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The stability of competing phases within body-centered-cubic (bcc) Ti-V approximants to Gum
Metal is considered from the perspective of the phonon dispersion. Phonons are associated with the
potential to form the ω and α′′ phases. It is argued that alloys can be designed to be linearly stable
with respect to the formation of both phases, even as the ideal shear strength approaches zero. The
reduction in ideal strength is associated with softening of the phonons along Γ−N , and is reflected
in diffuse scattering diffraction experiments.

PACS numbers:

I. INTRODUCTION

Gum Metal is a body-centered-cubic (bcc) solid solution Ti-Nb based alloy that displays a large elastic limit,
substantial elongation to failure, and high strength1. Further, these impressive properties emerge fully only after
substantial cold work. Surprisingly, plastic deformation is not associated with obvious dislocation activity. These
observations led Saito et al. to the remarkable conclusion that Gum Metal is a bulk, engineering alloy that deforms
at its ideal strength1. If this conclusion is correct, Gum Metal represents a new type of structural alloy.
Of course, alloys can deform plastically via mechanisms other than the motion of dislocations. For example,

applied stresses can trigger phase transformations that act so as to relieve the applied stress. In fact, Talling et al.

considered the deformation of Gum Metal and concluded that the material deforms via a transformation from the
so-called β-phase (bcc) to the face-centered-orthorhombic α′′-phase2. This conclusion is supported by x-ray diffraction
experiments showing reflections at positions that are normally associated with the α′′ phase3. Further they propose
that the formation of the α′′-phase is linked to the formation of the ω-phase within the material. These experiments
suggest that the plastic deformation mechanism in Gum Metal is not particularly novel.
However, Withey et al. studied the compression of nano-pillars of Gum Metal using in situ transmission electron

microscopy4. These experiments enabled correlation of the appearance and intensity of diffracted beams associated
with the α′′-phase with the load versus displacement curve. During compression of nanopillars, the α′′-phase appears,
but it appears well before the maximum stress is reached. The intensity of the spot does not obviously grow with
continued deformation, suggesting that the appearance of the α′′-phase is incidental to the dominant plasticity mech-
anism. Further, an analysis of the energies associated with the transformation to the α′′-phase suggests that Gum
Metal is successfully engineered to suppress extensive transformation to this phase5.
Theoretical work suggests how it might be possible for a bulk alloy to deform at ideal strength6, and offers an

explanation7 for the lack of obvious dislocations and the formation of nanodisturbances8 in deformed samples. Specif-
ically, Gum Metal was designed with the intent to drive the elastic constant difference C11 − C12 → 0. This design
goal decreases the ideal strength of the alloy1 and also increases the elastic anisotropy of the material. This anisotropy
leads to directly the easy pinning6 and large spreading7 of dislocation cores. The large spreading, in turn, can yield
nanodisturbances8 through the overlap of dislocation cores.
Clearly, the relationship between elastic anisotropy, phase transformations, and the plastic deformation of Gum

Metal remains an interesting area of exploration. Insight into the phase stability of the alloy can be obtained by
considering the properties of phonons within the material. Here, a simple empirical model relating the phonon
structure to the elastic anisotropy is explored and used to shed light on phase stability within Ti-V approximants to
Gum Metal. While the simple calculations presented here employ parameters appropriate for Ti-V alloys, the trends
so identified are likely to appear in Gum Metal as well. We expect, therefore, that the calculations will shed light on
experimental results obtained through study of Gum Metal.
In what follows, it is shown that it is theoretically possible for a bcc alloy to be linearly stable with respect to the

formation of both the ω and α′′ phases even in the limit that its ideal shear strength approaches zero. Further, the
reduction in ideal shear strength is accompanied by the softening of the phonons along Γ−N (the Brillouin zone is
shown in Fig. 1). This softening leads to spots in diffuse scattering experiments that coincide with those expected
from the formation of a stable α′′ phase. Finally, it is suggested that transformation to the hexagonal close packed
(hcp) α phase via the Burgers path9 leads to shear faults oriented as observed in experimental studies of solution
treated Gum Metal1.
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II. PHONON MODEL

Computing the phonons within Gum Metal alloys poses substantial challenges (see, for example, ref.10). Here, the
problem is simplified by employing a model that restricts contributions to the dynamical matrix to arise only from
nearest and next nearest neighbor contributions. This restriction, when coupled with the average cubic symmetry
of the alloy, defines the phonon dispersion relationship in terms of four parameters, the so called Born von Karman
constants. By examining the long wavelength limit, these constants can be related to the elastic constants of the
material. In the past, this model has been used successfully to study the transformation from the β-phase to the
ω-phase11.
Under the assumption of cubic symmetry and the restriction to first and second neighbor interactions, the dynamical

matrix can be expressed in terms of four constants, α1, γ1, α2 and β2:
11

Φ̃11(q) = 8α1 (1− cosπp1 cosπp2 cosπp3)

+ 2α2 (1− cos 2πp1)

+ 2β2 (2− cos 2πp2 − cos 2πp3)

Φ̃12(q) = 8γ1 sinπp1 sinπp2 cosπp3.

(1)

with q = (2π/a)(p1, p2, p3) a reciprocal vector within the first Brillouin zone. The remaining components of the
dynamical matrix can be found using cyclic symmetry.
Near q = 0, the dynamical matrix can be expressed, in terms of the cubic elastic constants C11, C12 and C44:

Φ̃11(q) =
a3

2

[

C11q
2
1 + C44(q

2
2 + q23)

]

Φ̃12(q) =
a3

2
(C12 + C44) q1q2.

(2)

Matching Eqs. (1) to (2) as q → 0, one finds

2α1 + 2α2 = aC11

2α1 + 2β2 = aC44

4γ1 = a(C12 + C44).

(3)

Equations (3) enable the study of the relationship between the elastic constants of the alloy, and the phonon
frequencies. However, three elastic constants cannot determine uniquely four Born von Karman parameters. To
define all four parameters, more information is needed.
Here, we employ TiV as an approximant to Gum Metal behavior. The elastic constants C11, C12 and C44 are

obtained from first principles total energy calculations for TiV alloys within the virtual crystal approximation6. A
fourth equation is provided by a frozen phonon calculation12 of the phonon frequency at H (Fig. 1). The frozen
phonon data is obtained using the Quantum Espresso package13, and the virtual crystal approximation for Ti-V
alloys6. The energy cutoff of the frozen phonon calculations is chosen to be 1560 eV. A Fermi-Dirac smearing of 0.27
eV is employed. Energies are completely converged with respect to k-point sampling. Symmetrized Monkhorst-Pack
grids are employed. For the H-point phonon, the unsymmetrized grid is 16× 16× 16. As a check of the simple model,
frozen phonon calculations are carried out for the N -point and the q associated with the ω phase. The unsymmetrized
Monkhorst-Pack grids are 13 × 13 × 21 and 18 × 18 × 11 respectively. Energies are converged to better than 0.03
meV/atom.
In order to study trends as the bcc to hcp transition composition is approached from the bcc side, the phonon

dispersion is computed as a function of composition using the Born von Karman constants. The resulting dispersion
relations are plotted in Fig. 2, along with the predictions of the frozen phonon calculations. Note that the simple
model computes the H-point frequency exactly. The agreement between the simple model and the frozen phonon
predictions at N and the chosen point along the P −H direction is an indication that the Born von Karman model
is a reasonable model for phonons in the TiV alloys as described within the virtual crystal approximation.

III. DISCUSSION

Two anomalies are evident from the dispersion relations in Fig. 2: (1) The transverse mode close to (but not exactly
at) q =

(

1
3 ,

1
3 ,

2
3

)

conincides with a dip in energy, and (2) the transverse branch from Γ to N with [11̄0] polarization
has an unusually low energy.
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Consider first the transverse mode with the propagation vector close to q =
(

1
3 ,

1
3 ,

2
3

)

. The lowest energy eigenvalue
corresponds to the (111̄) polarization. This transverse mode is symmetrically equivalent to the longitudinal one

with q =
(

2
3 ,

2
3 ,

2̄
3

)

. The atomic displacements along the 〈ppp〉 direction by this phonon mode result in two of

the three neighboring (111) planes moving toward each other, whereas every third plane remains at rest. This
structural transformation leads to the ω phase, hence this type of phonon is referred to as the qω phonon. The same
transformation mechanism has been reported in other bcc alloys11.
The calculated total energy as a function of the displacement amplitude for q = qω frozen phonon for the compo-

sition Ti25V75, Ti50V50, and Ti85V15 is displayed in Fig. 3. The energy functions of Ti25V75 and Ti50V50 are close
to parabolic near zero displacement, indicating nearly harmonic behavior. The calculated vibrational frequencies of
these two compositions are close to the harmonic model as shown in Fig. 1. The energy rises sharply in the direction
of oscillation away from the ω structure, while on the other side it rises to a local maximum at the amplitude of
∼ 0.45 Å, required for ω-phase formation. The ω phase in Ti85V15 is just barely stable within our calculation. More
sophisticated treatments of phase stability suggest that within Ti3Nb alloys, the β phase is stabilized by thermal
effects10. Irrespective, the energy-amplitude relations indicate that the ω phase is linearly unstable in these TiV
approximants to Gum Metal.
The softening of phonons along the Γ−N direction holds implication for diffraction experiments. By stacking two

adjacent Brillouin zones as in Fig. 1, it is clear that the transverse N -point phonon mode is also equivalent to the
q = (12 ,

1
2 , 1) mode with the [110] polarization. The dispersion relation at the points of type (m/2,m/2,m), where m

is an odd integer can be seen on the (110) section of the q−space.
To examine the diffraction pattern experimentally, a sample of Gum Metal fabricated and processed (cold-swaged,

then solution treated at 900 C for 30 minutes) by Toyota Central Research and Development Laboratories, with
composition 73.1Ti-23Nb-0.7Ta-2Zr-1.2O (at. %) was cut, polished using 4000 grit abrasive, and disc cut. The
sample was then electropolished in a Fischione 1010 jet polisher, using a 4.6% perchloric acid in methanol and
butanol solution at 40 mA, 35 V and at -30 C. The transmission electron diffraction pattern from this sample was
then obtained using a JEOL 2011 electron microscope. The diffraction pattern is shown in Fig. 4(c). The brightest
spots, shown indexed by integers, are those expected from the bcc structure. In addition, however, there are additional

reflections that appear at spots normally associated with the α′′-phase (e. g. the spot indexed by 1
2

1̄
2 1, and symmetry

related spots). One explanation for these spots is that the sample includes a volume of the α′′-phase.

However, it is possible that the lower intensity excitations at q = (12 ,
1̄
2 , 1) are a result of the softening of the N -point

phonon. This possibility becomes more likely, given that dark field imaging yields no evidence for the hcp phase. To
investigate this possibility, the theoretical intensity of diffraction patterns of phonon scattering are computed. The
intensity obtained from the thermal average of the displacement fluctuations is given by

I(q) = Io(q) + I1(q) + . . . (4)

where

Io(q) =Ne−2W (q)
∑

R

eiq·R

I1(q) =
N

m
e−2W (q)

∑

r

|q · ar(q−G)|
2 〈Er(q−G)〉

ω2
r(q−G)

(5)

Here, the average energy of a single oscillator is 〈Er(q)〉 = (~ω/2) coth(~ω/2kBT ). The index r = 1, 2, 3 labels the
polarization of the phonon mode, and W (q) is the Debye-Waller factor14. Higher order terms are neglected here, as
they contribute intensities at the level of a few percent of the first order term.
The theoretical first-order intensities on the (11̄0) section are displayed in Fig. 4 for both Ti25V75 and Ti85V15.

The intensity scale is set equal for both Figs. 4(a) and 4(b). The similarity between Figs. 4(b) and 4(c) are strong,
especially if one allows for the simplicity of the diffraction model. The calculations make clear that phonons within a
stable bcc crystal structure can lead to diffuse scattering at the positions in reciprocal space expected from a stable
α′′-phase. Further, phonons alone lead to streaking similar to that observed experimentally. Both the diffuse spots
and the streaking become more intense for Ti85V15 as compared with Ti25V75. Based on these observations, it is
possible that the experimental observation of the α′′ phase is actually the observation of softening phonons within
the stable bcc phase.
It is insightful to examine the structures arising from the soft phonons at N . The fluctuations at the N−point

result in displacements of two neighboring (110) plane in opposite [11̄0] direction as shown in Fig. 5(a). Viewing
along the [110] direction, the N−point phonon leads to a structure close to hexagonal. The angle between the atomic
bonds in the basal plane are 109.47 ◦ and 125.27 ◦. The precise 120 ◦ angles required for forming a hcp structure
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can be achieved by applying a simple shear close to the type [1̄11](11̄2) as shown in Fig. 5(b). This mechanism was
discovered by Burgers9.
The shear angle and magnitude required to convert the bcc phase into hcp can be obtained solely from geometry.

More specifically, one chooses the shear angle and magnitude so that the angles θ1 and θ2 become 2π/3. The simple
shear transformation tensor Fγ is given by

Fγ =





1 γ 0
0 1 0
0 0 1



 . (6)

Setting γ = 0.20308,taking the shear direction to coincide with the solid arrow in Fig. 5(b), and applying the
transformation converts the bcc structure to a hexagonal one. The shuffling of every other plane leads to the hcp
structure.
Interestingly, the orientation of this shear nearly coincides with the orientation of the shear bands observed by Saito

et al.1 during the deformation of solution treated Gum Metal. Hence it seems reasonable to associate this deformation
with the localized transformation to the hcp phase, and suggests that the elastic limit, at least in some circumstances,
is defined by this shear. This observation is consistent with the predicted softness of the N -point phonons.
The softening of the phonons along the Γ−N branch is apparent in other contexts. For example, the displacements

predicted in calculations of dislocation core structures are similar to those arising from these soft phonons7. Inter-
estingly, there is experimental evidence for the softening of similar phonons in potassium, a material identified in7 as
one with elastic anisotropy similar to that of Gum Metal. Low energy electron diffraction experiments of the {110}
surface revealed the signature of large shears of the surface layer relative the bulk. Electronic structure calculations
suggested that force constants governing the shear of the surface layers were so small that zero point motion alone
could account for the experimental observations15,16.

IV. CONCLUSION

In conclusion, phonon dispersion relations, obtained from the harmonic model in conjunction with first principles
calculations provide insights into potential structural transformation in Gum Metals. The ω phase is a result of a soft
longitudinal phonon with the wavevector q = (2/3, 2/3, 2/3). The transformation to the α′′-phase is associated with a
transverse N−point phonon. However, the alloys can be designed so that they are linearly stable with respect to the
formation of both phases. Further, even though the bcc structure is linearly stable, the softening of the phonons can
lead to diffuse scattering in diffraction experiments. Theoretical predictions for this diffuse scattering give patterns
similar to those observed during electron diffraction experiments exploring solution treated Gum Metal.
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, which is symmetrically equivalent to the N−point phonon.
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FIG. 2: Dispersion relations over a range of the ratio (e/a) of the Ti-V alloys. The ratio e/a = 4.75, 4.50, and 4.15 corresponds
to the composition Ti25V75, Ti50V50, and Ti85V15 respectively. The blue lines are the Born-von Karman(BK) harmonic
approximations, while the red dots are obtained from the frozen phonon calculations.
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FIG. 3: Total energy of the qω−phonon as a function of displacement amplitude.
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FIG. 4: (a)Theoretical diffraction pattern of Ti25V75, and (b)Ti85V15. (c)The (110) transmission electron diffraction pattern
of solution-treated Gum Metal obtained using transmission electron microscopy.
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FIG. 5: (a) The transverse [ 1
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2
0] mode with the [11̄0] polarization. The arrows show the direction of the vibration of the

alternating planes along [110]. (b)The atomic deformation on the (110) plane due to a long-wavelength shear close to the type
[11̄1](1̄12).


