
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Microscopic derivation of two-component Ginzburg-Landau
model and conditions of its applicability in two-band

systems
Mihail Silaev and Egor Babaev

Phys. Rev. B 85, 134514 — Published 16 April 2012
DOI: 10.1103/PhysRevB.85.134514

http://dx.doi.org/10.1103/PhysRevB.85.134514


LK12858B

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Microscopic derivation of two-component Ginzburg-Landau model and conditions of

its applicability in two-band systems

Mihail Silaev1, 2 and Egor Babaev1, 3

1Department of Theoretical Physics, The Royal Institute of Technology, Stockholm, SE-10691 Sweden
2Institute for Physics of Microstructures RAS, 603950 Nizhny Novgorod, Russia.
3 Department of Physics, University of Massachusetts Amherst, MA 01003 USA

We report a microscopic derivation of two-component Ginzburg-Landau (GL) field theory and
the conditions of its validity in two-band superconductors. We also investigate the conditions when
microscopically derived or phenomenological GL models fail and one should resort to a microscopic
description. We show that besides being directly applicable at elevated temperatures, a version of a
minimal two-component GL theory in certain cases also gives accurate description of certain aspects
of a two-band system even substantially far from Tc. This shows that two-component GL model can
be used for addressing a wide range of questions in multiband systems, in particular vortex physics
and magnetic response. We also argue that single Ginzburg-Landau parameter cannot in general
characterize magnetic response of multiband systems.

PACS numbers:

I. INTRODUCTION

Ginzburg-Landau theory of single-component super-
conductors has historically proven its strong predicting
power and its extraordinary value as a phenomenolog-
ical tool. This is despite the fact that formally it can
be justified only in some cases in a very narrow band of
temperatures. The temperature on the one hand should
be high enough to permit an expansion in a small order
parameter. On the other hand the temperature should
not be too high because the mean-field theory becomes
invalid near Tc due to critical fluctuations. Nonetheless
the great success of the GL theory is due to the fact that
it yields a qualitatively correct picture in extremely wide
range of temperatures even when its application cannot
be justified on formal grounds.

Shortly after the theoretical proposal of two-band su-
perconductivity and more recently, two-component GL
(TCGL) expansions were done in application to two-
band systems, see e.g.1. However in contrast to single-
component GL theory, the conditions under which TCGL
model is valid is still widely believed to be an open ques-
tion. In this work, we resolve this question. By taking
advantage of the recently calculated normal modes and
length scales in two-band Eilenberger model8 we present
the first self-consistent microscopic analysis of the ap-
plicability of TCGL theories to describe both linear and
nonlinear responses of two-component superconductors.
The results validate applicability to TCGL for studying
of a wide spectrum of physical questions, including as-
pects of physics in low-temperatures regimes.

The problem: the temperature range of validity of
TCGL model is bounded from below by a requirement
that the field amplitudes should be small. More impor-
tant bound follows from the observed, under certain con-
ditions, disappearance of one of two fundamental length
scales governing the asymptotical behavior of the super-
fluid density in microscopic theories8. This implies that

classical two-component field theory obtained in power-
law expansion does fail at low temperatures or at sub-
stantially strong interband couplings8. Also, like for its
single-component counterpart, the region of validity of
TCGL expansion is bounded from above by a fluctua-
tion region.

The key difference between TCGL and single-
component GL theory is the fact that the former has sev-
eral coherence lengths. The existence of multiple length
scales which arise from hybridized normal modes of the
linearized TCGL theory, can dramatically affect the mag-
netic response of the system7. Under certain conditions it
results in situations where the London penetration length
falls between two coherence lengths5, which was recently
termed “type-1.5” regime6 (for a recent brief review
see9). However because the condensates in the bands are
not independently conserved, in the limit T → Tc there
should be indeed only one divergent length scale associ-
ated with density variations. This in turn implies that
in certain cases there also could be a temperature range
close to Tc where long-wavelength physics is well approx-
imated by a single-component GL theory (although this
regime is not generic since its width is controlled by dif-
ferent parameters than the fluctuation region and thus
it can be non-existent because of critical fluctuations).
Therefore the conditions of the applicability of TCGL
are quite different from that of single-component GL the-
ory and warrant a careful investigation, which we present
below.

II. MODEL AND BASIC EQUATIONS

Expansion in powers of gradients and gap func-
tions of microscopic equations yields the two-component
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Ginzburg-Landau (TCGL) free energy density:

F =
{

∑

j=1,2

(

aj |∆j |2 +
bj
2
|∆j |4 +Kj |D∆j|2

)

− γ (∆1∆
∗
2 +∆2∆

∗
1) +

B2

8π

}

. (1)

where D = ∇ + iA, A and B are the vector poten-
tial and magnetic field and ∆1,2 are the gap functions
in two different bands. Despite the fields ∆1,2 are often
called “two order parameters” in the literature, below
we avoid this terminology since it is not quite accurate.
First there is only U(1) local symmetry in this model in-
spite of the presence of two components, since the other
global U(1) symmetry is explicitly broken by the terms
γ (∆1∆

∗
2 +∆2∆

∗
1). Second, and more important circum-

stance is that the applicability of the Ginzburg-Landau
or Gross-Pitaevskii classical field theory does not in gen-
eral require any broken symmetries. The simplest exam-
ple being two-dimensional superfluids at finite tempera-
ture: they can be indeed be described by Gross-Pitaevskii
classical complex field, yet they do not possess sponta-
neously broken symmetry. Likewise in superfluid turbu-
lence there is even no algebraic long-range order yet the
system can be described by a classical complex field. In-
deed in some cases, like e.g. in U(1)×U(1) superconduc-
tors or superfluids one can write down two-component
classical field theory on symmetry grounds. A U(1) sys-
tem such as two-band superconductors can also under
certain conditions be described by two-component clas-
sical field theory, although it does not automatically fol-
lows from its symmetry. The main aim of this paper is to
analyze under which conditions two-band superconduc-
tors are described by TCGL theory.
To verify applicability of TCGL theory we present

a comparative study of linear response and non-linear
regime in TCGL and exact microscopic theories. We con-
sider the microscopic model of clean superconductor with
two overlapping bands at the Fermi level8. Within quasi-
classical approximation the band parameters character-
izing the two different cylindrical sheets of the Fermi sur-
face are the Fermi velocities VFj and the partial densities
of states (DOS) νj , labelled by the band index j = 1, 2.
It is convenient to normalize the energies to the critical

temperature Tc and length to r0 = ~VF1/Tc. The vector
potential is normalized by φ0/(2πr0), the current density
normalized by cφ0/(8π

2r30) and therefore the magnetic
field is measured in units φ0/(2πr

2
0) where φ0 = π~c/e

is the magnetic flux quantum. In these units the Eilen-
berger equations for quasiclassical propagators take the
form

vFjnpDfj + 2ωnfj − 2∆jgj = 0, (2)

vFjnpD
∗f+

j − 2ωnf
+
j + 2∆∗

jgj = 0.

Here vFj = VFj/VF1, ωn = (2n + 1)πT are Matsubara
frequencies, the vector np = (cos θp, sin θp) parameter-
izes the position on 2D cylindrical Fermi surfaces. The

quasiclassical Green’s functions in each band obey nor-
malization condition g2j + fjf

+
j = 1.

The self-consistency equation for the gaps is

∆i = T

Nd
∑

n=0

∫ 2π

0

λijfjdθp. (3)

The coupling matrix λij satisfies the symmetry relations
n1λ12 = n2λ21 where ni are the partial densities of states
normalized so that n1 + n2 = 1. The vector potential
satisfies the Maxwell equation ∇×∇×A = j where the
current is

j = −T
∑

j=1,2

σj

Nd
∑

n=0

Im

∫ 2π

0

npgjdθp. (4)

The parameters σj are given by σj = 4πρnjvFj and

ρ = (2e/c)2(r0VF1)
2ν0.

The derivation of the TCGL functional (1) from the
microscopic equations1 formally follows the standard
scheme (we present it in the Appendix A). First we
find the solutions of Eqs.(2) in the form of the expan-
sion by powers of the gap functions amplitudes ∆1,2 and
their gradients. Then these solutions are substituted to
the self-consistency equation for the gap functions which
yields the TCGL theory. The derivation of coefficients in
the expansion (1) is presented in the Appendix A. Here
we denote the values of coefficients obtained from micro-
scopic theory as āν , b̄ν , K̄ν and γ̄ which are given by the
expressions

āi = ρni(λ̄ii + lnT −Gc) (5)

γ̄ = ρn1n2λJ/DetΛ̂

b̄i = ρniX/T 2

K̄i = ρv2Fib̄i/4

where λJ = λ21/n1 = λ12/n2. Here X = 7ζ(3)/8π2,

λ̄ij = λ−1
ij and Gc = [Trλ̂−

√

Trλ̂2 − 4Detλ̂]/(2Detλ̂).
Note that in general the derivation of the TCGL model

is not implemented as an expansion in powers of a single
small parameter τ = (1 − T/Tc) but the outlined above
procedure is based on the assumption of smallness of sev-
eral parameters (gap functions and their gradients). In-
deed the formal justification of these assumptions is not
straightforward and to the present moment it has been
absent1. In the present work we show under what condi-
tions these assumptions are rigorously justified.

III. ASYMPTOTIC BEHAVIOUR OF THE

FIELDS AND COHERENCE LENGTHS.

First we investigate the asymptotical behaviour of the
superconducting gaps formulated in terms of the linear
modes of the density fields both in GL7 and microscopic8
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theories. To find the linear modes we rewrite the equa-
tions in terms of the deviations of the gap fields from
their ground state values: ∆i = ∆i0 + ∆̄i where i = 1, 2.
To illuminate the qualitatively important physics we con-
sider a one-dimensional case in the absence of magnetic
field. Let us rewrite the TCGL equations by keeping on
the left hand side the terms linear in deviations ∆̄i while
collecting the higher-order nonlinear terms in the r.h.s.:

[

K1d
2/dx2 − a1 − 3b1∆

2
10

]

∆̄1 + γ∆̄2 = N1 (6)
[

K2d
2/dx2 − a2 − 3b2∆

2
20

]

∆̄2 + γ∆̄1 = N2.

The r.h.s. gives nonlinear source termsNi = bi(3∆i0∆̄
2
i+

∆̄3
i ). The solution of Eq.(6) can be found in Fourier

representation to have the form

∆̄i(k) = R̂−1
ij Nj(k) (7)

where

R12 = R21 = γ

Rii = −
[

Kik
2 + ai + 3bi∆

2
i0

]

.

In this case the response function R̂−1 has two poles in
the upper complex half-plane k = iµH and k = iµL which
determine the two inverse length scales or, equivalently,
the two masses of composite gap functions fields7, which
we denote as “heavy” µH and “light” µL (i.e. µH > µL).
Let us set K1 = K2 which can be accomplished by

rescaling the fields ∆1,2. Then the matrix R̂−1(k) can be
diagonailized with the k-independent rotation introduc-
ing the new linear modes of the fields Φβ = Uβi∆̄i and
the sources Nβ = UβiNi where β = L,H and i = 1, 2.

The rotation matrix Û is characterized by the mixing
angle7,8 as follows:

Û =

(

cos θL sin θL
− sin θH cos θH

)

(8)

Using the diagonal form of the response function
R̂−1(k) in the real-space domain we obtain

Φβ(x) = − 1

2µβ

∫ ∞

0

dx1e
−µβ |x1−x|Nβ(x1) + Cβe

−µβx

(9)
where Cβ =

∫∞

0 [Nβ(x) + 2Nβ(0)] e
−µβxdx/2µβ is cho-

sen so that to satisfy the boundary condition Φβ(0) =
Nβ(0)/µ

2
β which corresponds to the condition ∆1,2(0) =

0 at x = 0.

A. The limit τ → 0.

The expression (9) shows that two fields ΦL,H vary at
distinct coherence lengths: ξH = 1/µH and ξL = 1/µL.
They constitute fundamental length scales of the TCGL
theory (1). They characterize the asymptotical relax-
ation of the linear combinations of the fields ∆1,2, the lin-
ear combinations are represented by the composite fields

ΦL,H . Our calculation shows that these length scales
behave qualitatively different in the limit τ → 0. In-
finitesimally close to Tc the largest length diverges as
ξL ∼ τ−1/2 while the smaller ξH remains finite. Sim-
ilar behavior also follows from full microscopic calcula-
tion shown on Fig.(1)b,c,d where the temperature de-
pendence of masses µL,H is plotted. The presence of the
non-diverging length scale ξH makes the qualitative dif-
ference with the single-band GL theory but indeed does
not contradict the standard textbook picture that in the

limit τ → 0 the mean field theory of a U(1) system should
be well approximated by single-component GL model.
As we show below the amplitude of the “heavy” mode
vanishes in the τ → 0 limit faster than that of “light”
mode. Neglecting the “heavy” mode contribution one
indeed obtains a single-component GL theory.
We can use the Eq.(9) to evaluate the asymptotical

amplitudes of ΦH,L(r) in terms of the powers of the ex-
pansion parameter τ , in the limit τ → 0. The goal is
to evaluate how the contributions from different length
scales affect overall profile of the fields as they recover
their ground state value away from x = 0. First we note
that the source terms NL,H(x) are confined at the region
determined by the coherence length x < ξL. Inside this
region the amplitude of the deviations of the gaps from
the ground state values are large so that

∆̄i(x) ∼ ∆0i ∼ τ1/2.

Thus the amplitude of sources is of the order NL,H ∼
τ3/2. Let us consider the first term in the expression (9)
for β = L at the asymptotical region x > ξL. In this case
the integration is confined within x1 < ξL and yields the
following estimate ΦL ≈ ALe

−µLx where

AL ∼ ξLτ
3/2 ∼ τ1/2.

The second term in the Eq.(9) gives the contribution of
the same order to the amplitude of the “light” mode.
The amplitude of the “heavy” mode is determined en-

tirely by the first term in Eq.(9) for β = H . We consider
the asymptotical region x ≪ ξL therefore in this estimate
we put NH(x1) ≈ NH(0) so that

ΦH(x) = NH(0)
(

2e−µHx − 1
)

/µ2
H .

The function ΦH(x) has a characteristic scale ξH = 1/µH

and its overall amplitude is determined by the factor

AH ∼ NH(0)/µ2
H ∼ τ3/2.

Thus in the limit τ → 0 the “heavy” mode drops out be-
cause of the vanishing amplitude AH ∼ τ3/2 as compared
to the “light” mode AL ∼ τ1/2. Note that it is thus prin-
cipally incorrect to attribute different exponents directly
to the functions ∆i and to assume that they become equal
in the limit τ → 0 as claimed in2 and followed in some
other literature4.
On the qualitative level we give a less technical but on

the other hand more intuitively transparent description
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of the limiting behavior of the fields near Tc. We consider
the situation where the coefficients of quadratic terms in
Eq.(1) can be written in the form aj(T ) = αj(T−Tj) with
αj > 0. Thus in the small τ limit, first the weakest super-
conducting component becomes passive: it has nonzero
superfluid density only because of the bilinear Joseph-
son coupling γ(∆1∆

∗
2 + c.c.). To elucidate what happens

in the τ → 0 limit one can redefine fields using the fol-
lowing transformation ∆ = XDΨD(r) +XSΨS(r) where

XD = (α2(TD − T2), γ)
T , TD ≡ Tc is the critical temper-

ature, XS = (γ, α1(TS − T1))
T
and TS = T1+T2−TD <

TD. This transformation, mixes the gaps and produces
a representation where the bilinear Josephson coupling
between the new fields is eliminated at the cost of intro-
ducing mixed gradient and fourth-order couplings:

F =
∑

i,j=D,S KijDΨi (DΨj)
∗
+ βi(T − Ti)|Ψi|2 +

∑

i,j,k,l=D,S βijklRe(ΨiΨjΨ
∗
kΨ

∗
l ). (10)

In the limit τ → 0 the dominant component ΨD be-
comes single-component GL order parameter while the
component ΨS is passive. However instead of being in-
duced by the bilinear Josephson coupling, ΨS is induced
by the terms like ΨSΨ

∗
D|ΨD|2. Thus for τ → 0 one has

ΨD ∼ τ1/2. From the fact that βS(T − TS) and βSDDD

are finite at τ = 0 it follows that in the same limit we
have ΨD ≫ ΨS ∼ τ3/2. It means that in the limit τ → 0
retaining only the terms containing ΨD is justified and it
allows to approximate the model by a conventional single
order parameter theory.
For infinitesimally small τ there remains only single

GL equation for the order parameter ΨD

−KDDD
2ΨD + βD(T − Tc)ΨD + βDDDDΨD|ΨD|2 = 0

(11)
where βDDDD = (a22Db1 + a21Db2)/α1 and

βD =
TD − TS

TD − T2
> 0 (12)

KDD =
a1DK2 + a2DK1

α1α2(TD − T2)
,

where a1,2D = a1,2(TD).
Thus it is the disappearance of the amplitude of the

subdominant mode which allows one to take a single-
component GL limit in this mean-field theory. The
“heavy” mode with finite mass even infinitesimally close
to Tc is generated here by the presence of the term
|DΨS|2 ∼ ξ−2

H |ΨS|2 where ξH is a finite length not di-
verging at Tc. Therefore near Tc one has |DΨS|2 ∼
ξ−2
H |ΨS |2 ∼ τ3 which is of the same order as the other
terms in the free energy functional. Note that the fields
ΨD,S introduced here are not directly related to the nor-
mal modes of the system since the mixed gradient and
quartic terms will lead to mode mixing7 at finite τ . Also
note that despite there is a growing disparity of the co-
herence lengths at small but finite τ when one approaches
critical temperature, it does not imply that one necessary

falls into type-1.5 regime because ξ1 < λ < ξ2 is only nec-
essary but not sufficient condition for the appearance of
this regime. That is, a system in some of these cases is
type-I despite having ξ1 < λ < ξ2.

B. GL theory at finite τ .

Unfortunately the limiting τ → 0 analysis does not
have much physical significance in a generic two-band
system. First, the mean-field theory becomes invalid
in the same limit τ → 0 so the regime where the sys-
tem is well described by single-component GL theory
can be cutoff by critical fluctuations. More importantly,
as we argue below, this analysis is in general inapplica-
ble for an assessment of, e.g. magnetic response of the
system. The magnetic response is a finite-length scale
property and requires finite-τ theory. Finally, as shown
in microscopic calculations the masses of the fields in
two-band models in certain cases change rapidly and in
a non-trivial way with decreasing temperature. Thus
a limiting τ → 0 analysis in general cannot give even
an approximate physical picture even at very small τ .
In particular that implies that in a two-band system, a
Ginzburg-Landau parameter (which one, may in princi-
ple construct in the τ → 0 limit at a mean-field level)
is not a useful characteristic. Rather it is required to
make an accurate quantitative study of two-band the-
ory at finite τ to determine the conditions under which
the model can be described by singe- or two- compo-
nent GL theory or does not allow a description by any
such GL functionals at all. In order to do it we uti-
lize the exact form of the response function R̂−1 (i.e.
valid at any T ) found from the linearized microscopic
theory according to the procedure developed in8. In con-
trast to the GL theory, the microscopic response func-
tion R̂−1(k) has branch cuts along the imaginary axis

starting at point ±ikbc where kbc = 2
√

∆2
02 + (πT )2 (we

assume that ∆02 < ∆01). Inside the circle |k| < |kbc|
shown by the white area in Fig.(1)a the response func-
tion is meromorphic, i.e. its singular points are only poles
shown by the red crosses. The non-meromorphic region
is marked by the yellow shade in all panels of Fig.(1). In
general inside the meromorphic circle there can be two
poles of R̂−1(k) at Im(k) > 0 shown by red crosses in
Fig.(1)a. Analogously to TCGL these poles determine
the masses µL,H of the “heavy” and “light” modes, and
thus the corresponding coherence lengths. The contribu-
tion of the branch cut contains the continuous spectrum
of length scales shorter than 1/kbc which can not be de-
scribed within GL theory. Moreover for some parame-
ters (e.g. at strong Josephson coupling) one of the poles
which corresponds to the “heavy” mode can disappear
by merging with the branch cut. In this case there is
only one fundamental length scale left since the contri-
bution of the “heavy” mode can not be separated from
the branch cut.
The microscopically calculated temperature dependen-
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cies of masses of the modes in a superconductor with
weak interband coupling are shown in Fig.(1)b by red
solid lines. For a reference we also plot masses in
U(1)×U(1) theory which has two independently diverg-
ing coherence lengths at T = Tc1 and T = Tc2 (chosen
to be Tc2 = 0.5Tc1). For coupled bands the hybridiza-
tion of modes removes the divergence at T = Tc2 and
introduces the avoided crossing point of the “heavy” and
“light” modes.

Let us now assess the applicability of minimal TCGL
model Eq.(1) without using expansion in powers of τ .
Compared to the previous works1, we use more com-
plicated temperature dependence of the coefficients de-
rived in the Appendix A. Let us compare the behavior
of the masses of the modes in the microscopically de-
rived TCGL and a full microscopic theory. It is shown
for the cases of weak and strong interband coupling in
Fig.(1)c,d. We have found that TCGL theory describes
the lowest characteristic mass µL(T ) with a very good
accuracy near Tc [compare the blue and red curves in
Fig. (1)c,d]. Remarkably, when interband coupling is
relatively weak [Fig.(1)c] the “light” mode is quite well
described by TCGL also at low temperatures down to
T = 0.5Tc around which the weak band crosses over from
active to passive (proximity-induced) superconductivity.
Indeed the τ parameter is large in that case and cannot
be used at all to justify a GL expansion. Nonetheless
if the interband coupling is small one does have a small
parameter to implement a GL expansion for one of the
components. Namely one can still expand, e.g. in the
powers of the weak gap |∆2|/πT ≪ 1. On the other hand
for the “heavy” mode we obtain some discrepancies even
relatively close to Tc, although TCGL theory gives quali-
tatively correct picture for this mode when the interband
coupling is not too strong. More substantial discrepan-
cies between TCGL and microscopic theories appear only
at lower temperatures or at stronger interband coupling
[Fig.(1)d] where the microscopic response function has
only one pole, while TCGL theory generically has two
poles.

Comparison of the masses of normal modes of a U(1)×
U(1) (dotted blue lines) and a weakly coupled two-band
U(1) model (red lines) shown in Fig.(1)d demonstrates
that adding a Josephson coupling removes divergence of
coherence length of the weak band. This is because the
Josephson coupling represents explicit symmetry break-
down from U(1)×U(1) to U(1) and thus eliminates one of
the superconducting phase transitions at lower Tc. How-
ever when this coupling is weak one of the coherence
lengths has a substantial peak around that temperature.
The peaked behaviour of coherence length near the criti-
cal temperature of the weak superconducting band is has
clear physical manifestation in the temperature depen-
dence of the vortex core size. Let us note that to assess
the overall size of core requires analysis of full nonlinear
theory. In Fig.(2) we plot the sizes of the vortex cores
in weak and strong bands calculated in the full nonlinear
model according to the two alternative definitions. The

first one is the slope of the gap function distribution at
r = 0 which characterizes the width of the vortex core
near the center Rcj = (d ln∆j/dr)

−1(r = 0) [Fig.(2)a].
The second one is the healing length Lhj defined as
∆j(Lhj) = 0.95∆0j [Fig.(2)b] (i.e. this length is not di-
rectly related to exponents but quantifies at what length
scales the gap functions almost recover their ground state
values). Both definitions demonstrate the stretching of
the vortex core in the weak component related to the
peak of the coherence length shown in the Fig.(1)d. Note
that the weak band healing length Lh2(T ) in Fig.(2)b
has maximum at the temperature slightly larger than
Tc2 which is consistent with the fact that the maximum
of coherence length ξL (equivalently the minimum of the
field mass µL) in Fig.(1)d is shifted to the temperature
above Tc2 (Tc2 is defined as the lower critical temperature
in the limit of no Josephson coupling).

C. Effects of higher order gradient terms.

The origin of the small disagreement between the
TCGL and microscopic masses of the “heavy” mode is
the absence of higher-order gradient terms in the expan-
sion (1). The inclusion of higher order gradients means
adding more terms to the Taylor expansion of the func-
tion R̂(k) which is known to converge inside the circle
|k| < |kbc|. Using this procedure one can get a bet-
ter agreement with microscopic theory (compare green
dashed and red solid lines in Fig.(1)c,d). However, such
an extension is hardly useful because as a byproduct
it generates unphysical artifacts such as many parasitic
poles of the response function R̂−1(k) outside the circle
|k| < |kbc|. The position of parasitic poles appearing in
the sixth-order gradient expansion is shown by green cir-
cles in the Fig.(1a). These parasitic poles lie outside the
imaginary axis, thus yielding unphysical oscillating con-
tributions to asymptotical behavior of the corresponding
linear modes.

D. Characteristic length scale of the phase

difference variations.

In the U(1)×U(1) system one has two massive modes
associated with the modules of the complex fields and
a Goldstone boson associated with the phase difference.
If one adds a Josephson coupling there appears also the
third mass parameter. When Josephson term is present
the phase difference acquires a preferred value. Its de-
viations from the preferred value are characterized by a
mass parameter. In the constant density approximation
the terms of the TCGL functional which describe the
phase difference mode are:

1

2

K1K2∆
2
10∆

2
20

K1∆2
10 +K2∆2

20

(∇(θ1 − θ2))
2 − γ∆10∆20 cos(θ1 − θ2)

(13)
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Expanding the second term gives the mass parameter for
the phase difference mode

m(θ1−θ2) =

√

γ
K1∆2

10 +K2∆2
20

K1K2∆10∆20
. (14)

It is useful to consider the behavior of this mass in the
limit T → Tc. In that case we have ∆10,20 ∝

√

1− T/Tc.
Thus

lim
T→Tc

(m(θ1−θ2)) → const (15)

To summarize this part we have shown that the TCGL
model of the form given by Eq. (1) with microscopically
derived temperature dependencies of coefficients is over-
all highly accurate at elevated temperatures. The small
discrepancies with microscopic theory affect only short-
length scale physics which implies that TCGL model
gives the precise answer for long-range intervortex forces.
Also we find that in some cases the TCGL model provides
an accurate description of the large length scales physics
at temperatures much lower than Tc. In Appendix A1
we discuss the origin of the disagreements between these
results and some of the recent literature4.

IV. VORTEX STRUCTURE: TCGL VS

MICROSCOPIC THEORY.

For inhomogeneous situations, such as vortex solu-
tions, the overall profiles of the fields is affected not only
by fundamental length scales (i.e. coherence lengths) but
also by nonlinear effects.
Let us now study non-linear effects case of vortex so-

lutions. Obviously, because of the growing importance of
nonlinear effects at lower temperatures the Eq.(1) cannot
describe quantitatively well the total structure of vortices
when T ≪ Tc. In Fig.(3) we compare the vortex solu-
tions in the self-consistent microscopic theory (red dot-
ted curves) and in the corresponding TCGL theory with
coefficients obtained by expansion (blue dashed-dotted
curves). One can see that at elevated temperatures the
agreement is very good but for lower temperatures there
is a growing discrepancy. One of the reasons behind the
discrepancy is the trivial shift of the ground state values
of the fields by nonlinearities. Note that at the level of
GL theory the inclusion of more nonlinear terms merely
renormalizes masses and length scales but does not alter
the form of linear theory7. Thus in the current exam-
ple of the full nonlinear model it is also reasonable to
check if one could get a better agreement with micro-
scopic theory by treating the coefficients in the minimal
TCGL model Eq.(1) phenomenologically. For all practi-
cal purposes this provides alternative route to the more
restrictive approach of finding a refined microscopic ex-
pansion. A good agreement with the microscopic theory
in this procedure will imply that the system does posses
a description in terms of a classical two-component field
theory.

T 0.98 0.8 0.7 0.5 0.4 0.2

b1 0.95b̄1 0.85b̄1 0.76b̄1 0.54b̄1 0.44b̄1 0.18b̄1

K1 K̄1 0.8K̄1 0.65K̄1 0.5K̄1 0.4K̄1 0.15K̄1

b2 b̄2 b̄2 b̄2 0.76b̄2 0.64b̄2 0.29b̄2

K2 K̄2 0.55K̄2 0.35K̄2 0.3K̄2 0.15K̄2 0.08K̄2

TABLE I: Fitting of TCGL coefficients to match the solutions
of exact microscopic equations. Here we denote the values of
coefficients obtained from microscopic theory as āν , b̄ν , K̄ν

and γ̄.

We compared the vortex solutions in the TCGL theory
with fitted coefficients and the exact microscopic model
for the particular example of the system with coupling
constants λ11 = 0.5, λ22 = 0.46, λ12 = λ21 = 0.005 and
vF2/vF1 = 5. The values of the coefficients which provide
the best fit are listed in the table I.
By the green dashed lines we show the fits obtained by

setting the values of the TCGL coefficients as listed in the
table I. By doing it we find that the solutions of micro-
scopic equations in a large region of parameters can be fit-
ted with excellent accuracy by the effective TCGL theory,
even at quite low temperatures. The main discrepancies
at very low temperatures arise due to non-local effects
which lead to the disappearance of the “heavy” asymp-
totic mode as well as due to Kramer-Pesch-like vortex
core shrinking8,10 in both components which cannot be
captured in the TCGL field theory. Note however that
even in the case where TCGL description starts break-
ing down, the discrepancy is mostly pronounced near the
origin of the core, while the soft modes and long-range
intervortex interaction can be well described by a phe-
nomenological TCGL theory.

V. CONCLUSIONS

TCGL model is widely used for describing various
aspects of multiband superconductivity. However the
TCGL expansion has never been rigorously justified for
two-band systems, and the current literature contains di-
ametrically opposite claims regarding the validity of the
expansion or such basic aspects as the form of TCGL
functional and behavior of the coherence lengths near
Tc

1,2,4. We investigated under which conditions a two-
band system can be described by a TCGL theory. First
we obtained a TCGL model with a microscopically de-
rived temperature dependence of coefficients (more gen-
eral than what could be obtained in a straightforward
τ expansion) and demonstrated that it gives an accu-
rate description of length scales and vortex solutions at
elevated temperatures by a comparison with an exact mi-
croscopic theory. Second we have shown that, in a much
wider range of temperatures, the minimal TCGL model
with phenomenologically adjusted coefficients gives an
accurate description of linear and nonlinear physics such
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as vortex excitations and thus the magnetic response of
the system.
The existence of two coherence lengths ξL, ξH along

with the magnetic field penetration lengths λ in the
TCGL model makes it impossible in general to define the
Ginzburg-Landau parameter in two-band systems, unless
one takes the limit τ → 0. In contrast to U(1) × U(1)
superconductors, the two-band systems have only U(1)
symmetry, and as we discussed above it guarantees that
one of the modes drops out of the mean field theory
the limit τ → 0 allowing one to define in that limit
κGL = ξL(T → Tc)/λ(T → Tc). However, even slightly
away from the limit τ → 0, when interband coupling is
weak the ratio ξL/λ has a very strong temperature depen-
dence and the second mode develops with the coherence
ξH . Thus in general κGL cannot be used as universal
characteristic of magnetic response of two-band systems.
This work is supported by Knut and Alice Wallen-

berg Foundation through the Royal Swedish Academy of
Sciences, Swedish Research Council, US NSF CAREER
Award No. DMR-0955902, ”Dynasty” foundation, Pres-
idential RSS Council (Grant No. MK-4211.2011.2) and
Russian Foundation for Basic Research.

Appendix A: Microscopic model and derivation of

TCGL

1. Ginzburg-Landau expansion.

To derive differential GL equations (6) from the mi-
croscopic theory, first we find the solutions of Eilenberger
Eqs.(2) in the form of the expansion by the gap functions
amplitudes |∆1,2| and their gradients |(Dnp)∆1,2|. Then
these solutions are substituted to the self-consistency
Eq.(3). Using this procedure we find the solutions of
Eqs.(2) in the form:

f =
∆

ωn
− |∆|2∆

2ω3
n

− vF
2ω2

n

(Dnp)∆ +
v2F
4ω3

n

(Dnp)(Dnp)∆.

(A1)
and f+(np) = f∗(−np). Note that a GL expansion is
based on neglecting the higher-order terms in powers of
|∆| and |(Dnp)∆|. Indeed this approximation naturally
fails in in a number of cases. In this work we determine
the regimes when it can be justified, in particular by di-
rect comparison with exact microscopic model. Let us
determine microscopic coefficients in the GL expansion.
Substituting to the self-consistency Eqs.(3) and integrat-
ing by θp we obtain

∆1 = (λ11∆1 + λ12∆2)G+ (λ11GL1 + λ12GL2) (A2)

∆2 = (λ21∆1 + λ22∆2)G+ (λ21GL1 + λ22GL2) (A3)

where

G = 2

Nd
∑

n=0

πT

ωn
; X =

∑

n=0

πT

ω3
n

(A4)

GLj = X

(

v2Fj

4
D

2∆j − |∆j |2∆j

)

(A5)

Expressing GLi from the equations above we obtain

n1GL1 = n1

(

λ22

DetΛ̂
−G

)

∆1 −
λJn1n2

DetΛ̂
∆2 (A6)

n2GL2 = n2

(

λ11

DetΛ̂
−G

)

∆2 −
λJn1n2

DetΛ̂
∆1 (A7)

Comparing these Eqs with Eqs (6) we obtain the expres-
sion for the coefficients

āi = ρni(λ̃ii + lnT −Gc) (A8)

γ̄ = ρn1n2λJ/DetΛ̂

b̄i = ρniX/T 2

K̄i = ρv2Fib̄i/4

where λJ = λ21/n1 = λ12/n2. The temperature is nor-
malized to the Tc. Here X = 7ζ(3)/8π2, λ̄ij = λ−1

ij and

Gc = G(Tc) =
Trλ−

√
Trλ2 − 4Detλ

2Detλ
.

We have used the expression G(T ) = G(Tc)− lnT . Near
the critical temperature lnT ≈ −τ and we obtain āi =
niλJ (T − Ti) where Ti = (1 +Gc − λ̃ii).

2. Remark on τ -expansion

Here we comment on the origin of the qualitative dis-
agreement of our result compared to the work4 which
aims at calculating higher order corrections in τ = (1 −
T/Tc). Fist let us make a few general remarks: Note that
in the derivation of TCGL theory we do not implement
an expansion in powers of τ = (1 − T/Tc). Instead we
retain more complicated temperature dependence of the
coefficients. Also we stress that any approach to GL ex-
pansion depends on what parameters are assumed to be
small, the question is always how and for what param-
eters such an assumption is justified. The origin of the
principal difference in the behavior of the length scales
(Ref.4 asserts that there are two divergent length scales
when τ → 0). It originates in the adoption in4 of a
U(1)×U(1) theory as the leading order in expansion fol-
lowing the erroneous derivation in2 (see the discussion
of the errors in that derivation in3). Another problem
with a straightforward implementation of the expansion
by τ is that in general it is incontrollable in the next to
leading order in two-band theories, if one explicitly re-
tains two gap fields. This is because in contrast to the
single-component GL theory, in general it is not possible
to classify different terms by powers of the parameter τ .
As shown in the main body of the paper, system contains
a mode with non-diverging coherence length so that the
spatial derivatives in general do not necessary add the
power of τ . Also since the work4 uses as a leading order
the incorrect derivation from2 it requires adjustments.
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Appendix B: Asymptotic in two-dimensional vortex

problem

The consideration of asymptotic modes in Sec.III can
be generalized for the two-dimensional axially symmet-
ric problem, which allows to treat the asymptotical be-
haviour of the gap functions far from the vortex core.
First of all in this case one should substitute the d2/dx2

by ∇2
r = d2/dr2 + r−1d/dr in Eq. (6).

Choosing the proper value of the mixing angle the l.h.s.
of Eq. (6) can be diagonalized and the system acquires
the form

(

∇
2
r − µ2

i

)

Ψ̄i = Ni (B1)

where the nonlinear NH,L are obtained according to the
rule (8).
Our interest is the asymptotical behaviour of the fields

∆̄L,H determined by the equation above. The solution of
Eq.(B1) can be found in Fourier representation ∆̄(k) =
∫∞

−∞ ∆̄(x)eikxdx to have the form (7). In this particular
case the response function is a diagonal matrix:

R̂(k) =

(

(k2 + µ2
H) 0

0 (k2 + µ2
L)

)

In the real-space domain the field components can be
expressed with the help of Fourier-Bessel transform

Ψ̄i =

∫ ∞

0

J0(kr1)J0(kr)R̂
−1
ij Nj(r1)kdkr1dr1.

The integration by k in this expression can be performed
by transforming the contour in the complex plane.Using
the exact form of the response function the fields asymp-
totic is found to be given by the following expression

Ψ̄i(r) = πK0(µir)

∫ r

0

r1dr1I0(µir1)Ni(r1) + (B2)

πI0(µir)

∫ ∞

r

r1dr1K0(µir1)Ni(r1)

where K0 and I0 are modified Bessel functions having
the following asymptotics K0, I0(x) ≈ e∓x/

√
x.

The expression (B2) yields a number of length scales
characterizing the asymptotical relaxation of the gap
fields. The largest length is the mean field coherence
length ξL = 1/µL ∼ 1/τ1/2. However the presence of the
another linear mode in the theory sets the scale which
is proportional to ξH = 1/µH . This scale remains finite
even at T = Tc but its amplitude vanishes.

FIG. 1: (a) Comparison of the response function singulari-
ties in the complex k plane given by the exact microscopic
and microscopically derived TCGL theories. Red crosses are
the physical poles of microscopic theory. Blue squares corre-
spond to the conventional TCGL theory while green circles
show the parasitic poles appearing in TCGL expansion up to
sixth order in gradients. The white circle is the area where
R̂(k) is analytical and R̂−1(k) is meromorphic. In all plots
(a-d) the yellow shade indicates the area where the response
function is not meromorphic. (b) Comparison of the masses
of normal modes of a U(1) × U(1) (dotted blue lines) and
a weakly coupled two-band U(1) model (red lines). For the
weak component in the U(1) × U(1) we also plot the corre-
lation length for superconducting fluctuations in the normal
state for T > Tc2. As clearly seen in that plot, adding a
Josephson coupling removes divergence of coherence length of
the weak band. This is because the Josephson coupling repre-
sents explicit symmetry breakdown from U(1)×U(1) to U(1)
and thus eliminates the phase transition at lower Tc. However
when this coupling is weak one of the coherence lengths has
a peak around that temperature. (c) and (d) Comparison of
field masses given by microscopic (solid lines), TCGL (dotted)
and TCGL with sixth-order gradients (dashed lines) theories.
The microscopic parameters are λ11 = 0.5, λ22 = 0.426 and
λ12 = λ21 = 0.005; 0.01; 0.1 for (b,c,d) correspondingly. (e-f)
Comparison of the mixing angle behaviour given by the ex-
act microscopic (red lines) and microscopically derived TCGL
theories (blue line). Parameters are the same as on the pan-
els (c-d) correspondingly. Panels (d) and (f) show a pattern
how the TCGL theory starts to deviate from the microscopic
theory at lower temperature when interband coupling is in-
creased.
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FIG. 2: (a) Sizes of the vortex cores Rc1,2 and (b) healing
lengths Lh1,2 in weak (blue curve, open circles) and strong
bands (red curve, crosses) as functions of temperature. The
parameters are λ11 = 0.5, λ22 = 0.426, λ12 = λ21 = 0.0025
and vF2/vF1 = 1. In the low temperature domain, the vor-
tex core size in the weak component grows and reaches a
local maximum near the temperature Tc2 (the temperature
near which the weaker band crosses over from being active to
having superconductivity induced by an interband proximity
effect)8. In the absence of interband coupling there is a gen-
uine second superconducting phase transition at Tc2 = 0.5Tc1

where the size of the second core diverges. When interband
coupling is present it gives an upper bound to the core size in
this temperature domain, nonetheless this regime is especially
favorable for appearance of type-1.5 superconductivity8.

FIG. 3: Behavior of the gap functions ∆1,2(r) in a vortex
solution. Comparison of the results of exact microscopic cal-
culation (red dotted lines), TCGL with microscopically cal-
culated coefficients (blue dash-dotted lines) and TCGL with
phenomenologically fitted coefficients (green dashed lines) at
(a) T = 0.98, (b) T = 0.8, (c) T = 0.7, (d) T = 0.5, (e)
T = 0.4, (f) T = 0.2. Coupling constants are λ11 = 0.5,
λ22 = 0.46, λ12 = λ21 = 0.005 and vF2/vF1 = 5.
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