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We present a theory for the time-resolved optical spectroscopy of high-temperature superconductors at high
excitation densities with strongly anisotropic electron-phonon coupling. A signature of the strong coupling be-
tween the out-of-plane, out-of-phase O buckling mode (B1g) and electronic states near the antinode is observed
as a higher-energy peak in the time-resolved optical conductivity and Raman spectra, while no evidence of the
strong coupling between the in-plane Cu-O breathing mode and nodal electronic states is observed. More in-
terestingly, it is observed that under appropriate conditions of pump fluence, this signature exhibits a re-entrant
behavior with time delay, following the fate of the superconducting condensate.

PACS numbers: 74.72.-h, 71.38.-k, 74.25.Gz, 74.25.nd

I. INTRODUCTION

Since its discovery in 1986, high-temperature superconduc-
tivity in cuprates has been a central topic of study in con-
densed matter physics. It is now widely believed that Cooper
pair formation is essential for the superconducting conden-
sate in these systems. However, the nature of the media-
tor (or glue) responsible for Cooper pairing remains hotly
debated. Although the interaction of electrons with lattice
vibrations is not likely to solely account for the essential
properties of high-Tc superconductors (HTSCs), many probes
including angle-resolved photoemission,1–5 inelastic neutron
scattering,6, tunneling7,8 and Raman9 spectroscopies have re-
vealed that electron-phonon interactions have significantef-
fects on various properties. Complementary to the time-
integrated techniques, different ultrafast pump-probe tech-
niques10–15 have been used to disentangle microscopic inter-
actions in HTSCs. These techniques aim to study the recom-
bination of photoexcited quasiparticles and the resultingre-
covery of the superconducting condensate. In HTSCs, time-
resolved (TR) angle-resolved photoemission spectroscopy16

and TR optical reflectivity17 have indicated that the excited
quasiparticles preferentially couple to a small number of
phonon subsets before decaying through anharmonic coupling
to all other lattice vibrations, in support of the notion that se-
lective optical phonon modes give rise to anisotropy of the
electron-phonon (el-ph) coupling.3 In addition, this anisotropy
has also been observed in TR electron diffraction,18 while res-
onant femtosecond study of both electronic and phononic de-
grees of freedom suggests strong el-ph coupling.19

Despite considerable progress in pump-probe experimen-
tal studies, work on microscopic modeling of the influence of
el-ph interactions on observables, such as the time-dependent
optical conductivity or Raman spectra, is very limited. Un-
derstanding the non-equilibrium dynamics of quantum many-
body systems has, in fact, posed a theoretical challenge. His-
torically, theoretical attempts to model the time evolution of

properties have either used quasi-equilibrium models such
asT ∗ andµ∗ models20 to describe non-equilibrium excita-
tions created by a pump pulse21 or rate equation approaches
based on the phenomenological Rothwarf-Taylor model22 to
describe the recovery dynamics of the superconducting state.
Recently, the time evolution of the optical conductivity has
been studied within a microscopic model that treats the ex-
citation and relaxation dynamics on the same footing.23 All
these theories are suitable for pump-probe experiments with
low excitation fluence, where the superconducting condensate
is merely perturbed but not destroyed. A picture of the dynam-
ics of quasiparticles and the superconducting condensate in
the photo-induced phase transition regime,24–26 which is im-
pulsively driven by a high excitation fluence, has as yet been
beyond reach.

Here we formulate a theory for the TR optical conductiv-
ity and TR Raman scattering in HTSCs in the regime of in-
termediate to high intensity of pump fluence. The theory is
aimed to address directly the situation where the supercon-
ducting condensate can be destroyed by pump pulse. It is
based on an effective temperature model for different sub-
systems contributing to the response: electrons, hot phonons
(i.e., out-of-plane out-of-phase O bucklingB1g phonons and
half-breathing in-plane Cu-O bond stretching phonons) that
are strongly coupled to electrons, and the cold lattice. The
model phenomenologically includes the effect of the pump
pulse but addresses in greater depth the electron-hot phonon
coupling based on a microscopic model Hamiltonian ford-
wave superconductivity in HTSCs. This microscopic treat-
ment goes beyond previous effective models for the normal
state,16,27 allowing us to describe the quasiparticle dynamics
in both the normal and superconducting states with the same
approach. Within this unified model, the time evolution of the
whole set of experimental measurables can be calculated in a
streamlined way. Our first test of this approach considered the
B1g phonons as the only hot phonon mode in the calculation
of the TR spectral function for a very high pump fluence.28 In
the present work, we include the half-breathing phonons as a
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second hot phonon mode in the calculation of the TR optical
spectroscopy. Importantly, the influence of excitation density
on quasiparticle dynamics in HTSCs is also investigated. Our
calculations show that, in the superconducting state, in addi-
tion to the peak in the optical conductivity and Raman spectra
due to the Drude response, there is another peak at higher fre-
quencies. This high frequency peak disappears when the sys-
tem evolves into the normal state, but recurs if the supercon-
ducting condensate is recovered, suggesting the significance
of the superconducting gap in the TR optical properties.

The outline of the paper is as follows: In Sec. II, we
lay down the effective-temperature model for thed-wave su-
perconductor with electronic coupling to bothB1g and half-
breathing stretching phonon modes. The time-dependent ef-
fective temperatures for the respective subsystems are eval-
uated depending on the strength of pump fluence. With the
obtained time-dependence of effective temperatures, the time-
resolved optical conductivity and Raman spectra and their
pump-fluence dependence are presented in Secs. III and IV.
Finally, a conduction is given in Sec. V.

II. EFFECTIVE TEMPERATURE MODEL

Let us consider a two-dimensional superconductor exposed
to a laser field. The model Hamiltonian can be written as23,28

H =
∑

kσ

ξkc
†
kσckσ +

∑

k

(∆kc
†
k↑c

†
−k↓ + h.c.) +

∑

qν

~Ωνq

×
(

b†νqbνq +
1

2

)

+
1√
NL

∑

kqνσ

gν(k,q)c
†
k+q,σckσAνq

+ Hfield(τ), (1)

wherec†kσ (b†νq) andckσ (bνq) are the creation and annihila-
tion operators for an electron with momentumk and spinσ
(phonon with momentumq and vibrational modeν; ν = 1, 2
represent theB1g and half-breathing modes, respectively),
Aνq = b†ν,−q + bνq, ξk is the normal-state energy dispersion,
µ the chemical potential,∆k = (∆0/2)(coskx − cos ky) is
thedx2−y2-wave gap function,NL is the total number of lat-
tice sites, andgν the coupling matrix. Following the procedure
sketched in Ref. 28, we arrive at a four-temperature model:

∂Te

∂τ
=

1

Ce

∑

ν

Kν(Te, Tph,ν) +
Pe

Ce
, (2a)

∂Tph,ν

∂τ
= −Kν(Te, Tph,ν)

Cph,ν
− Tph,ν − Tl

τβ,ν
, (2b)

∂Tl

∂τ
=

∑

ν

(

Cph,ν

Cl

)

Tph,ν − Tl

τβ,ν
. (2c)

HereKν is the el-ph coupling kernel, which can be calculated
from the model Hamiltonian (1) with the equation-of-motion
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FIG. 1: (Color online) Time evolution of effective temperatures of
electronsTe (red-solid line),B1g-phonon modeTph,1 (blue-dotted
line), half-breathing phonon modeTph,2 (black-dashed line), and
cold lattice Tl (magenta-dashed line) for the powers (a)P0 =

0.436 µW and (b)P0 = 0.022 µW. The inset in panel (a) shows
a zoomed-in view ofTe rising up aboveTc, while that in panel (b)
shows an enlarged view ofTe cooling down belowTc.

approach. It is given by

Kν =
4π

NL

∑

kq

g2ν(ukuk−q − vkvk−q)
2δ(Ek−q − Ek − Ωνq)

× Ωνq

[

e(βph−βe)Ωνq − 1

]

fk(1 − fk−q)NΩνq
, (3)

where the Bogoliubov amplitudes areuk = [(1 +
ξk/Ek)/2]

1/2 andvk = sgn(∆k)[(1 − ξk/Ek)/2]
1/2 with

Ek =
√

ξ2k +∆2
k being the quasiparticle energy, and the

Fermi-Dirac and Bose-Einstein distribution functions are
given byfk = f(Ek) = 1/(eβeEk+1), andNΩ0

= N(Ω0) =
1/(eβphΩ0 − 1) with βe(ph,ν) = 1/kBTe(ph,ν). In Eq. (2), the
specific heat for electrons per unit cell is found to be

Ce =
βekB
NL

∑

k

[

− ∂f(Ek)

∂Ek

](

2E2
k + βe∆k

∂∆k

∂βe

)

, (4)

while that for each hot phonon mode is given by

Cph,ν =
kB
4
(~Ωνβph,ν)

2

[

coth2
(

~Ωνβph,ν

2

)

− 1

]

(5)

in the Einstein mode approximationΩνq = Ων . Finally, Pe

is the power intensity (i.e., power per unit cell) for pump-
ing electrons andτβν the anharmonic decay time of each hot
phonon mode.

Throughout the paper, we use a five-parameter tight-
binding model29 to describe the normal-state energy
dispersion, which is typical to the optimally doped
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Bi2Sr2CaCu2O8+x (Bi-2212):

ξk = −2t(cos kx + cos ky)− 4t′ cos kx cos ky

−2t′′(cos 2kx + cos 2ky)

−4t′′′(cos 2kx cos ky + cos kx cos 2ky)

−4t′′′′ cos 2kx cos 2ky − µ , (6)

where the hopping integralst = 1, t′ = −0.2749, t′′ =
0.0872, t′′′ = 0.0938, t′′′′ = −0.0857, andµ = −0.8772.
The absolute energy oft is 150 meV. A feature of this disper-
sion is a flat band with a saddle point at theM points of the
Brillouin zone. The temperature-dependence of thed-wave
gap magnitude is given by30

∆0(Te) = ∆00tanh{(π/z)
√

ar(Tc/Te − 1)} , (7)

wherez = ∆00/(kBTc). In our calculations, we set∆00 =
30 meV, the critical temperatureTc = 104 K (from the set-
ting of Tc = 0.06t for simplicity), the specific heat jump at
Tc is r = ∆Ce/Ce ∼ 1.43, anda = 2/3. We take the
anisotropic el-ph coupling in the form given in Refs. 3,31 with
Ω1 = 45 meV andg(0)1 = 90 meV andΩ2 = 70 meV

andg(0)2 = 120 meV, τβ,1 = τβ,2 = 880 fs, andCph,1 =
Cph,2 = 0.2Cl. The pump is represented by a Gaussian pulse
P = P0e

−τ2/(2σ2), with a FWHM (full width at half max-
imum) of 2.35σ. Hereafter, we setσ = 4.4 fs, giving a
FWHM of about 10.34 fs. This value is smaller than the com-
monly used experimental values of about 30-50 fs but is in-
deed close to that value of 12 fs used in the recent TR exper-
iment on YBa2Cu3O7−δ.19 We believe that this variation will
not affect the qualitative physics, as will be presented below.
We take the number ofk points to be40× 40 in the Brillouin
zone for the temperature evolution and use256× 256 for the
TR optical conductivity and Raman scattering spectral func-
tion. All calculations are done with the system initially inthe
superconducting state, forT ≪ Tc.

Figure 1 shows the time evolution of the effective tem-
perature for each subsystem for (a) a large pump power in-
tensityP0 = 0.436 µW and (b) an intermediate value of
P0 = 0.022 µW. These values of pump power corresponds
to 120 µJ/cm2 and6 µJ/cm2 of pump fluence in Bi-2212 by
assuming a 60 nm of optical absorption depth. Starting from
the initial temperatureTe = Tph,ν = Tl = 17 K, the electron
temperatureTe increases rapidly after photoexcitation, and the
superconductor is driven into the normal state while exhibiting
a kink structure atTc (inset of Fig. 1(a)) for both power inten-
sities. In addition,Te shows a very narrow peak for the large
P0 (see Fig. 1(a)), with a broader peak for the intermediate
P0 (see Fig. 1(b)), due to the fact that the highest temperature
achieved by electrons is very sensitive to the pump fluence.
In both cases, the hot phonon subsystems are first heated up
through their coupling to the photoexcited electrons, and af-
ter reaching their maximum temperature, they cool down by
dissipating energy into the cold lattice through anharmonic
coupling. A noticeable difference between the large and in-
termediate pump fluences is that in the latter case, the super-
conducting state recovers more rapidly (i.e.,Te ≤ Tc) in a
very short time (∼ 650 fs), with the kink recurring during the

cooling stage (inset of Fig. 1(b)). Further energy relaxation
is then slowed down significantly due to the opening of the
superconducting gap.

III. TIME-RESOLVED OPTICAL CONDUCTIVITY

Within the Kubo formalism, the real part of the TR optical
conductivity is given by:32

σ1(ω) = −e2ImΠ(ω)

ω
, (8)

where

ImΠ(ω) = −2π2

NL

∑

k

(

∂ξk
∂kx

)2

IΠ(k, ω) , (9)

and

IΠ(k, ω) = 2i

∫

dτ ′TrIm[F̂ ∗(k, τ ′)Â(k, τ ′)]eiωτ ′

.(10)

HereÂ(k, τ ′) and F̂ (k, τ ′) are the Fourier transform of the
TR spectral functionŝA(k, ǫ) andF̂ (k, ǫ) ≡ Â(k, ǫ)f(ǫ). In
the derivation of Eq. (9), we have used the Hilbert transform

ĝ(k, iωn) =

∫ ∞

−∞

dǫ
Â(k, ǫ)

iωn − ǫ
, (11)

with the single-particle spectral function

Â(k, ǫ) = − 1

π
Im[ĝ(k, iωn → ǫ+ iδ)] , (12)

where the Green’s function̂g andÂ are2 × 2 matrices in the
Nambu space. Since this spectral function as calculated with
the method of Ref. 28 is a function of the effective electronic
temperature, which is time dependent (see the discussion in
Sec. II), it is time resolved. Therefore, the optical conductivity
and the Raman spectra as discussed in the next section are also
time dependent.

Figure 2 shows the time evolution of the real part of the op-
tical conductivityσ1(ω) at several selected time delays. From
Fig. 2, one can see that at all time delays, the optical con-
ductivity shows the well-known Drude peak atω = 0, due
to the nodal quasiparticles for thed-wave gap symmetry. In
addition, forτ = −440 fs and−11 fs, at which the mate-
rial is superconducting and∆0 ≈ 30 meV, we observe that
σ1(ω) exhibits a broad peak at aboutω = 2∆0 + Ωph,1.
(The specific location may be affected by several factors, al-
though2∆0 + Ωph,1 plays a substantial role.) Our obser-
vation is consistent with earlier study of optical conductiv-
ity in the thermal equilibrium state of HTSCs.33 In contrast,
no peak atω = Ωph,2 is observed (a signature of the cou-
pling between electrons and the half-breathing mode along
the nodal directions). This is due to the fact that the coupling
between electrons and theB1g phonon mode is the strongest
at theM points, at which the van Hove singularity is also
located. This is further verified by the observation that no
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FIG. 2: (Color online) Real part of the time-resolved optical conduc-
tivity at several different time delays for (a)P0 = 0.436 µW and (b)
0.022 µW. The number in parentheses isTe.
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FIG. 3: (Color online) Time-resolved Raman scattering spectrum
at several different time delays for (a)P0 = 0.436 µW and (b)
0.022 µW. The number in parentheses isTe.

such peak appears when the el-ph coupling is turned off in
the initial superconducting stateTe = 17 K (red solid line in
Fig. 2). After photoexcitation, the superconducting gap, with
its time-dependence encoded in the effective electron temper-
ature∆0(Te), is decreased and the high-frequency peak shifts
toward lower frequencies, merging into the zero-frequency
Drude peak in the normal state. For largeP0, the Drude
peak remains for the whole time-delay range being simulated.
However, for intermediateP0, once the superconducting con-
densate recovers, the (2∆0(Te) + Ωph,1)-peak recurs— a re-
entrant behavior. The absence of the peak atΩph,2 is robust
with time delay.

IV. TIME-RESOLVED RAMAN SCATTERING SPECTRUM

The time-resolved Raman scattering intensity is calculated
via a simple relation34 from the imaginary part of the Raman
response function. In the bare vertex approximation,35,36 it is
found as:

Imχ(iΩm → ω + iδ) = −2π2

NL

∑

k

γ2
kIχ(k, ω) , (13)

where

Iχ(k, ω) = 2i

∫

dτ ′ TrIm[τ̂3F̂
∗(k, τ ′)τ̂3Â(k, τ

′)]eiωτ ′

.

(14)
Here γ̂k is the nonresonant bare Raman vertex given by
γ̂k = γkτ̂3 with τ̂3 being the Pauli matrix andγk =
∑

α,β e
S
α

∂2ξk
∂kα∂kβ

eIβ . eI,S are the polarization unit vectors
of the incident and scattered photons, andξk the electronic
normal-state dispersion of the conduction band.

Figure 3 shows the time evolution of the Raman scattering
spectrum. When the electron-hot phonon coupling is switched
off, the Raman spectrum rises withω and has a large peak at
twice the gap,2∆0, at the initial temperature (red solid line
in Fig. 3). A small shoulder in the curve around 90 meV
arises due to the van Hove singularity. In the presence of the
electron-hot phonon coupling, the superconducting gap func-
tion is renormalized, which shifts the original2∆0-peak to
lower frequencies. Simultaneously, another peak developsat
2∆0 +Ωph,1 but no peak develops atΩph,2, for the same rea-
son for the optical conductivity (Fig. 2). After photoexcita-
tion, this double-peak structure evolves into a very broad peak
as the system enters the normal state. For largeP0, this broad
peak remains for a few picoseconds. However, for intermedi-
ateP0, once the superconducting state recovers, the double-
peak structure appears again. This result is fully consistent
with our calculations of the TR optical conductivity described
above.

V. CONCLUSION

We have presented a theory for the time-resolved optical
conductivity and Raman spectrum, based on the TR spectral
function that we have recently formulated for HTSCs. Our
calculations show that the signature of the electron-B1g mode
coupling in the TR optical conductivity and Raman spectrum
is more pronounced than the consequence of the coupling be-
tween electrons and the half breathing mode. This is the result
of a concurrence of anisotropy of the el-ph coupling, band
structure, andd-wave energy gap in HTSCs. Even more in-
terestingly, this signature also shows a re-entrant behavior in
concurrence with the superconducting condensate, which can
be controlled by the pump fluence. The observation of the
broad peak in the TR Raman spectra and their re-entrant be-
havior provides a direct evidence of the el-ph coupling.
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25 M. Beyer, D. Städter, M. Beck, H. Schäfer, V. V. Kabanov, G.
Logvenov, I. Bozovic, G. Koren, and J. Demsar, Phys. Rev. B83,
214515 (2011).

26 G. L. Dakovskiet al. (unpublished).
27 P. B. Allen, Phys. Rev. Lett.59, 1460 (1987).
28 J. Tao and J.-X. Zhu, Phys. Rev. B81, 224506 (2010).
29 M.R. Norman, M. Randeria, H. Ding, and J. C. Campuzano, Phys.

Rev. B52, 615 (1995).
30 F. Gross, B.S. Chandrasekhar, D. Einzel, K. Andres, P.J.

Hirschfeld, H.R. Ott, J. Beuers, Z. Fisk, and J.L. Smith, Z. Phys.
B 64, 175 (1986).

31 J.-X. Zhu, A.V. Balatsky, T.P. Devereaux, Q. Si, J. Lee, K. McEl-
roy, and J.C. Davis, Phys. Rev. B73, 014511 (2006).

32 F. Marsiglio, Phys. Rev. B44, 5373 (1991).
33 S. Maiti and A. V. Chubukov, Phys. Rev. B81, 245111 (2010).
34 M. Bakr, A. P. Schnyder, L. Klam, D. Manske, C. T. Lin, B.

Keimer, M. Cardona, and C. Ulrich, Phys. Rev. B80, 064505
(2009).

35 T.P. Devereaux, D. Einzel, B. Stadlober, R. Hackl, D. H. Leach,
and J. J. Neumeier, Phys. Rev. Lett.72, 396 (1994).

36 T.P. Devereaux and R. Hackl, Rev. Mod. Phys.79, 175 (2007).


