ′χ ( f , T ) occurs, and fit the τ  versus Tmax data using Eq. 

(3). The result is shown in Fig. 8. The best-fit values of the parameters are τ 0 = 1.2 × 10−11 s, E = 

1.2 meV (E/k = 14 K), and T0 = 5.3 K. These values are physically reasonable and T0 is very 

close to the value of Tg(H = 0) = 5.42 K obtained from the dc magnetization data (see Fig. 4). 

Further, τ 0 is somewhat larger than typical single spin-flip times,41 consistent with the existence 

of small magnetic clusters. Evidently, the VF law provides an excellent description of the data, 

which suggests that the magnetic units driving the glass-like transition in Mn0.09Ti1.1S2 are 

clusters that interact relatively weakly. We remark that in many spin-glass systems, it is difficult 

to distinguish between VF behavior and critical slowing down, especially over relatively small 

frequency ranges.42 However, even when both descriptions are seemingly equally effective in 

describing the relaxation behavior for the same system, the microscopic time τ 0  for the VF 

description in diluted systems (e.g., τ 0  > 10–8 s for Cu0.954Mn0.046) is often much larger than 

experimentally measured times.42 Our value of τ 0  for Mn0.09Ti1.1S2 is several orders of 

magnitude smaller than those obtained for diluted spin-glass systems such as Cu0.954Mn0.046. 

Further, as seen above, a power-law dynamic scaling description is inadequate for Mn0.09Ti1.1S2. 

Thus, glass transitions in some systems (such as Mn0.09Ti1.1S2) may not undergo a continuous 

phase transition and the VF law may provide the best description of the relaxation dynamics. 

The frequency dispersion exhibited by ′χ f , T( )  and ′′χ ( f , T ) for Mn0.09Ti1.1S2 indicates a 

distribution of relaxation times associated with the dynamical characteristics of the magnetic 

system. To describe the relaxation of polar clusters in ferroelectric relaxors, Lu and Calvarin19 
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assume an exponential distribution of sizes (volumes) and that the activation energy of each 

cluster is given by E = KV, where V is the volume of a cluster and K is the anisotropy constant. 

The relaxation of each cluster is governed by the Debye formula, with the relaxation time being 

thermally activated. Integrating over the distribution (with magnetic quantities substituted 

instead of electric ones) and assuming that ωτ c �1, where τ c is the minimum relaxation time 

and ω = 2π f , one finds that  

 ′′χ = − tan nπ
2( )⎡⎣ ⎤⎦ ′χ − Δχ[ ], (4) 

 

where n = kT E0 and Δχ is the difference between the isothermal and adiabatic susceptibilities.  

Note that E0 = KV0, with V0  being the width of the exponential size distribution. According to 

Eq. (4), if one plots a graph of ′′χ  versus ′χ  (Cole-Cole plot), one should obtain a straight line 

with slope − tan nπ
2( )⎡⎣ ⎤⎦ , in contrast to archetypal Debye relaxation for which a semicircular Cole-

Cole plot is obtained. In spin glasses, which possess a very wide distribution of relaxation times, 

the semicircle is flattened.30 Figure 9 shows ′′χ  versus ′χ graphs at two different temperatures, 

one for T > Tg(H = 0) and the other for T < Tg(H = 0). We note that excellent straight-line fits are 

obtained for the frequency range used, which though limited, is large enough to establish the 

existence of a significant linear regime. The good agreement between the experimental data and 

the model, in addition to the differences in behavior between Mn0.09Ti1.1S2 and more-typical spin 

glass materials, strongly suggests that the cluster-glass transition in Mn0.09Ti1.1S2 is unusual for 

disordered magnetic systems. An exponential distribution of magnetic clusters seems to be the 

driving force for this departure from more-standard spin glass characteristics. 
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We believe that the exponential distribution of magnetic clusters is a result of the self-

intercalation of highly charged Ti ions (Ti3+/Ti4+) that reside in the van der Waals gaps along 

with the Mn2+ ions. To explore this idea further, we performed Monte Carlo simulations of the 

intercalated dichalcogenide system with variable concentrations of Ti and Mn intercalants. The 

Ti and Mn ions occupied sites on two-dimensional triangular lattices representative of 

intercalation sites. The lattice parameters used were derived from PXRD measurements to be a = 

3.41 Å and the c-axis spacing increased with Mn concentration from c = 5.70 Å (x = 0) to c = 

5.87 Å (x = 0.25). Each layer contained up to 900 × 900 sites; however, the main results were 

obtained from 200 × 200 and 72 × 72 systems. A simulated system consisted of up to five layers. 

To obtain various averages for the equilibrated systems as well as snapshots of likely 

configurations, we employed a classical Monte Carlo Metropolis algorithm based on a 

Hamiltonian consisting of a two-body screened-Coulomb potential 

 uC =
kqiqj

rij

e−Γ rij ,  (5) 

where rij is the separation between two intercalants having charges qi and qj., and Γ is the 

screening parameter. The value of Γ is taken to be 0.4 Å-1 based upon transport measurements.43  

Periodic boundary conditions were implemented in-plane and free boundary conditions 

were used along the c axis. Simulations were conducted for different lattice sizes to ensure that 

our results were independent of lattice size, and we found that the morphological features and 

behavior of 900 × 900 systems differed very little from those for the 200 × 200 systems, and the 

smallest reliable systems were about 72 × 72. The initial state of the system was a random 

occupation of lattice sites by Ti and Mn ions at their respective atomic concentrations. The 

temperature was then set to T = 1000 K (i.e., above the growth temperature) and the system 
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allowed to equilibrate after 100,000 Monte Carlo steps. The system was then annealed through T 

= 500 K to its low-temperature equilibrium state (T = 20 K).  

Figure 10 shows the equilibrium atomic positions of Ti and Mn intercalants in the middle 

layer of a three-layer system with a Mn concentration of 9% and a Ti concentration of 10%, for 

computational cell sizes of 200 × 200 and 72 × 72 (inset). The Ti ions tend to form open 

structures to minimize their Coulomb energy and they are much more linear in multilayer 

systems, which suggests that out-of-plane interactions are influential in creating lower-

dimensional symmetries. The Mn ions are forced to cluster in the spaces between these Ti 

chains; the effective dimensionality of the space occupied by the Mn is therefore reduced, which 

leads to the exponential cluster-size distribution as discussed below. We note that evidence for 

one-dimensional structures has been seen in MnxTi1+yS2 in atomic-force microscopy and 

scanning tunneling microscopy measurements.44  Also, recall the increased anisotropy in 

Mn0.09Ti1+yS2 compared to that in Mn0.25Ti1+yS2 as indicated by the MZFC(T) and MFC(T) 

measurements. This increased anisotropy is consistent with the shape anisotropy (and possibly 

enhanced magnetocrystalline anisotropy) associated with quasi-one-dimensional Mn clusters.45 

One-dimensional cluster growth has also been observed in simulations of colloidal systems in 

which particles interact via a short-range attractive force and a screened electrostatic repulsion.46 

In Fig. 11, we present graphs of number of clusters of a given size versus cluster size for a Mn 

concentration of 9% and a Ti concentration of 10% for system sizes of 72 × 72 and 200 × 200. 

Here, a cluster is defined to be a group of atoms in which each nearest-neighbor pair is separated 

by a distance slightly greater than 2a, thereby encompassing the 2a × 2a and 3a × 3a  lattice 

spacings. The fit line for each system size is a simple exponential, which describes the cluster 

size distribution very well. Using a Gaussian function did not give as good a fit. We note that the 
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exponential distribution is obtained only for a relatively narrow range of concentrations of Mn 

and Ti: 7% < xMn <11%  and 5% < yTi < 12 % , with the widest Ti concentration range near 9% 

Mn coverage.  In both Figs. 10 and 11, there is no fundamental difference in either the 

morphological features of the simulated systems or in their behavior, suggesting that finite size-

effects are negligible. Systems smaller than 72 × 72 are not able to support the high aspect ratio 

clusters and therefore fail to capture this crucial feature of the system. 

Assuming the magnetic clusters in Mn0.09Ti1.1S2 are quasi-one-dimensional, a useful model 

for the cluster-size distribution is the random fragmentation of an infinite line in one 

dimension.47 The fragments (clusters) follow the Poisson distribution if the occurrence of a 

fragment is random. The probability of finding a fragment of length between l and l + dl is found 

to be 

 dP = N0e
− N0ldl,  (6) 

 
where 1/N0 is average fragment length. Eq. (6) has precisely the exponential form assumed in the 

derivation of Eq. (4).19 Clearly, however, the actual Mn clusters in Mn0.09Ti1.1S2 will not be one-

dimensional; they are presumably quasi-one-dimensional or chain-like. Thus, the simple 

exponential form is at best an approximation to the real cluster-size distribution and other 

distribution functions cannot be excluded. We plan to conduct magnetic small-angle neutron 

scattering experiments that will enable us to determine the spatial structure of the Mn clusters in 

MnxTi1+yS2 materials. 

 Finally, we comment on the occurrence of an exponential cluster distribution in 

ferroelectric relaxors such as Pb(Mg1/3Nb2/3)O3 (PMN). In PMN, x-ray diffraction and neutron 

scattering measurement on single crystals indicate the formation of nanoscale polar regions at 

low temperatures.48 The polarization arises from displacements of the atoms relative to each 
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other within the perovskite structure. Not all atoms undergo such shifts; in fact, it was estimated 

that only 15–20% of the sample is occupied by this polar phase.48 The polar nanoclusters are 

correlated over a distance of ~10 nm. It is also possible that the polar regions are chain-like or 

one-dimensionally correlated. Chain-like polar regions have been found in PbZr1-xTixO3
49 and 

one-dimensionally correlated atomic shifts are present in the structurally frustrated relaxor 

ferroelectric CaCu3Ti4O12.50 Thus, though the shapes of the polar clusters in PMN have not been 

definitively established, we conjecture that the exponential distribution of polar clusters deduced 

from the frequency-dependent dielectric constant is also due to the quasi-one-dimensional 

structure of the clusters of polar nanoregions. 

 

IV. CONCLUSIONS 

 

We have investigated the nature of the low-temperature spin-glass-like phase in the intercalated 

dichalcogenide Mn0.09Ti1.1S2 by means of dc magnetization and ac susceptibility. Weak deviation 

of the magnetic susceptibility from Curie-Weiss behavior as the temperature is lowered indicates 

the formation of small ferromagnetic clusters at low temperatures. The zero-field cooled 

magnetization and field-cooled magnetization when plotted as functions of temperature showed a 

bifurcation at a temperature Tirr near the peak of the ZFC plot. The FC magnetization continued 

to increase at temperatures below Tirr. A plot of Tirr versus applied magnetic field exhibited de 

Almeida-Thouless-like behavior, consistent with relatively strong anisotropy.  ac susceptibility 

measurements in the vicinity of Tirr(H = 0) exhibited frequency-dependent peaks in both ′χ  and 

′′χ , suggesting spin-glass or cluster-glass behavior. Attempts to apply power-law scaling to the 

′′χ ( f ,  T ) data resulted in relatively poor scaling, indicating that the transition was not 
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characterized by critical slowing down. On the other hand, an excellent fit to the data was 

obtained using the Vogel-Fulcher relation, with the physically reasonable parameter values 

τ 0 = 1.2 × 10−11 s, E = 1.2 meV (E/k = 14 K), and T0 = 5.3 K. The applicability of the Vogel-

Fulcher relation represents additional evidence that the magnetic system at low temperatures 

consists of clusters, which interact to bring about the glass-like transition. The frequency 

dependence of the ac susceptibility in the cluster-glass regime of Mn0.09Ti1.1S2 results from a 

distribution of relaxation times. This relaxation-time behavior is well described by an 

exponential distribution of cluster sizes, which was also found by Lu and Calvarin to provide an 

excellent description of dielectric relaxation in some ferroelectric relaxors. Noting that there is a 

significant degree of self-intercalation of Ti in the preparation of pure and intercalated TiS2, we 

constructed a Monte Carlo model of the MnxTi1+yS2 system with varying concentrations of Mn2+ 

and Ti3+or Ti4+ intercalants. It was found that an exponential distribution of cluster sizes occurred 

for a narrow range of concentrations of both species of intercalant ions. In this concentration 

regime, the highly charged Ti ions tended to form linear structures, which caused the magnetic 

Mn ions to cluster in chain-like forms. We conjecture that the quasi-one-dimensional Mn clusters 

lead to the exponential distribution of cluster sizes deduced from the experimental data. Such 

one-dimensional structures have been experimentally observed in dielectric systems with 

ferroelectric correlations, which may explain the similarity of the relaxation-time characteristics 

in ferroelectric relaxor systems and Mn0.09Ti1.1S2. 
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Figure Captions 

FIG. 1. (Color Online) Powder x-ray diffraction patterns for Mn0.09Ti1.1S2 (black) and the host 

compound Ti1+yS2 (red). (001), (002), (003), (101), and (102) peaks are indicated for the purpose 

of comparison. The peaks for Mn0.09Ti1.1S2 associated most with the c axis show the strongest 

shifts relative to undoped Ti1+yS2. Analysis of the peak positions shows that while the c axis 

spacing is significantly increased by Mn doping, the in-plane lattice constants are almost 

completely unaffected. The strong intensity of c axis peaks shows that the samples used for the 

XRD analysis have some texture; however, this has no effect on the determination of the lattice 

constants. 

 

FIG. 2. (Color Online) Inverse susceptibility versus temperature for Mn0.09Ti1.1S2. The Curie-

Weiss law is obeyed for temperatures in the range 40 K ≤ T ≤ 275 K as illustrated by the solid 

line. At lower temperatures, there is a slight deviation from Curie-Weiss behavior, heralding the 

formation of small ferromagnetic clusters. 

 

FIG. 3. (Color Online) Variation of the zero-field-cooled magnetization and field-cooled 

magnetization with temperature for Mn0.09Ti1.1S2. The applied magnetic field is 100 Oe. The two 

data sets separate at the irreversibility temperature Tirr = 5.15 ±0.05  K. 

 

FIG. 4. (Color Online) Bifurcation (irreversibility) temperature versus applied magnetic field for 

Mn0.09Ti1.1S2. The solid line is a fit to Eq. (1) in text and the best-fit parameter values are shown. 

The exponent p, whose value gives an indication of the relative strength of the anisotropy, has 



 21

the best-fit value 0.57 ± 0.02 . The inset shows the fit when the value of p is fixed at 0.67, which 

is the value expected in the “strong anisotropy” (AT-like) regime. 

 

FIG. 5. (Color Online) Real part of the susceptibility ( ′χ ) versus temperature for Mn0.09Ti1.1S2 

for various frequencies. There is a frequency-dependent peak in ′χ at temperatures somewhat 

higher than Tg(H = 0), which is similar to the behavior exhibited by spin glasses and cluster 

glasses. 

 

FIG. 6. (Color Online) Imaginary part of the susceptibility ( ′′χ ) versus temperature for 

Mn0.09Ti1.1S2 for various frequencies. Note that the shape of the ′′χ ( f ,  T ) plots for temperatures 

greater than the temperature at the peak is somewhat different from the corresponding behavior 

for many spin glass and spin glass-like systems, particularly those that exhibit power-law scaling 

due to critical slowing down at near the transition. 

 

FIG. 7. (Color Online) Power-law dynamics scaling plot for Mn0.09Ti1.1S2 prepared using 

′′χ ( f ,  T )  data plotted according to the scaling form given in Eq. (2). The frequencies used and 

the best-fit values of the critical temperature and scaling exponents are shown. The scatter in the 

plot indicates poor scaling, which in turn suggests that critical slowing down is not appropriate in 

describing the critical dynamical behavior. 

 

FIG. 8. (Color Online) Relaxation time (taken to be τ = 1 / f ) versus temperature Tmax at the 

maximum of ′χ . The solid line is a fit according to the Vogel-Fulcher law. The best-fit 
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parameters are  τ 0 = 1.2 × 10−11 s, E/k = 14 K, and T0 = 5.3 K. Note that T0 is very close to the 

value of Tg(H = 0) = 5.42 K, attesting to the appropriateness of the Vogel-Fulcher description. 

 

FIG. 9. (Color Online) ′′χ  versus ′χ (Cole-Cole plot) for Mn0.09Ti1.1S2. Each data point 

corresponds to a specific frequency 100 Hz ≤ f ≤ 10 kHz . The upper graph represents data for T 

= 5.8 K [>Tg(H = 0)]; the lower one corresponds to T = 5.0 K [<Tg(H = 0)]. The linearity of the 

graphs is consistent with an exponential cluster-size distribution (see text). 

 

FIG. 10. (Color Online) Results of equilibrated Monte Carlo simulations of intercalated TiS2 for 

a 200 × 200 system showing positions of intercalated Ti ions (gold circles) and Mn ions (purple 

circles) in one layer for a Mn concentration of 9% and a Ti concentration of 10%. The layer 

shown is the middle layer in a three-layer system. The inset shows the results for a 72 × 72 

system. The gold circles represent Ti ions and the blue circles denote Mn ions. Examples of 

linear structures formed by the Mn ions are surrounded by rectangles. 

 

FIG. 11. (Color Online) Number of clusters of a given size versus cluster size for a Mn 

concentration of 9% and a Ti concentration of 10% according to a Monte Carlo simulation of 

intercalated TiS2. Two layer sizes are shown: 72 × 72 and 200 × 200 . A simple exponential 

function provides an excellent fit to the cluster-size distribution data for both system sizes. 
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