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A single vortex overcoming the surface barrier in a mesoscopic superconductor with lateral dimensions of
several coherence lengths and thickness of several nanometers provides an ideal platform to study thermal ac-
tivation of a single vortex. In the presence of thermal fluctuations, there is non-zero probability for vortex
penetration into or exclusion from the superconductor evenwhen the surface barrier does not vanish. We con-
sider the thermal activation of a single vortex in a mesoscopic superconducting disk of circular shape. To obtain
statistics for the penetration and exclusion magnetic fields, slow and periodic magnetic fields are applied to the
superconductor. We calculate the distribution of the penetration and exclusion fields from the thermal activation
rate. This distribution can also be measured experimentally, which allows for a quantitative comparison.

PACS numbers: 74.78.-w, 74.78.Na

I. INTRODUCTION

Thermal activation of macroscopic quantum objects over an
energy barrier is ubiquitous in condensed matter physics. One
well established example is the thermally assisted escape of
phase particle in a Josephson junction when the bias current
is close to the critical current corresponding to a vanishing
barrier1. Combined with analytical calculations and exper-
iments, a quantitative description has been achieved in this
case. Magnetic vortices as topological excitations in super-
conductors are difficult to excite thermally because of their
large self-energy compared to that of phase particle in Joseph-
son junctions. For a large of number of vortices the probabil-
ity of thermal activation increases, which allows for an experi-
mental observation. Thermal activation of bundles of vortices,
such as creep motion of vortices2, has been observed long time
ago. However, no detailed quantitative experimental studyof
thermal activation of a single vortex has been reported so far
because the probability of thermal activation for a single vor-
tex is usually small.

Vortices overcoming the surface barrier in finite-size su-
perconductors has attracted considerable interest, because of
the possible observation of thermal activation of a quantum
object. For a superconductor with finite size in lateral di-
mensions, there exists a surface barrier known as the Bean-
Livingston (BL) barrier3. When the applied magnetic field in-
creases, the BL barrier diminishes and finally disappears atthe
penetration fieldHp, where vortex enters the superconductor.
The penetration field is larger thanHc1, the thermodynamic
lower critical field for type II superconductors without sur-
face. For the same reason, the exclusion fieldHe, when vortex
leaves the superconductor, is smaller thanHc1. Thermally as-
sisted penetration of vortices in a thick superconductor was in-
vestigated theoretically by Petukhov and Chechetkin decades
ago.4 They found that the thermal activation is practically im-
possible for vortex. For high-Tc superconductors, Kopylov
et. al. found experimentally that the penetration field de-
creases when the sample temperature is increased5. The ther-
mal effect on the penetration and exclusion field in high-Tc

superconductors has also been studied in Refs.6–8. The impor-

tance of thermal fluctuations in these cases can be estimated
using the Ginzburg numberG3D

i = 1
2(kBTc/[Hc(0)ξ(0)3])2,

wherekB is the Boltzmann constant,Tc the critical temper-
ature,Hc(0) the thermodynamic critical field andξ(0) the co-
herence length at zero temperature9. For conventional super-
conductors,G3D

i ≈ 10−10 and thermal fluctuations are weak;
while for high-Tc superconductors,G3D

i ≈ 10−2 and thermal
fluctuations become important.

For a large size superconductor studied in Refs.4–8, many
vortices penetrate into the superconductor simultaneously
once the applied field reaches the penetration field. To ob-
serve single vortex penetration, the lateral size of the super-
conductor should be of several coherence lengths only. In
these mesoscopic superconductors, a single vortex enters or
exists when the applied magnetic field is tuned. Due to the
advances in microfabrication techniques, penetration andex-
clusion of a single vortex by adjusting applied magnetic field
has been observed repeatedly in many experiments10–12. In
Ref.10, the penetration and exclusion of vortex is measured
by the Hall probe and in Refs.11,12 it is measured by a scan-
ning tunnelling microscope (STM) tip. However, no statistics
on the penetration and exclusion field has been carried out to
investigate the thermal activation in these studies.

For mesoscopic superconductors with several atomic lay-
ers, the reduction of the dimensions promotes the thermal fluc-
tuations. Even for mesoscopic superconductors made of con-
ventional superconductors,G2D

i =
1
2(kBTc/[Hc(0)ξ(0)2d])2 ≈

10−4 with the film thicknessd ∼ 1 nm, which is greatly
enhanced by a factor (ξ/d)2 ≫ 1 compared to the bulk
value13. By solving the Ginzburg-Landau equation and
the Fokker-Planck equation analytically for a superconduct-
ing disk, Pogosov found that the thermal activation of vor-
tex over the BL barrier becomes feasible in mesoscopic
superconductors13. The effects of thermal fluctuations on the
penetration of single vortex have also been studied numeri-
cally by solving the time-dependent Ginzburg-Landau equa-
tions with noise term14. They observed that the number of
vortices in superconductors is fluctuating due to thermal acti-
vation whenG3D

i is large in simulations.
In this paper, we consider the thermally assisted penetration
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FIG. 1. (color online). (a): A superconducting disk with radius of several coherence lengths and thickness of several nanometers. A STM
tip is positioned at the center of the disk to check the presence of a vortex by measuring the zero-bias conductivity. (b):Profiles of the time
dependent applied magnetic field. The maximal magnetic fieldis larger than the mean-field penetration field to initializea vortex at the center
of the disk. In the branch with increasingH, one measures the penetration field and in the branch with decreasing field, one measures the
exclusion field. (c) and (d): Distribution of the (c) penetration field and (d) exclusion fieldP(H) at several temperatures. The mean-field
penetration and exclusion field is represented by a dashed line. The distribution profiles are obtained using Eqs. (19), (28), (30) and (32).

and exclusion of a single vortex in a small superconducting
disk. We find the distribution of penetration (exclusion) field
when the applied magnetic field increases (decreases) adiabat-
ically, as a function of disk size and temperature. The setup
and main results are presented in Sec. II. In Sec. III, we de-
rive the BL barrier for a superconducting disk by solving the
London equation, while neglecting thermal fluctuations. From
the BL barrier, we obtain the mean-field penetration and ex-
clusion field for a single vortex. In Sec. IV, we calculate the
thermal activation rate for vortex penetration and exclusion by
solving the corresponding Fokker-Planck equation for vortex-
as-a-particle and derive the corresponding distribution func-
tions. The paper is closed by a discussion in Sec V.

II. PROPOSED MEASUREMENT

We consider a circular disk of several coherence lengths in
lateral size and several nanometers in thicknessd with d ≪ ξ,
where the thermally assisted penetration and exclusion of a
single vortex can be observed experimentally, see Fig. 1(a).
An STM tip is positioned at the center of the disk to check

whether the vortex is present or not, by measuring the zero-
bias conductivity11. Without thermal fluctuations, the vortex
penetrates into the disk when the applied field is larger than
the mean-field penetration field. With thermal activation, the
probability of vortex penetration is non-zero even when the
applied magnetic is smaller than the mean-field penetration
field. To find the distribution of penetration field, periodically
varying magnetic fields are applied perpendicular to the disk.
The setup with a static magnetic field has already been imple-
mented in Refs.11,12,15

For the vortex penetration, one changes the applied mag-
netic field periodically and slowly, see Fig. 1(b). To present
analytical calculations, we choose the sawtooth wave. One
records the magnetic field when vortex enters in the branch
with increasing field. By repeating the measurement, one then
obtains a distribution of the penetration field at a given temper-
ature. We calculate this distribution function analytically [see
Eq. (30) below], which allows for a quantitative comparison.
The measurement of the thermally assisted vortex exclusion
is similar. It is determined from the branch with decreasing
field, see Fig. 1(b).
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III. ENERGY BARRIER

In this section, we derive the mean-field surface barrier for
vortex penetration and exclusion in a superconducting disk
without accounting for thermal fluctuations in a static mag-
netic field. The thicknessd of the disk is much smaller than
the London penetration depthd ≪ λ. For such thin films, the
screening of magnetic fields is weak and the effective pene-
tration depth is given by the Pearl length16 Λ = 2λ2/d. The
coherence length is also assumed to be much smaller than the
penetration depthξ ≪ λ, and thus we can use the London ap-
proximation, where the amplitude of the superconducting or-
der parameter is uniform in space except for the vortex core.
The magnetic field distributionhz(x, y) associated with a vor-
tex is given by the London equation2

hz +
2πΛ

c
(∇ × g) · êz = Φ0δ (r − r v) , (1)

whereg is the sheet current density,êz a unit vector along the
z direction andΦ0 = hc/2e is the quantum flux. Herer v is the
position of the vortex and we only consider a single vortex.
For the superconducting Pb film in Ref.15 Λ ≈ 20µm. The
lateral size of the film is much smaller than the Pearl length
R ≪ Λ. In this case, the screening of the magnetic field is
negligible. We can neglect the first term at the left-hand side
of Eq. (1). For convenience, we introduce a scalar stream
functionG, such that17

g = ∇ × (Gêz) . (2)

At the boundary, the component ofg normal to the bound-
ary is zero, which requires thatG is constant at the boundary.
Without loss of generality, we takeG = 0 at the edge of the
disk. Then Eq. (1) is reduced to the Poisson equation and the
problem is equivalent to the one in electrostatics,

∇2G = − cΦ0

2πΛ
δ (r − r v) . (3)

For a circular disk with radiusR, we have18,19

G(r ) =
cΦ0

4π2Λ
ln
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. (4)

The energy of the vortex is then given by

ǫ(r v) =
Φ0

8π
hz(r → r v) =

Φ0

2c
G(r → r v). (5)

The energyǫ diverges atr = r v and to avoid the divergence,
we introduce the standard cutoff ξ near the vortex core,|r −
r v| = ξ. Then the energy of vortex atr = r v reads

ǫ(r v) =
Φ2

0

8π2Λ

[

ln

(

1−
( rv

R

)2
)

+ ln

(

R
ξ

)]

. (6)

We need also to add the interaction between the applied field
H and the vortex,Uz = −MvH with the magnetic moment of
the vortex20–22

Mv =
1
2c

∫

dr(r × g) · êz. (7)

Then we arrive at the total energy of a vortex in a circular disk
of radiusR

U(rv) =
Φ2

0

8π2Λ

[

ln

(

1−
r2

v

R2

)

+ ln

(

R
ξ

)

− πR
2H
Φ0

(

1−
r2

v

R2

)]

.

(8)
Equation (8) is valid when the vortex is not too close to the
edge. For a vortex close to the edge,R − rv < ξ, one should
account for the finite size of the vortex core. WhenR is of
the orderξ, a different approach, such as direct solution of the
Ginzburg-Landau equation, is needed13. The change of the
magnetization when a vortex is at the center of the disk is

Mv ≡ −∂HU =
Φ0R2

8πΛ
. (9)

Thus the penetration and exclusion of a single vortex can be
determined by measuringMv using the Hall probe.10

A vortex can be trapped in the disk if there is a local mini-
mum atrv = 0. Local minimum develops when the magnetic
field is larger than the mean-field exclusion fieldHe,

He =
Φ0

πR2
. (10)

AboveHe there is a barrier for vortex exclusion. The position
of the barrier is determined by the condition when∂U/∂ρ = 0
with ρ ≡ rv/R, which gives

ρ2
b = 1− He

H
. (11)

It follows that the height of the potential atρb is

U (ρb) =
Φ2

0

8π2Λ

[

ln

(

Φ0

πR2H

)

+ ln

(

R
ξ

)

− 1

]

. (12)

WhenU (ρb) = 0, the barrier for vortex penetration vanishes,
because the energy of a vortex at the edge isU(rv = R) = 0.
This gives the penetration fieldHp

Hp =
Φ0

πeξR
=

R
eξ

He, (13)

with e = 2.718. At fields aboveHp, nucleation of vortex into
the disk becomes favorable. When the radiusR increases, the
surface barrier decreases thusHp also decreases. WhenU(ρ =
0) = 0, a vortex at the center of the disk becomes the ground
state, which gives another characteristic fieldHg

Hg =
Φ0

πR2
ln

(

R
ξ

)

. (14)

For R = 10ξ = 300 nm, we haveHe ≈ 7 mT andHp ≈ 26
mT. Several typical profiles ofU(rv) are displayed in Fig. 2.
Slightly aboveHe, a local minimum appears atrv = 0, and
U(R) < U(0). When the field is increased aboveHg, the local
minimum becomes the global minimum andU(R) > U(0).
AboveHp, the surface barrier for vortex penetration vanishes
and the only stable solution is a vortex at the center of the disk.



4

-1.0 -0.5 0.0 0.5 1.0
-1.8

-1.2

-0.6

0.0

0.6

1.2

1.8

2.4

H/Hp=1.087

H/Hp=0.217

H/Hp=0.951

H/Hp=0.815

H/Hp=0.544

H/Hp=0.408

U
/[

Φ
2 0
/8

π
2
Λ
]

r
v
/R

H/Hp=0.0

FIG. 2. (color online). Profile of the energy barrier for a vortex in
a circular disk with radiusR/ξ = 10 at several typical fields. The
penetration field isHp = 0.074Hc2 and the exclusion field isHe =

0.02Hc2, with Hc2 = Φ0/(2πξ2) the thermodynamic upper critical
field.

IV. THERMAL ACTIVATION

WhenH approachesHp from below, the barrier decreases
and thermal fluctuations will promote the penetration of a vor-
tex. Thus in the presence of fluctuations, a vortex enters at
magnetic fields belowHp. For vortex exclusion, the vortex
leaves the superconductor at fields above the mean-field value
He due to thermal activation.

In the presence of time-dependent magnetic field as in Fig.
1(b), the energy barrier changes with time in this case. There-
fore it is more appropriate to describe the vortex motion in
terms of a Lagrangian. The Lagrangian of the vortex is

L(rv, t) =
Φ2

0

8π2Λ

[

πR2H(t)
Φ0

(

1−
r2

v

R2

)

− ln

(

1−
r2

v

R2

)

− ln

(

R
ξ

)]

.

(15)
The mass of the vortex is small and neglected. The dissipa-
tion function isD = ηṙv

2/2, whereη = Φ2
0/(2πξ

2c2Rn) is the
Bardeen-Stephen dissipation coefficient withRn the resistance

FIG. 3. (color online). Schematic view of thermally assisted vortex
exclusion whenHe < H < Hg (a) and (b) penetration whenHg <

H < Hp in a potentialU(rv).

of the sample just aboveTc. rv ≤ R is the coordinate of the
vortex in the radial direction and ˙rv is the radial vortex veloc-
ity. The equation of motion for the vortex in the presence of
thermal fluctuations is

ηṙv =
∂L(rv, t)
∂rv

+ Fn, (16)

where we have introduced a noise forceFn to account for the
thermal fluctuations.Fn has a zero mean value〈Fn(t)〉 = 0
and has a Gaussian correlator

〈

Fn(t, r v)Fn(t
′, r ′v)

〉

= 2ηkBTδ(t − t′)δ(r v − r ′v), (17)

whereT is the temperature. When the change of the applied
field is much slower than the thermalization time of the vortex
(see Sec. V), we can use the adiabatic approximation to solve
Eq. (16) andL(rv, t) can be replaced by−U(rv). A schematic
view for thermally assisted vortex exclusion and penetration
is depicted in Fig. 3.

Here we have considered thermally assisted penetration and
exclusion of a single vortex. For two vortices, the barrier is
twice as large as that for a single vortex. Since the probability
for thermal activation is much smaller than that of a single
vortex, the simultaneous penetration and exclusion of multiple
vortices can be avoided.23

In Eq. (16), we have approximated the motion of the vortex
in the disk by that of a particle in a one dimensional poten-
tial. During the penetration or exclusion of vortex, the motion
of single vortex is dictated by the force associated with the
surface barrier. The diffusion of vortex along the azimuthal
direction due to thermal fluctuations thus can be safely ne-
glected.

A. Thermally assisted exclusion

Let us first calculate the vortex exclusion rate whenH > He

using the Kramers equation for diffusion over barrier24

Γ =

√
−U ′′(rm)U ′′(rb)

2πη
exp [−∆U/kBT ] (18)

whereU ′′(rb) is the second derivative at the surface barrier
andU ′′(rm) is the second derivative at the energy minimum
where the vortex resides initially. The barrier height is∆U ≡
U(rb) − U(rm). The Kramers equation is valid when∆U ≫
kBT .

Using Eq. (18), we obtain the rate for the vortex exclusion

Γe =
ǫc

πηR2

√

2 f ( f − 1)2 exp

(

−v

[

ln

(

1
e f

)

+ f

])

(19)

with f = H/He > 1, ǫc = Φ2
0/(8π

2Λ) andv = ǫc/(kBT ). We
estimateǫc ≈ 2000 K forΛ ≈ 20µm. Hencev ≫ 1 in the
whole superconducting stateT < Tc ≈ 7.2K.

The characteristic frequency isωc = ǫc/(πηR2) ≈ 10 GHz
for R ≈ 300 nm. The rate decreases when the lateral dimen-
sion of the superconductor is reduced at a givenH. More
importantly, becauseǫc andv decrease linearly with the film
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thicknessd, the thermal activation rate increases gigantically
becausev appears as an exponent. Note that the spurious de-
crease ofΓe, whenH is very close toHe, is an artifact, because
Eq. (19) becomes invalid when∆U ∼ kBT . In reality, the rate
Γe increases monotonically whenH approachesHe.

B. Thermally assisted penetration

For vortex penetration,U ′′(rm) is not defined at the edges.
The Kramers equation becomes inapplicable, and an explicit
solution of the Fokker-Planck equation is needed.

We use the Fokker-Planck equation associated with Eq.
(16)

∂tρ(rv, t) = −∂rv J(rv, t), (20)

whereρ(rv, t) is the probability density of finding a vortex at
rv andJ is the probability current

J(rv, t) = −D exp[−U/(kBT )]∂rv{exp[U/(kBT )]ρ}, (21)

with the diffusion constantD = kBT/η. We use the standard
boundary condition for the calculations of the rate24, by as-
suming a source of vortices atrv = R and a sink atrv = 0. The
total probability of finding a vortex in the regionR−ξ ≤ rv ≤ R
is unity because vortex is initially thermalized at the edges,

ρ

∫ 2π

0
dφ

∫ R

R−ξ
rvdrv = 1, (22)

which givesρ(rv ≈ R, t) = 1/(2πRξ). R−ξ appears in the lower
bound of integral in Eq. (22) because of the uncertainty of the
vortex coordinate due to the vortex core of finite size. We are
interest in the probability for the vortex penetration, where
initially no vortex is located at the center of the disk. To find
the thermal activation rate, we can assume a sink at the center
of the disk and use the boundary conditionρ(rv = 0, t) = 0.
That means we restart the measurement once the vortex enters
into the disk.

Here we consider the regime where∆U ≫ kBT . In this
case, the activation rate for vortex is small, thusJ and∂tρ are
small25. Then the probability current is almost independent
onrv, i.e.,∂rv J = 0. Integrating Eq. (21) fromrv = 0 torv = R
and using the boundary condition, we have

Dρ(rv ≈ R) = J
∫ R

0
exp[U/(kBT )] drv, (23)

where we have usedU(rv = R) = 0 because the vortex does
not experience the surface barrier at the rim. Thus the thermal
activation rate is given by

Γp ≡ 2πRJ =
D
ξ

[∫ R

0
exp[U/(kBT )] drv

]−1

. (24)

The characteristic energy scale of the barrier isǫc. Since
v = ǫc/(kBT ) ≫ 1, the integrand drops very rapidly and the

dominant contribution is from the region near the barrier. We
use the saddle point approximation

U(rv)
ǫc
≈ U(rb) +

1
2
U′′(rb)(rv − rb)2, (25)

withU′′(rb) < 0. Furthermore we use the following approxi-
mation becausev ≫ 1

exp[vU′′(rb)(rv − rb)2/2] ≈

√

2π
−vU′′(rb)

δ(rv − rb). (26)

Then the rate becomes

Γp =
D
ξ

exp[−vU(rb)]

√

−vU′′(rb)
2π

. (27)

Let us compare Eq. (27) to the Kramers formula Eq. (18).
These two expressions coincide ifU ′′(rm) = 4πkBT/ξ2. For
the vortex penetration, the vortex is thermalized atrv = R and
gains kinetic energykBT . Because of the uncertainty of the
vortex position of the orderξ, one may assign an oscillation
frequency of the orderkBT/ξ2. We then arrive at a consis-
tent description based on the direct calculations of the Fokker-
Planck equation and the Kramers equation.

Finally, for the circular disk, we have the rate for vortex
penetration

Γp =
D
Rξ

(

ξe f
R

)v
√

2v f ( f − 1)
π

, (28)

with characteristic frequencyωc = D/Rξ ≈ 10 GHz. Note
that bothΓe andΓp are strongly nonlinear functions of the
radiusR and the applied fieldH.

C. Results

To estimate the activation rate, we use the parameters from
experiments15. λ = 150 nm,ξ = 30 nm at 2 K andTc =

7.2 K. We takeR = 300 nm,d = 2.5 nm andRn = 400Ω.
The temperature dependences ofξ(T ) andΛ(T ) are calculated
with the BCS theory. The rate for the vortex penetration and
exclusion is shown in Fig. 4.

Experimentally, one measures the distribution of the pen-
etration or exclusion fields when the magnetic field is swept
periodically. The distribution of the penetration field canbe
obtained from the rate in the following way26. The probabil-
ity for a vortex entering the disk after a waiting timet for the
branch with increasing magnetic field in Fig. 1(b) is

W[H(t)] = 1− exp

[

−
∫ t

0
Γp[H(t′)] dt′

]

. (29)

Hence the probability distribution of the penetration fieldis

P(H) =
dW
dH
=
Γp[H]

Ḣ
exp(−y) , (30)
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FIG. 4. (color online). Thermal activation rate for (a) the penetration
of a vortex, (b) the exclusion of a vortex. The mean-field penetration
and exclusion fields are also shown in the labels. Please notethat
the mean-field penetration field depends on temperature while the
mean-field exclusion field is temperature independent.

with

y(H) =
∫ H

0

Γp[H′]

Ḣ′
dH′, (31)

whereḢ is the derivative ofH with respect to time. For the
penetration field measurement,Ḣ > 0. In a similar way, one
obtains the distribution of the exclusion field for the branch
with decreasing magnetic field in Fig. 1(b)

P(H) =
Γe[H]

|Ḣ|
exp

[

−
∫ +∞

H

Γe[H′]

|Ḣ′|
dH′

]

. (32)

For the exclusion field measurement,Ḣ < 0. Experimentally,
the upper limit of the integral is replaced by the maximal mag-
netic field used in experiment. The difference is negligible
becauseΓe ∼ exp(−vH/He) ≈ 0 whenH ≫ He.

The distributions of the penetration field and exclusion field
as a function of temperature are shown in Fig. 1(e) and (f). In
the calculations, we usėH = 14 mT/s for penetration field
and Ḣ = −14 mT/s for the exclusion field. As the temper-
ature increases, the distribution profile becomes broad. The
most probable penetration field decreases with temperature,
and deviates from the mean-field value. AsT increases, the
exclusion field increases and also deviates strongly from the
mean-field value. Therefore the hysteretic region between the
vortex penetration and exclusion is reduced with increasing
temperature.

V. DISCUSSIONS

Let us discuss the effect of time dependent applied field.
First, the time dependent magnetic field induces an electric
field and current, which generates heat. Secondly, the induced

current exerts a Lorentz force on the vortex, thus it gives ad-
ditional contribution to the surface potential. Thirdly, one
should check the validity of the adiabatic approximation used
in the evaluation of the rate in Eqs. (19) and (28).

The induced electric field according to the Faraday’s Law
is E(r) = −Ḣr/(2c), and the generated Joule heating isQ =
σqπḢ2R4d/(8c2), whereσq is the conductivity of quasiparti-
cles and is much smaller than the conductivity of the normal
state. Using the heat balance equation,

dCρd∂tT =
Q
S
+ α (TB − T ) (33)

the temperature increase after the system reaches a stationary
state is∆T = σqḢ2R2d/(8c2α), whereα is the heat exchange
rate with substrate. HereC is the heat capacity andρd is the
mass density of the superconductor. One can neglect heating
if ∆T/T ≪ 1. For the sawtooth wave in Fig. 1(b) and (c),
Ḣ is of order ofωH Hp with ωH being the period of the time-
dependent field. To give an order of magnitude estimate, we
takeα ≈ 107 W/m2 · K and take the conductivity of Pb film in
the normal state aboveTc,σqd = 0.01Ω−1. ForωH ≪ 1 THz,
the heating effect is negligibly small.

The induced current of Cooper pairs by the time-dependent
magnetic field is accounted for by the last term on the right-
hand side of Eq. (8). The induced quasiparticlesJq(r) =
−σqḢr/(2c) tilts additionally the potential for vortex pene-
tration or exclusion. The change of the potential is

∆Uq = d
∫ R

0
Jq
Φ0

c
dr =

dσqḢΦ0R2

4c2
. (34)

It is required that∆Uq/ǫc ≪ 1. This condition is satisfied
whenωH ≪ 1 THz.

To validate the adiabatic approximation employed in Eqs.
(19) and (28), the change of the applied field should be much
slower than the thermalization time of vortex (or the relax-
ation time of a vortex to reach the energy minimum), such
that the vortex remains in equilibrium when the magnetic
field changes27. From Eq. (16), the thermalization time is
η/∂2

xU ≈ 1/ωc ≈ 10−10 s for the parameters used in the pre-
vious section. The adiabatic approximation thus is justified
whenωH ≪ 10 GHz.

Let us discuss the detailed form of the applied magnetic
field. The rate description is valid when∆U/(kBT ) ≫ 1.
The barrier nearHp can be written as∆U = ǫc(1 − H/Hp).
This gives an upper bound for the applied field 1− H/Hp ≫
kBT/ǫc ≈ 1/200 atTc. This means that the rate description is
valid almost in the whole region of the magnetic field below
Hp. On the other hand, the period of the applied field should
be large enough to count the event of vortex penetration in
one period, which gives an upper limit forωH . The upper
limit can be estimated as follows. The probability to observe
vortex penetration according to Eq. (29) is,W = 1− exp(−y).
The rate can be written asΓp ≈ ωc exp(−v(1− H/Hp)]. Then
we have

y = −
ωcHp

vḢ′
exp

[

−v

(

1− H
Hp

)]

≈ ωc

vωH
exp(−10), (35)
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where we have takenv(1− H/Hp) = 10, such that the rate de-
scription is valid. In order to have large probability for vortex
penetration in one period,y > 1, which givesωH < 10 kHz.
For such frequencies, the heating effect and tilt of the surface
barrier are negligible.

Some clues for the thermally assisted penetration and ex-
clusion of a vortex in mesoscopic superconductors can be
found by comparing two experiments11,12. In a recent exper-
iment by Crenet. al.12, they measured the penetration and
exclusion of the vortex in Pb films using an STM. No hys-
teresis in the penetration and exclusion of the vortex was ob-
served. While in a similar experiment by Nishioet. al.11,
hysteresis was clearly observed. These two experiments use
Pb superconducting disks with similar thickness and radius.
R ≈ 2ξ ≈ 60 nm in both experiments andd = 2.5 nm in Ref.11

andd = 5.5 nm in Ref.12. The temperature in Ref.12 is 4.3K
while in Ref.11 is 2K with Tc ≈ 7.2 K. According to Fig. 1
(e) and (f), increasing the temperature reduces the hysteresis,
which disappears eventually at higher temperature. The ther-
mally assisted penetration and exclusion of vortex thus can
qualitatively account for the difference in Ref.12 and Ref.11.

In summary, we have studied the thermally activated pen-
etration and exclusion of a single vortex in a mesoscopic su-
perconductor. We derived the energy barrier for a vortex as a
particle using the London approximation, from which we ob-

tained the mean-field penetration, exclusion field and thermo-
dynamic critical field. We then calculated the thermal activa-
tion rate for the vortex penetration and exclusion based on the
Fokker-Planck equation and Kramers’ escape rate in the adia-
batic region of field change. Based on the activation rate, we
obtained the distribution of the penetration and exclusionfield
due to thermal activation. Finally we proposed measurements
of the distribution of penetration and exclusion magnetic fields
to test our model of thermally assisted single-vortex motion in
mesoscopic superconductors.
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