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We emulate renormalization group models, such as the Spin-Boson Hamiltonian or the anisotropic
Kondo model, from a quantum optics perspective by considering a superconducting device. The
infra-red confinement involves photon excitations of two tunable transmission lines entangled to an
artificial spin-1/2 particle or double-island charge qubit. Focusing on the propagation of microwave
light, in the underdamped regime of the Spin-Boson model, we identify a many-body resonance
where a photon is absorbed at the renormalized qubit frequency and reemitted forward in an elastic
manner. We also show that asymptotic freedom of microwave light is reached by increasing the input
signal amplitude at low temperatures which allows the disappearance of the transmission peak.

PACS numbers: 03.65.Yz, 03.75.Lm, 42.50.-p, 85.25.-]

The asymptotic confinement phenomenon in the infra-
red limit is omnipresent in condensed-matter systems and
it plays a crucial role in quantum impurity systems, such
as the Kondo model describing a single spin-1/2 parti-
cle interacting with a bath of conduction electrons [1].
The Kondo effect can also be considered as an exam-
ple of asymptotic freedom, i.e., the coupling of electrons
and spin only becomes non-perturbatively strong at low
temperatures and low energies. This model introduced
to describe resistance anomalies in metals with magnetic
impurities embodies the “hydrogen atom” of many-body
physics [2, 3]. Distinct aspects of this infra-red con-
finement phenomenon can also be addressed through a
one-dimensional boson bath (transmission line) entan-
gling a spin-1/2 particle or two-level system resulting in
the Spin-Boson model which can be mapped onto the
anisotropic Kondo model and exhibits a plethora of inter-
esting phenomena such as an underdamped-overdamped
crossover in the spin dynamics and a quantum phase
transition [4-6]. In this Letter, we consider the super-
conducting Josephson circuit of Fig. 1, which allows
to investigate the quantum entanglement in the Spin-
Boson model and therefore properties of the anisotropic
Kondo model through transport of photons. In the un-
derdamped limit, we prospect to reveal a related many-
body Kondo resonance in the elastic power of a trans-
mitted microwave photon. This circuit offers the oppor-
tunity to export many-body physics in quantum optics.

The superconducting system comprises an artifi-
cial spin or double-island charge qubit [7-9] interact-
ing with the zero-point fluctuations of two long one-
dimensional transmission lines envisioned from tunable
one-dimensional Josephson junction arrays [10-12]. In
order to maximize the elastic transmission of a microwave
photon, the spin-1/2 object is built from a superconduct-
ing double Cooper-pair box where spin up and spin down
states refer to the two degenerate charge states (0,1)
and (1,0), respectively corresponding to one additional
Cooper pair on either island [13]. Recently, geometries
involving artificial atoms and transmission lines or cavi-
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FIG. 1:
from a double-island charge qubit coupled to two one-
dimensional Josephson junction arrays allowing to produce
a Kondo resonance in the elastic power of microwave light.

(Color online) Superconducting circuit envisioned

ties have already been realized experimentally [14, 15].

Below, we will assume that the charging energy corre-
sponds to the most dominant term in the Hamiltonian.
In fact, close to a charge degeneracy line [7], we can apply
the pseudospin representation for the charge states (0,1)
and (1,0) reinterpreting them as spin-up and spin-down
eigenstates of the operator o, [13]. The effective detun-
ing € = (E19 — Eo1) — 0, where Eqg (Ep1) corresponds
to the energy of the spin-down (spin-up) eigenstate, can
be adjusted through the gate voltages Vy, and V.

Transfer of Cooper pairs between superconducting is-
lands and leads is described through the Josephson terms
E;; and Ejr in Fig. 1. In the weak tunneling limit
(Ejr,Esr) < min(E1; — Ero, Eoo — E1p) one can per-
form a standard perturbation theory and cotunneling of
Cooper pairs then costs an effective energy [13]:
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where Ej1 (Epp) corresponds to the energy to add
(remove) one extra Cooper on the double-island.
The Josephson Hamiltonian then takes the form
—(Ej/2)ot expli(¢r — ¢r)(x = 0)] + h.c. [16] where the
Josephson phases ¢;(z = 0) and ¢, (x = 0) of the left and



right one-dimensional transmission lines read (j =1, r)

bl,). (2)
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This Josephson term captures the transmission of a given
Cooper pair across the system in Fig. 1. The su-
perconducting reservoirs are explicitly modeled by one-
dimensional transmission lines revealing low-energy pho-
ton excitations. The left and right transmission lines are
described by two distinct sets of harmonic oscillator (pho-
ton) operators by, and b.,. Below, we consider the limit
where (CL, CR) < Cy and (EJL,EJR) < hz/LT in Fig.
1. The spatial solution of the modes can be expressed
in terms of the wavevectors k = mn/(2L), where m is
odd for symmetric modes and even for antisymmetric
modes, and a transmission line is diagonalized introduc-
ing bosonic creation and annihilation operators. Here, £
corresponds to the length of each transmission line and
¢ = Ct/a to the capacitance per unit length; a is the size
of a unit cell in each transmission line and we consider
the thermodynamic limit a/£ — 0. The photon waves
propagate at the speed v = w.a where w, = 1/v/L;C},
the inductances L; are defined in Fig. 1, and wy = vl|k|.

To build an explicit analogy with the spin-boson
Hamiltonian, we rewrite the Josephson term as a trans-
verse field H; = —(E;/2)o, performing a unitary trans-
formation or spin rotation (see footnote in [29]). Such a
procedure, also referred to as a polaron transformation
[4, 5], has been applied in the case of a spin-1/2 interact-
ing with the sound modes of a Bose-Einstein condensate
[17]. Since the Hamiltonian of the transmission lines does
not commute with the spin rotation this produces an ef-
fective interaction between the two-level system and the
photon excitations. This term can be combined with the
capacitive couplings Cp, and Ci of Fig. 1. More pre-
cisely, since the electrical potential (operator) at the end
of a transmission line, i.e., at = 0, takes the form

J?g;« k(bjk +b5,) (3)

this results in the Spin-Boson Hamiltonian:

1 € E;
H = Z wa\kﬂ |:b;r-kbjk + 2] — §Uz — 70'35 (4)

Vifx=0) =

j=l,r k>0
[ep”
+ I;)ak ( Y (bux + blk) + Y (brk + brk)) 5"

The charge operators on the two islands take the forms
Qv = Z£(1+0.) and Q, = %(1 — 0.). Hereafter the
detuning will be fixed to e — 0 and oy, = (2¢/vcL) /.
The couplings v,- and ~; are given by:
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Following Ref. 7 and the notations of Fig. 1, we have de-
fined the total capacitances seen by each superconducting
island: Cy, = Cf, —|—Cga +Cy, and Cs, = Cgr +0gb +Chp.
The analogy with the Spin-Boson model [4, 5] becomes
complete when rewriting the Hamiltonian in terms of the
symmetric and antisymmetric bosonic combinations:

bsi. = cosOby + sin0b,, (6)
bak = sin Gblk — COS 6ka

Choosing cos 0 = 7, /\/77 + 72 and sin @ = v, /\/72 + 77,
we note that the boson operator b, only couples to the
two-level system through the coupling Ay = ax /77 + 72
Each transmission line mimics a physical resistor then
producing dissipation in the system. In the present cir-
cuit, the spectral function of the environment is defined
as J(w) = (m/h) Y 4o Ai0(w — wy) = 2mhawe™ /@
where w. > E;/h represents the high-frequency cutoff
of this Ohmic environment [30] and « is given by
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Here, Ry = h/(2e)? denotes the quantum of resistance
and R = /L;/C is the resistance of each transmission
line. It is instructive to observe that in the limit of negli-
gible capacitances C, and C'g the system naturally con-
verges towards the symmetric condition v, = v, = —1.
The Spin-Boson Hamiltonian with Ohmic dissipation is
intimately related to the Kondo model in the anisotropic
regime via bosonization [18]. Other Spin-Boson Hamilto-
nians such as the Jaynes-Cummings model, in contrast,
involve a two-level system interacting with a single mode
of a cavity [19]. Other impurity models with photons
have also been considered [20, 21]. We are interested in
the underdamped regime (0.1 < « =< 0.2) of the Spin-
Boson model where the two-level system displays visible
Rabi oscillations but dissipation modifies the qubit fre-
quency which is related to the Kondo energy [4, 5]
Er(0) = hwg = Ey (Es/hw) ™% . (8)
To understand the physical content of the energy Eg,
it is relevant to apply the unitary transformation U =
exp(A4; — A;) where A; =37, O};’Ll (b;rk —bjx)o./2 such

that the Hamiltonian can be rewritten as (H = UTHU):
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where the phases ® = —vy¢(x = 0) and &, =
—vr¢r(x = 0) contain Josephson physics as well as

(weak) charging effects. Then, we can define an effec-
tive transverse field acting on the dissipative two-level
system as A = FEj{(cos(®; — ®,)) such that the ar-
tificial atom is described by the effective Hamiltonian



Hepp = —(€/2)0. — (A/2)0,. Bethe ansatz calculations
[22, 23] and the adiabatic renormalization [4] in the un-
derdamped limit where 0.1 < a =< 0.2 indeed confirm
that A = Egr. The bare qubit frequency Ej/h of the
two-level system is modified due to the strong renormal-
ization effects associated with the photon bath. One way
to experimentally measure the Kondo energy Er would
be through charge measurements since the Fermi liquid
ground state imposes that (o,)  ¢/Er at small detun-
ing and low temperatures kgT < Epr, and the prefactor
is accessible from Bethe Ansatz calculations [23].

Below, we show that in the underdamped regime and
for temperatures kT <« FEpg, the Kondo energy Fp
can be directly measured based on the (elastic) resonant
propagation of a photon. When the system is driven by
an external coherent source, the drive, the circuit and the
outgoing waves can be treated through the input-output
theory [24]. Previous works have studied the limit @ — 0
where many-body effects can be fully ignored (the elas-
tic resonance is centered at the bare frequency of the
two-level system and converges to a §-function) [14]. We
assume perfect transmission of the microwave signal in
the transmission lines such that the input signal reads

Vi (t) = Z (;% <6ﬂwk(t7to)blk(t0) + ewk(tito)b}k(to)) :
k>0

(10)
Here, ty < t denotes a time in the distance past before
any wave packet has reached the two-level system. Simi-
larly, an output field in the left transmission line at time
t; > t being a time in the distant future after the input
field has reached the double-island Cooper box system
reads

oY , _
Voui(t) = Z 7: (e_“”“(t_tl)bzk(h) + e“’“(t_tl)bjk(tl)> .
k<0

(11)
Through the Heisenberg relation by, = (i/R)[H,by] =
—iwgbik + (i/2h)yak0, we relate the properties of the
input signal to those of the two-level system.

Below, since we focus on the underdamped limit
of the Spin-Boson model which is characterized by a
(Rabi) resonance at w = wg, we establish (0, (w)) =
Yix(w, Pin ) (V™ (w, P;y,)) for frequencies in the vicinity of
wr where P, = ((V;'™)?)/R is the average input power
[31]; see EPAPS [25]. Then, we can introduce the reflec-
tion coefficient r(w, P;,) = (V;°“*(w, Pin))/ (V™ (w, Pin))-
Defining the output signal in the right transmission line
as

o ) .
V—Tout _ Z 272 (efzwk(tfm)brk(tl) + elwk(tftl)bik(tl)) .
k>0

(12)
the  transmission  coefficient is  ¢(w, Pi,) =
(Veut(w, Pin)) (V™ (w, P;)).  Using the Heisenberg
relation of by, with the definitions above we obtain (see

FIG. 2: (Color online) Normalized elastic transmitted power
tt*(w) as a function of frequency and driving power for v, =
~r. The parameters are chosen as a = 0.15, wg = 1 = Pk,
E; ~ 19, we = 50 and i = 1 (we set the ratio E;/hw. to
be moderate, but the “many-body” resonance frequency or
renormalized qubit frequency wg is distinct from Ej/h).

EPAPS [25]):
r(w, Pin) = (1+ ﬂJ(w)x(m P; )) (13)
b) m 712 +’>/3 b) wm b)
U, Pon) = — 0 Jw) (@, Pin).
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First, we consider the linear regime where the am-
plitude of the input signal is very small, P;,, — 0 (see
footnote in [29]). For frequencies close to the confine-
ment frequency, again assuming the underdamped limit
(0.1 = a = 0.2), we derive an expression of the spin sus-
ceptibility which agrees with Numerical Renormalization
Group results [26]; see EPAPS [25]. This leads to

wR/h
X(w) - w%{ - w2 . z’y(w)7 (14)
where the dissipation factor takes the form ~(w) =
wrJ(w)/h and is in agreement with the (many-body)
Fermi-liquid type ground state [5]. In the linear regime of
small input power, we check that the scattering matrix is
unitary, |r|? + |t|> = 1, since J(wg)Smyx(wr) = 1 show-
ing that the photon propagation is purely elastic close
to the resonance (see Fig. 2). We corroborate that the
normalized (elastic) power tt*(wg) flowing to the right
transmission line reaches unity since here ~v; &~ ~,.

In the underdamped regime, the photon propagation
across the system is characterized by a many-body res-
onance at the frequency wgr [4-6]: a photon is absorbed
at the frequency wgr and reemitted forward in a purely
elastic manner. In the underdamped regime of the cir-
cuit, the qubit is described by a resonance which turns
the “photon+Cooper pair” system into an ideal conduc-
tor. The phase associated with the reflection coefficient
satisfies the following properties. For small ;, the phase



vanishes since V,°“ = Vl”‘ for an open termination and
for . = 0 the phase is consistent with the Kondo-type
2 x /2 phase shift of a right-moving wave.

In fact, the appearance of resonances in such a circuit is
not so surprising. For example, let us ignore the Coulomb
blockade physics in the two islands completely and re-
place the Josephson junctions E;r and Fjr by purely
linear inductances L; and Lr. When C, = Cgr = C
and Ly = Lr = L, then we corroborate a resonance
with » = 0 at the frequency w* = 1/y/CL + 2C,, L; how-
ever, we emphasize that w* is distinct from wgr which
has a many-body origin. In addition, nonlinear effects
unavoidably appear in the Josephson circuit of Fig. 1
when increasing the amplitude of the input signal. Un-
der a strong drive, this produces the accumulation of
a macroscopic number of photons in the left transmis-
sion line which will cause the saturation of the two-level
system excitation and the destruction of the resonance
peak. More precisely, evaluating the Franck-Condon fac-
tor {cos(®; — ®,.)) = exp —[{(®; — ®,.)?)/2] when increas-
ing the input signal amplitude, we observe that (®7)
yields an extra contribution (note, P, = (Vi(z = 0)?)/R)

1 P, R(2e)?~?
W Zaﬁvﬂbfqu = Wa (15)
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and the symbol ' refers to momenta such that w, ~ wgr
in the case of a monochromatic signal with a frequency
close to wr. The Josephson process in Eq. (9) becomes
exponentially diminished and this results in an exponen-
tial suppression of Smy(w = wg) (see EPAPS [25])

Smx(wgr, Pin)J(wr) = exp — (?m é%wyf) ,  (16)
R 1Q

where Pr = hw%. The nonlinearity of the two-level sys-
tem produces an exponential decrease of the spin sus-
ceptibility at w = wg. Then, this causes the disappear-
ance of the Rayleigh transmission resonance; see Fig. 2.
When P;, > Ppr one reaches the asymptotic freedom
of microwave light where r(wg) ~ 1; see Egs. (13) and
(16). These nonlinear effects are driven by the Josephson-
type Hamiltonian in Eq. (9). Increasing the driving
power P;,, the scattering matrix becomes non-unitary
since J(wr)Smx(wr, Pin) < 1 (which hides the presence
of additional inelastic Raman corrections [14]). An open
question concerns the inelastic Raman spectrum, which
should become prominent in the overdamped limit of the
Spin-Boson model. The asymptotic freedom of light, re-
sulting in r(wgr) ~ 1 can also be reached when increasing
the temperature producing a prominent decoherence of
the two-level system and a strong decrease of (0,) and of
the Josephson coupling in Eq. (9); see EPAPS [25].

To summarize, in the underdamped regime of the Spin-
Boson model, sending a microwave photon produces a
many-body Kondo resonance. For moderate and acces-
sible values of the dissipation strength 0.1 < o < 0.2,

the confinement frequency wg is clearly distinguishable
from the bare Josephson frequency E;/h of the two-level
atom as a result of the continuum of photon modes in
the (very long) transmission lines. The width of the res-
onance peak reflects the Fermi-liquid type ground state.
We assumed that the detuning e and thermal effects
through kpT are smaller than the Kondo energy Fr, and
in the underdamped regime, Eg is not too small com-
pared to the Josephson energy F;. For Josephson junc-
tion arrays with large resistances, this circuit would offer
the opportunity to study overdamped spin dynamics and
quantum phase transitions using nonlinear optics. Note
that the development of techniques such as the numerical
renormalization group [27] or a stochastic-type approach
[28] would be necessary to combine the traditional input-
output theory with many-body physics of quantum impu-
rity models. Finally, such superconducting quantum de-
vices can be used for controllable (single-)photon sources
in which a plethora of novel effects related to many-body
physics and nonlinear quantum optics can be realized.
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