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An earlier theory of the quantum phase transition in metallic ferromagnets is revisited and gener-
alized in three ways. It is shown that the mechanism that leads to a fluctuation-induced first-order
transition in metallic ferromagnets with a low Curie temperature is valid, (1) irrespective of whether
the magnetic moments are supplied by the conduction electrons or by electrons in another band,
(2) for ferromagnets in the XY and Ising universality classes as well as for Heisenberg ferromagnets,
and (3) for any systems with a nonzero homogeneous magnetization, such as ferrimagnets or canted
ferromagnets. This vastly expands the class of materials for which a first-order transition at low
temperatures is expected, and it explains why strongly anisotropic ferromagnets, such as UGe2,
display a first-order transition as well as Heisenberg magnets.
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I. INTRODUCTION, AND RESULTS

Quantum phase transitions are a subject of great
interest.1,2 In contrast to classical or thermal phase tran-
sitions, which occur at a nonzero temperature Tc > 0 and
are driven by thermal fluctuations, quantum phase tran-
sitions occur at zero temperature, T = 0, as a function
of some non-thermal control parameter and are driven
by quantum fluctuations. In this paper we will focus
on quantum phase transitions in metallic systems. For
reasons discussed below, these transitions are especially
interesting.

A prototypical quantum phase transition is the one
from a paramagnetic metal to a ferromagnetic metal.
Indeed, the earliest theory of a quantum phase transi-
tion was the Stoner theory of ferromagnetism.3 Stoner
assumed that the conduction electrons are responsible
for the ferromagnetism, and developed a mean-field the-
ory that describes both the classical and the quantum
ferromagnetic transition. In an important paper, Hertz
later derived a Landau-Ginzburg-Wilson (LGW) func-
tional for this transition by considering a simple model
of itinerant electrons that interact only via a contact po-
tential in the particle-hole spin-triplet channel.1 Hertz
analyzed this (dynamical) LGW functional by means of
renormalization-group (RG) methods. He concluded that
the critical behavior in the physical dimensions d = 2 and
d = 3 is mean-field-like. That is, as far as the static crit-
ical exponents of the transition at T = 0 are concerned,
he concluded that Stoner theory is exact in d = 2 and
d = 3.

In the mid 1990s it was realized that the above con-
clusion is not correct. The problem is that in metals
at T = 0 there are gapless particle-hole excitations that

couple to the magnetic order-parameter fluctuations and
influence the quantum critical behavior for all dimensions
d ≤ 3. In Hertz’s theory this coupling is taken into ac-
count only in an approximation that does not suffice for
yielding the leading critical behavior. Technically, Hertz
theory treats the fermionic soft modes in a tree approx-
imation, whereas describing their influence on the criti-
cal behavior requires taking into account fermionic loops.
Physically, a correct description of any phase transition
must treat the order parameter fluctuations and all soft
modes that couple to them on equal footing.

A theory that takes into account these effects was de-
veloped by the present authors and T. Vojta. In Ref. 4
it was shown that the quantum phase transition from a
metallic paramagnet to an itinerant ferromagnet in the
absence of quenched disorder in d = 2 and d = 3 is
generically discontinuous, or of first order, in contrast to
the second-order transition with mean-field critical be-
havior predicted by Hertz theory.5 The mechanism be-
hind this phenomenon is analogous to what is known as a
fluctuation-induced first-order transition in superconduc-
tors and liquid crystals.6 There, soft fluctuations of the
electromagnetic vector potential (in superconductors) or
the nematic order parameter (in liquid crystals) couple
to the order parameter and effectively change the sign of
the cubic term in the equation of state, leading to a first-
order transition. In the quantum magnetic case, the role
of the additional soft modes is played by the fermionic
particle-hole excitations mentioned above that are mass-
less at T = 0. Since these modes acquire a mass at T > 0,
the tendency towards a first-order transition diminishes
with increasing temperature. This leads to a tricritical
point at a temperature Ttc > 0 that separates a line of
continuous transitions at T > Ttc from a line of first-order
transitions at T < Ttc. In a later paper with Rollbühler,
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FIG. 1: (Color online) Generic phase diagram of a metal-
lic magnet in the space spanned by temperature (T ), mag-
netic field (H), and the control parameter (t). Shown are the
long-range ordered magnetic (LRO) and paramagnetic (PM)
phases, lines of second-order transitions, surfaces of first-order
transitions (“tricritical wings”), the tricritical point (TCP),
and the two quantum critical points (QCP). The long-range
order can be of ferromagnetic or ferrimagnetic type, and the
electrons causing the long-range order can be in the same
band as the conduction electrons, or in a different band. See
the text for further explanation.

the effects of a magnetic fieldH were investigated.7 It was
found that in the space spanned by T , H, and the con-
trol parameter, tricritical wings, or surfaces of first-order
transitions, emanate from the tricritical point and termi-
nate in a pair of quantum critical points in the T = 0
plane. The wing boundaries at T > 0 are given by lines
of critical points that are reminiscent of a conventional
liquid-gas critical point and connect the tricritical point
with the quantum critical points at T = 0. The resulting
generic phase diagram is shown in Fig. 1. This general
picture is in good agreement with experimental results
for low-Curie-temperature metallic ferromagnets, includ-
ing ZrZn2,8 UGe2,9 URhGe,10, MnSi.11,12 and CoS2.13

In this paper we generalize our previous theory in three
important ways. First, we show that our previous results,
which had been derived under the same assumption made
by Stoner and by Hertz, namely, that the magnetism is
caused only by itinerant electrons, remain valid in metal-
lic systems where the magnetism is caused by electrons
in a different band than the conduction electrons.

Second, we show that the results are not restricted
to Heisenberg ferromagnets, contrary to what was im-
plied in Refs. 4 and 14. Rather, they apply equally
well to metallic XY or Ising magnets, since the mag-
netic moments couple to conduction electrons whose
spins have three degrees of freedom. This is an im-
portant point, since some of the relevant materials are
strongly anisotropic magnets, including UGe2 (easy axis)
and URhGe (easy plane).

Third, we show that the phase diagram shown in Fig.
1 also applies to generic metallic ferrimagnets. Ferrimag-
nets are materials that spontaneously develop both a ho-
mogeneous and a staggered magnetization at the same
critical value of either the temperature (for a classical
transition) or a non-thermal control parameter (for a
quantum transition). Physically, this can happen when
magnetic moments of unequal magnitude on a bipartite
lattice align in opposite directions.15 More generally, it
applies to any system with a nonvanishing homogeneous
magnetization, for instance, canted ferromagnets.

The unifying principle behind these generalizations is
the realization that coupling a homogeneous magneti-
zation to conduction electrons will produce the same
results irrespective of the microscopic origin of the
magetization.16 As a result, the phase diagram depicted
schematically in Fig. 1 is valid for generic metallic ferro-
magnets in addition to itinerant ones, for ferromagnets of
XY or Ising type in addition to Heisenberg magnets, and
for ferrimagnets as well as for ferromagnets.17 In all cases
we also consider the effects of nonmagnetic quenched dis-
order. In Ref. 4 it was shown that this type of disor-
der leads to an interesting phase diagram with a num-
ber of multi-critical points, and that sufficiently strong
quenched disorder causes the first-order paramagnetic-
to-ferromagnetic transition in metals to become second
order. We will see that the same result holds for metallic
ferrimagnets. Experimentally, the effects of disorder on
either one of these transitions have not yet been studied
systematically.

II. THEORY

We now derive the results listed in Sec. I. To this end
we are interested in a theory that describes the magne-
tization or order-parameter (OP) field M , the fermionic
degrees of freedom described by Grassmann-valued fields
ψ̄ and ψ, and the coupling between them. Accordingly,
the action will have three parts:

A[M ; ψ̄, ψ] = AOP[M ] + ÃF[ψ̄, ψ] + Ãc[M ; ψ̄, ψ] ,
(2.1a)

and the partition function is given by

Z =

∫
D[M ]D[ψ̄, ψ] e−A[M ;ψ̄,ψ] . (2.1b)

We are, however, not interested in a complete descrip-
tion of the fermionic degrees of freedom; rather, we want
to restrict ourselves to the fermionic soft modes and in-
tegrate out the massive modes in the simplest approxi-
mation that respects the symmetries of the problem to
arrive at an effective Landau-Ginzburg-Wilson (LGW)
theory in terms of soft modes only. If we denote the soft
fermionic degrees of freedom collectively by q, and the
massive ones by P , we formally have

Z =

∫
D[M , q] e−ALGW[M ,q] , (2.2a)
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where

ALGW[M , q] = AOP[M ]− ln

∫
D[P ] e−ÃF[q,P ]

×e−Ãc[M ;q,P ]

≡ AOP[M ] +AF[q] +Ac[M , q] . (2.2b)

As we will see later, the q are matrices formed by bilinear
products of the fermion fields, qnm(x,y) = ψ̄n(x)ψm(y)
with (n + 1/2)(m + 1/2) < 0, and the P are given by
the same products with (n + 1/2)(m + 1/2) > 0. Here
ψn(x) ≡ ψ(x, ωn) is the temporal Fourier transform of
the Grassmann field ψ(x), where x ≡ (x, τ) comprises
the real-space position x and the imaginary-time variable
τ in a Matsubara formalism, and ωn = 2πT (n + 1/2)
is a fermionic Matsubara frequency. ψ̄n(x) is defined
analogously.

This separation of soft and massive fermionic modes
q and P , respectively, integrating out P in a suitable
approximation, and determining the consequences of the
coupling between q and M , is the central objective of
this paper. For the separation we will make use of the
general theory developed in Refs. 18,19.

A. Order parameter, and coupling to fermions

We are interested in magnetic order, and hence the
appropriate order-parameter field is the magnetization
M(x). We write the magnetization as a partm(x) whose
average is the homogeneous magnetization, and a part
n(x) whose average is a staggered magnetization,

M(x) = m(x) + n(x)

N∑
j=1

cos(kj · x) . (2.3)

Here the kj are N wave vectors that characterize the
staggered magnetic order, and both m(x) and n(x) are
slowly varying in space and time. In particular, their
Fourier expansions contain only wave numbers that are
small compared to the norms of the kj .

In a paramagnetic state the expectation values of m
and n are both zero. At a transition to a ferromagnetic
state the expectation value of m becomes nonzero while
that of n remains zero; at a transition to an antifer-
romagnetic state the converse is true. A ferrimagnetic
transition is characterized by both m and n acquiring a

nonzero expectation value at the same point in parame-
ter space. In this sense there is only one order parameter
field for a ferrimagnetic transition; this fact will be impor-
tan later. For the purposes of the present paper, a crucial
question is the coupling of the order-parameter fluctua-
tions to the soft fermionic degrees of freedom. Since the
soft parts of the latter are soft at zero wave number, the
leading coupling is to m. The fermions also couple to n,
but this leads to subleading effects since the staggered
magnetization is soft at a nonzero wave number. We will
neglect this coupling in what follows. We also mention
that by the same reasoning our conclusions still apply if
the non-homogeneous part of the magnetization is not
of a staggered type. For instance, they apply to canted
ferromagnets.

Physically, the near-homogeneous magnetization flu-
tuations act as a magnetic field proportional to m that
couples to the electronic spin density

ns(x) =
∑
a,b

ψ̄a(x)σab ψb(x) . (2.4a)

Here σ = (σx, σy, σz) ≡ (σ1, σ2, σ3) denotes the Pauli
matrices, and a, b = (↑, ↓) ≡ (+1,−1) are spin indices.
The coupling takes the form of a Zeeman term

Ãc[M ; ψ̄, ψ] = c

∫
dx m(x) · ns(x) , (2.4b)

with c a coupling constant. As we will see, the spin den-
sity contains both massive and massless modes, so only
part of Eq. (2.4b) contributes to Ac[M , q] in Eq. (2.2b).
We will discuss this separation next.

B. Fermionic soft modes

In this subsection we separate the massless fermionic
modes from the massive ones by means of the technical
apparatus developed in Ref. 19. Here we will quote only
as much of this formalism as is necessary for the further
development, see Ref. 19 for additional details.

The soft fermion excitations are all two-particle ex-
citations; the related correlation functions are those of
bilinear products of fermion fields. The latter commute
with each other, and with individual fermion fields, and
hence are isomorphic to classical fields. Denoting these
classical fields by Q, we define a classical matrix field

Qnm(x,y) ∼=
i

2


−ψn↑(x)ψ̄m↑(y) −ψn↑(x)ψ̄m↓(y) −ψn↑(x)ψm↓(y) ψn↑(x)ψm↑(y)
−ψn↓(x)ψ̄m↑(y) −ψn↓(x)ψ̄m↓(y) −ψn↓(x)ψm↓(y) ψn↓(x)ψm↑(y)
ψ̄n↓(x)ψ̄m↑(y) ψ̄n↓(x)ψ̄m↓(y) ψ̄n↓(x)ψm↓(y) −ψ̄n↓(x)ψm↑(y)
−ψ̄n↑(x)ψ̄m↑(y) −ψ̄n↑(x)ψ̄m↓(y) −ψ̄n↑(x)ψm↓(y) ψ̄n↑(x)ψm↑(y)

 . (2.5)

Here “∼=” means “isomorphic to”; technically, the isomor- phism is implemented by means of a Lagrange multiplier
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field, see below. We also define the Fourier transform of
Q,

Qnm(k,p) =
1

V

∫
dx dy e−ik·x+ip·y Qnm(x,y) . (2.6a)

It is further useful to define

Qnm(k; q) = Qnm(k + q/2,k − q/2) (2.6b)

and

Qnm(x) = Qnm(x,x) =
1

V

∑
q

eiq·x
∑
k

Qnm(k; q) .

(2.6c)
The 4 × 4 matrix Qnm can be expanded in a spin-
quaternion basis

Qnm(x,y) =

3∑
r,i=0

(τr ⊗ si) irQnm(x,y) , (2.7)

where τ0 = s0 = 112 is the unit 2 × 2 matrix, and
τ1,2,3 = −s1,2,3 = −iσ1,2,3. An explicit inspection of
the 16 matrix elements shows that r = 0, 3 represents
the particle-hole channel, i.e., products of the form ψ̄ψ,
whereas r = 1, 2 represents the particle-particle channel,
i.e., products of the form ψ̄ψ̄ or ψψ. For our purposes
we will need only the particle-hole degrees of freedom.

It was shown in Ref. 19 (see also Ref. 20) that a crucial
criterion for separating the fermionic degrees of freedom
into soft and massive modes is given by the relative signs
of the frequency arguments of the matrix elements Qnm.
Accordingly, we write

i
rQnm(x) = i

rqnm(x) Θ(−ωnωm) + i
rPnm(x) Θ(ωnωm)

(i = 1, 2, 3) (2.8)

Here Θ is the step function, and we use the fact that in
the spin-triplet channel (i = 1, 2, 3) the expectation value
of the Q-matrix vanishes (this is since the fermionic de-
grees of freedom described by Q do not by themselves
have long-ranged magnetic order; see the discussion at
the end of the current subsection), so that q and P rep-
resent fluctuations. In what follows we will absorb the
step functions into the matrix fields q and P , i.e., writ-
ing qnm implies n ≥ 0 and m < 0 and Pnm implies either
n ≥ 0 and m ≥ 0 or n < 0 and m < 0. The i

rq are the
spin-quaternion elements of a matrix

qnm(x) =
∑
r,i

(τr ⊗ si) irqnm(x) . (2.9a)

It is also useful to define an adjoint matrix

q+
nm(x) =

∑
i,r

(τ+
r ⊗ s+

i ) irqmn(x) , (2.9b)

where τ+
r and s+

i are the hermitian conjugates of τr and
si, respectively. In addition, the theory contains a field

q/nm(x) that has the same properties as qnm(x) except
for different propagators, see below. The origin of q/ is
the Lagrange multiplier field λ that constrains the bilin-
ear products of fermion fields to the q. In various places
in the theory q − λ ≡ q/ appears, and the λ-propagator
equals minus the q-propagator for noninteracting elec-
trons, whereas cross-correlations between q and λ vanish.
The net effect of λ is therefore to subtract the noninter-
acting part of the q-propagator wherever the combination
q − λ occurs.

The q correlation functions are the basic soft modes in
the theory, see below. However, due to nonlinear cou-
plings the P couple to the q and thus have a soft compo-
nent. This effect can be expressed by expanding P in a
power series in q. To quadratic order in q and to lowest
order in the fermion interaction one finds

P12(k) ≈ −2i
∑

3

∑
p

ϕ
(3)
132(p,k − p)ϕ−1

13 (p)ϕ−1
32 (k − p)

×
[
q/13(p) q/+

32(k − p) + q/+
13(p) q/32(k − p)

]
. (2.10)

Here and it what follows we use a simplified notation for
frequency indices, 1 ≡ n1, etc. We have dropped con-
tributions to P of higher order in q, and a contribution
that is linear in the interaction and linear in q, see Ref.
19; neither will be needed for our purposes. We also have
omitted a term quadratic in q and quadratic in the inter-
action, which leads to less singular contributions to the
free energy than the one we keep. Note the frequency re-
strictions inherent in Eq. (2.10): sgn (ωn1

) = sgn (ωn2
) =

−sgn (ωn3
). Here

ϕ12(k) =
1

V

∑
p

G1(p)G2(p− k) (2.11)

with ωn1
ωn2

< 0 implied, and

ϕ
(3)
132(k1,k2) =

1

V

∑
p

G1(p)G3(p− k1)G2(p− k1 − k2)

(2.12)
where G1(p) ≡ G(p, iωn1) is the single-particle Green
function. ϕ12 has a scaling form

ϕ12(k) = NF
2πG

k
ϕd(GiΩ1−2/k)

≡ ϕ(k,Ω1−2) . (2.13)

where G is a coupling constant whose bare value is the
inverse Fermi velocity, G = 1/vF, NF is the density of
states per spin at the Fermi level, and Ω1−2 = ωn1−ωn2 .
In d = 2, 3, and for free electrons, we find explicitly

ϕd=2(z) = sgn (Im z)/
√

1− z2 , (2.14a)

ϕd=3(z) =
−i
2

ln

(
1− z
−1− z

)
, (2.14b)

which we recognize as the hydrodynamic part of the Lind-
hard function. Equations (2.13) and (2.14) reflect the
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soft particle-hole excitations with a linear momentum-
frequency relation in a metallic electron system. In par-
ticular, ϕ(k,Ωn = 0) ∝ 1/|k|, and ϕ(k = 0,Ωn) ∝
1/Ωn.21 For later reference we also note the following
identities that hold for a special form of ϕ(3):

ϕ
(3)
121(k,−k) = −ϕ(3)

212(k,−k) = − ∂

∂iωn1

ϕ12(k)

≡ ϕ(3)(k,Ω1−2) . (2.15)

The fermionic action can be expressed in terms of q
and P , and by using Eq. (2.10) and its generalizations
to higher order one obtains a fermionic soft-mode action
entire in terms of q. For our purposes we need only the

Gaussian part of this action, which reads

AF[q] = −8
∑
k

∑
1,2
3,4

∑
r=0,3

3∑
i=0

i
rq12(k) Γi12,34(k) irq34(−k) .

(2.16a)
Here 1 ≡ n1 etc., and the Gaussian vertex is given by

Γi12,34(k) = ϕ−1
12 (k) + δ1−2,3−4 2Tγi (2.16b)

with γi=0 = −γs and γi=1,2,3 = γt,i, where γs > 0 and
γt,i > 0 are the spin-singlet and spin-triplet interaction
amplitudes. The fermionic Gaussian propagator is given
by the inverse of the vertex. One finds

〈irq12(k) jsq34(−k)〉 =
1

16
δrs δij

[
δ13 δ24 ϕ12(k)− 2γiT δ1−2,3−4

ϕ12(k)ϕ34(k)

1− 2γiχ
(0)
1−2(k)

]
, (2.17a)

where

χ
(0)
1−2(k) ≡ χ(0)(k,Ω1−2) = −T

∑
34

δ1−2,3−4 ϕ34(k) . (2.17b)

We see that the q-propagator is given in terms of ϕ, and hence is soft. The fields q/ that enter P , Eq. (2.10), are
characterized by Gaussian propagators

〈irq/12(k) jsq34(−k)〉 = 〈irq12(k) jsq/34(−k)〉 = 〈irq12(k) jsq34(−k)〉 (2.17c)

and

〈irq/12(k) jsq/34(−k)〉 =
−1

8
γiT δ1−2,3−4

ϕ12(k)ϕ34(k)

1− 2γiχ
(0)
1−2(k)

. (2.17d)

The last expression is just the interacting part of the
q-propagator, Eq. (2.17a), as was mentioned after Eq.
(2.9b).

The interaction amplitudes in the Gaussian fermionic
vertex, Eq. (2.16b), warrant some comments. First, we

note that the three spin-triplet amplitudes γ1,2,3
t are in

general not identical in a cyrstalline solid, and they do
not need to be for what follows. Second, we comment
on the two cases that result from the magnetism being
caused by the conduction electrons, or by electrons in
a band different from the conduction band, respectively.
Let us first assume the latter case, which is the concep-
tually more straightforward one. Then AF[q], which de-
scribes the conduction electrons, is independent of the
magnetism and contains interactions in both the spin-
singlet and spin-triplet channels. The only restriction is
that the latter are weak enough to not lead to magnetism
by themselves. The conduction electrons are affected by
the magnetization, which acts as an effective magnetic
field, and this is described by the Zeeman coupling term,

Eq. (2.4b). The other possibility, which is conceptually
more complex, is that the magnetism is caused by the
conduction electrons themselves. In this case the mag-
netic order parameter and the soft modes q describe de-
grees of freedom for electrons in the same band. The
magnetic order parameter then should be thought of as
deriving from the spin-triplet interaction between the
conduction electrons, e.g., via a Hubbard-Stratonovich
decoupling of the latter. This leaves the bare action AF

with a spin-singlet interaction only. However, as long as
the latter is present, a spin-triplet interaction will always
be generated under renormalization. The action AF will
therefore again contain a spin-triplet interaction ampli-
tude, albeit one that is much weaker than the one in the
underlying action that describes the system before the
separation of magnetic and fermionic degrees of freedom.
This is the case that was discussed, for ferromagnetism,
in Ref. 14, which used phenomenological and symmetry
arguments to construct the fermionic part of the action.
Finally, we mention that we assume the conduction elec-
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trons, in the absence of a nonzero magnetization (i.e.,
with the coupling constant c in Eq. (2.4b) put equal to
zero), to indeed have three soft spin-triplet excitations at
T = 0, which are given by Eqs. (2.17) with i = 1, 2, 3.
This is not necessarily the case. For instance, an external
magnetic field gives two of these three channels (the ones
transverse to the field) a mass, and a small concentration
of magnetic impurities will make all three channels mas-
sive without having significant other effects. However,
in general the energy scales associated with these effects
will be small, and they will lead to a small reduction, but
not a complete suppression, of the tricritical temperature
in Fig. 1. We will discuss this point in more detail in Sec.
III.

C. Coupling between the order parameter and the
fermionic soft modes

We are now in a position to separate the Zeeman term,
Eq. (2.4b), into parts where the order parameter couples
to soft and massive fermionic modes, respectively. If we
define a temporal Fourier transform of the magnetization
field m by

mn(x) =
√
T

∫ 1/T

0

dτ eiΩnτm(x, τ) , (2.18)

with Ωn = 2πTn a bosonic Matsubara frequency, then
we can write Eq. (2.4b) in the form

Ãc[M ;Q] = 2c
√
T

∫
dx
∑
n

3∑
i=1

mi
n(x)

×
∑
r=0,3

(−1)r/2
∑
m

tr [(τr ⊗ si)Qm,m+n(x)] .(2.19)

By expressing Q in terms of q and P by means of Eq.
(2.8), and P in terms of q/ by means of Eq. (2.10), we
obtain the desired coupling Ac[M , q] between the order-
parameter fluctuations and the fermionic soft modes q.

D. Generalized Mean-Field Theory

An effective action, Aeff[M ] in terms of the order pa-
rameter alone can be obtained by integrating out the
fields q,

Aeff[M ] = ln

∫
D[q] eALGW[M ,q] . (2.20)

In general the evaluation of this expression is very diffi-
cult. However, it can be evaluated exactly within a gener-
alized mean-field approximation that was first employed
in the context of liquid crystals and superconductors6

and is defined as follows. First, we ignore temporal and
spatial variations of the order parameter, i.e. we treat
the fields m(x) and n(x) in Eq. (2.3) as numbers. If we
assume ordering in the 3-direction, we have

M i(x) ≈ δi3

m+ n

N∑
j=1

cos(kj · x)

 , (2.21a)

which implies

mi
n(x) ≈ δi3 δn0m/

√
T . (2.21b)

This mean-field approximation for the order parameter
means that only the part of Q that is diagonal in fre-
quency space, i.e., Pmm, contributes to Eq. (2.19). This
in turn means that the contribution to P that is linear
in q, which we had dropped from Eq. (2.10), does not
contribute. Second, we restrict ourselves to quadratic
order in q. That is, we treat the fermionic soft modes in
a Gaussian approximation with a fixed magnetic order
parameter. The validity of these approximations will be
discussed in Sec. III B.

With these approximations the action Ac that couples
q and the order parameter is quadratic in q and can be
written

Ac[m, q] = 8
∑

r,s=0,3

∑
i,j

i
rq12(k) ijrsΓ

c

12,34(k) jsq34(−k) . (2.22a)

Here

ij
rsΓ

c

12,34(k) = δ13 δ24 4 cm

(
0 1
−1 0

)
rs

 0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0


ij

ϕ
(3)
121(k,−k)ϕ−2

12 (k) , (2.22b)

and we have used Eq. (2.15). The matrices give the values of ijrsΓ
c

for the 4 possible values of (r, s) and the 16 possible
values of (i, j).

The integral over q in Eq. (2.20) can now easily be carried out. For the free-energy density f = −TAeff/V we
obtain

f = f0(m,n) + ∆f(m) . (2.23a)
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Here f0 = −TAOP/V is the mean-field free energy in the absence of a coupling to the fermionic soft modes. For
∆f(m), which is the contribution to the free energy due to this coupling, one finds

∆f(m) =
2

V

∑
k

′
T
∑
n

lnN(k,Ωn;m) , (2.23b)

where
∑′

k denotes a wave vector sum such that |k| < Λ with Λ an ultraviolet cutoff, and

N(k,Ωn;m) = −16 c2 γt,1γt,2m
2 Ω2

n

(
ϕ(3)(k,Ωn)

)2

ϕ−4(k,Ωn) + ϕ−4(k,Ωn)
∏
i=1,2

[
1− 2γt,iχ

(0)(k,Ωn)
]
. (2.23c)

The equation of state is obtained by minimizing the
free energy density. In the absence of a coupling be-
tween the order parameter and the fermionic soft modes
this amounts to minimizing f0, which yields the ordinary
mean-field equation of state. For a ferromagnet, the lat-
ter has the usual Landau form. For a ferrimagnet, the
equation of state depends on details of the magnetic or-
der. It can be complicated and describe several different
phases, see, e.g., Ref. 22. However, generically the first
phase encountered as one approaches from the paramag-
netic state is entered via a second-order transition. After
minimizing f0 and expressing n in terms of m one thus
has again an ordinary mean-field equation of state given
by

h = rm+ um3 +O(m5) , (2.24)

where h is an external magnetic field in the 3-direction,
u > 0, and the transition occurs at r = 0.23 In Appendix
A we recall a very simple model that leads to this result.
The second term on the right-hand side of Eq. (2.23a)
gives an additional contribution to the equation of state,
which then reads

h = rm+ um3 − 64mc2γt,1γt,2

× 1

V

∑
k

′
T
∞∑
n=1

Ω2
n

(
ϕ(3)(k,Ωn)

)2
ϕ−4(k,Ωn)

N(k,Ωn;m)
.

(2.25)

This is the desired generalized mean-field equation of
state which takes into account the coupling of the order
parameter to the fermionic soft modes.

E. Discussion of the Generalized Mean-Field
Equation of State

With some effort the integrals in Eqs. (2.23b) and
(2.25) can be explicitly performed. However, the salient
points can be seen by simple scaling considerations and
dimensional analysis. Equations (2.11) and (2.13) im-
ply that the frequency Ωn scales as the wavenumber
k, Ωn ∼ k, and that ϕ(k,Ωn) ∼ 1/k ∼ 1/Ωn, which
also can be seen explicitly from Eqs. (2.14). Equation

(2.15) implies that ϕ(3)(k,Ωn) ∼ 1/k2 ∼ 1/Ω2
n. Equa-

tion (2.23c) then shows that there is a length scale Lm,
or a corresponding frequency scale ωm, that scales as
Lm ∼ 1/ωm ∼ 1/m. If one attempts to expand ∆f(m),
Eq. (2.23b), in powers of m at T = 0, then nonanalytici-
ties will occur at next-to-leading order for all d ≤ 3.

An alternative way to describe this mechanism is to
say that of the three soft fermionic spin-triplet excita-
tions, Eq. (2.17a) with r = s = 0, 3 and i = j = 1, 2, 3,
two (namely, the ones transverse to the order parameter
direction) acquire a mass due to the coupling between
the fermions and the order parameter m, as can be seen
explicitly from Eq. (2.22b). This acquisition of a mass
by a generic soft mode due the spontaneous breaking of
a continuous symmetry is an example of the Anderson-
Higgs mechanism,24–26 even though the broken symmetry
in this case is not a gauge symmetry, see the discussion
in Sec. III A. It implies in turn that the free energy is a
nonanalytic function of m.

At nonzero temperatures the singularities are cut off
by T according to m ∼ T . That is, a crossover occurs
from m-scaling to T -scaling when the Zeeman splitting
is comparable to the temperature, or the thermal length
scale LT ∝ 1/T is comparable to the magnetic length
scale Lm mentioned above. Taking into account the sign
of N , Eq. (2.23c), one finds schematically, for 1 < d < 3,

∆f(m) = −vm2(m2 + T 2)(d−1)/2 , (2.26a)

and for d = 3

∆f(m) =
v

8
m4 ln(m2 + T 2) , (2.26b)

where v > 0 is a positive constant.
The most important aspects of this result, as far as

the order of the transition is concerned, are the sign of
v and the power of m at T = 0. For all d ≤ 3 there
is a negative term in the free energy that dominates the
m4 in the Landau free energy and hence necessarily leads
to a first-order transition. Another way to see this is by
expanding ∆f(m), Eq. (2.26a), in powers of m for T > 0.
The leading term is proportional to −m4/T 3−d. That is,
there is a negative m4 term whose prefactor diverges as
T → 0 for all d ≤ 3, which implies that there will be a
tricritical point at some temperature. The free energy for
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FIG. 2: Schematic sketch of the free energy for three values
of the parameter r. The first-order transition occurs at r =
r1 > 0. It pre-empts the second-order transition of Landau
theory which would occur at r = 0.

three different values of r is plotted schematically in Fig.
2. For this schematic free energy, the equation of state
in the case d = 3, for which many experimental results
exist, takes the form

h = rm+
v

2
m3 ln(m2 + T 2)

+m3

(
u+

v

4

m2

m2 + T 2

)
. (d = 3) (2.27)

Also of interest is the other physical dimensionality, d =
2, where the equation of state reads

h = rm− 2vm(m2 + T 2)1/2

+m3

(
u− v

(m2 + T 2)1/2

)
. (d = 2) (2.28)

Here the analyticity is stronger than in the 3-d case, with
a negative m2-term in the equation of state at T = 0.
This is particularly interesting in the case of Ising mag-
nets, which display long-range order in d = 2 even at
T > 0. The case of Heisenberg and XY magnets, which
do not show true long-range order in d = 2 except at
T = 0, is more complicated.

These are the same results that were obtained using
a more phenomenological theory of the fermionic soft
modes in Ref. 14. They were discussed extensively in that
reference, as well as in Refs. 4 and 7. There is no need to
repeat this discussion here, and the salient features are
summarized by the schematic phase diagram shown in
Fig. 1. The important conclusion of the current paper is
that the validity of these results, in addition to itinerant
Heisenberg ferromagnets, extends to metallic ferromag-
nets where the magnetism is not due to the conduction
electrons, to metallic ferromagnets in the XY or Ising
universality class, and also to metallic ferrimagnets. The
only condition is that the conduction electrons are not
subject to strong spin-symmetry breaking effects such as

magnetic impurities. We note in passing that an inter-
esting system is provided by the easy-plane ferromagnet
URhGe, where an in-plane magnetic field transverse to
the magnetization has been used to tune the transition,
access the tricritical point, and map out the tricritical
wings.10 This situation requires a refinement of the the-
ory presented above, which will be reported elsewhere.27

III. DISCUSSION, AND CONCLUSION

We now discuss our results, before concluding with a
summary.

A. The mechanism behind the first-order transition

The mechanism that leads to the first-order tran-
sition discussed in Sec. II E is precisely analogous to
the fluctuation-induced first-order transition discussed in
Ref. 6 for the BCS-superconductor transition and the
nematic-to-smectic-A transition in liquid crystals. An
important physical ingredient is an underlying “generic”
soft mode, i.e., one that is not related to the phase tran-
sition in question, but couples to the order parameter.
In the case of liquid crystals this soft mode is the ne-
matic Goldstone mode, in the case of superconductors,
the vector potential, in the present case, the spin-triplet
particle-hole excitation. At the transition of interest, this
soft mode acquires a mass that is given in terms of the
nonzero expectation value of the order parameter. This
general mass-generating mechanism was first pointed out
by Anderson, and is now known as the Anderson-Higgs
mechanism.24–26 This coupling of the order parameter
to underlying soft modes leads to a non-analytic term
in the Landau free energy that is dominant over the
usual quartic term and has a negative sign, leading to
a first-order transition. It should be stressed that this is
only one way to realize a fluctuation-induced first-order
transition; another one, for instance, is realized by a φ4-
theory with a cubic anisotropy.28 The current realiza-
tion is analogous to the case of scalar electrodynamics
studied by Coleman and Weinberg in a particle-physics
context.29 In either case the mass generation eliminates
the generic soft-mode fluctuations, which become ener-
getically more costly with decreasing dimensionality. In
the case of quantum magnets, the system takes advan-
tage of this option to lower the free energy for d ≤ 3. It is
also worthwhile noting that the analogy between super-
conductors on one hand, and liquid crystals and quantum
magnets on the other, breaks down in the ordered phase.
In the former case, the Goldstone mode gets absorbed
into the longitudinal component of the vector potential,
which is massive, and there is no soft mode in the ordered
phase. In the latter, there are Goldstone modes in the
ordered phases, namely, a “smecton” with an anisotropic
dispersion relation in the smectic-A phase (Ref. 30, see
also Ref. 31) and magnons in the magnetic phase.
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B. Universality of the first-order transition, and
the validity of the generalized mean-field theory

Experimentally, all examples of clean low-Tc ferromag-
nets (for disordered systems, see below; ferrimagnets so
far have not been systematically studied from this point
of view) show a first-order transition if the Curie temper-
ature is suppressed far enough. There is not a single ex-
ample of a quantum critical point in zero magnetic field.
While this is consistent with the generalized mean-field
theory theory presented in Sec. II, it is somewhat surpris-
ing when compared with the case of liquid crystals, where
an analogous theory also predicts a first-order transition.
In this case, in stark contrast to that of quantum mag-
nets, the observed transition is usually of second order,
and only recently have examples of a (weakly) first-order
transition been found.32 These observations beg the ques-
tion whether in the case of quantum magnets the gener-
alized mean-field approximation is more generally valid
than in classical systems.

To discuss this point, we first observe that we have
made three approximations to treat the action given by
Eq. (2.1a). First, we have integrated out the fermionic
massive modes in a saddle-point approximation that re-
spects the Ward identity that governs the soft-mode
structure of the system.18,19 Second, we have kept the
soft fermionic degrees of freedom only to Gaussian or-
der in the soft modes q. Third, we have treated the
order parameter in a mean-field approximation. These
approximations are not independent of one another, and
the first two simplifications do not constitute any addi-
tional approximation over and above the last one. This
can be seen as follows.

The mean-field approximation for the order parame-
ter means that the fermionic degrees of freedom describe
an interacting electron system that is spin-polarized by
the coupling to the homogeneous magnetization, which
acts as an effective external magnetic field. The state
of the fermionic subsystem is thus described by a stable
Fermi-liquid fixed point. Corrections to the fermionic
soft-mode action due to massive degrees of freedom are
irrelevant with respect to this fixed point by at least one-
half power of frequency or wavenumber in all dimensions,
and thus cannot change the properties of system.20 Sim-
ilarly, only the terms quadratic in q contribute to the
fixed-point action; all higher-order terms are irrelevant
by power counting. Keeping terms of higher order in q
will therefore renormalize the parameters of the theory,
but it cannot change its structure. In particular, it can-
not change the sign of the term in the equation of state,
Eqs. (2.27, 2.28), that is due to the soft fermionic fluctu-
ations and leads to the first-order transition.

This leaves the mean-field approximation for the order
parameter to be discussed. If the first-order transition
at r = r1 occurs far from the second-order transition at
r = 0 that is pre-empted by it (see Fig. 2), then order-
parameter fluctuations are negligible and the results of
the generalized mean-field theory are qualitatively cor-

rect. If, however, the first-order transition occurs close
to the putative second-order one, i.e., if the minimum
in the free energy in Fig. 2 is very shallow, then it is
less clear whether order-parameter fluctuations can be
neglected.33 One key difference between classical liquid
crystals and quantum magnets is that in the former case,
the system is below the upper critical dimension d+

c = 4
for the (unrealized) phase transition that would occur
in the absence of any coupling between the smectic or-
der parameter and the nematic soft modes. In contrast,
the quantum magnetic systems are above the correspond-
ing upper critical dimension d+

c = 1 that follows from
Hertz theory, and even with that coupling taken into ac-
count, ordinary mean-field theory becomes exact, as far
as the description of the phase transition is concerned,
for d > 3.34 This strongly suggests that order-parameter
fluctuations are of much less importance in the case of
quantum magnets, and it provides a possible explanation
of the fact that the observed transition is universally of
first order.

Irrespective of these observations, the role of order-
parameter fluctuations in quantum magnets is a topic
that warrants additional work. For the case where the
magnetism is not produced by the conduction electrons,
this will require an action that properly describes lo-
calized magnetic moments and their fluctuations, e.g.,
the one given in Ref. 35. For itinerant magnets, i.e., if
the magnetism is due to the conduction electrons them-
selves, the theory developed in Sec. II will apply, but
the order-parameter fluctuations and the fermionic ex-
citations both need to be kept, along the lines of the
phenomenological theory of Ref. 14. The latter reference
gave a scenario that can lead to a second-order transi-
tion in the magnetic case. It would also be interesting to
experimentally study quantum ferromagnets or ferrimag-
nets in d = 2, where order-parameter fluctuations will be
stronger than in d = 3.

C. The effects of quenched disorder

So far we have discussed the case of clean or pure mag-
nets. Impurities, modeled by quenched disorder, have
important effects that are both needed to understand ex-
perimental observations in certain systems, and to pre-
dict effects that can serve to ascertain that the first-order
transition in pure samples is indeed due to the posited
mechanism.

Quenched disorder changes the soft-mode spectrum of
the fermions. It gives the ballistic soft modes that are
represented by Eqs. (2.17) as mass, and leads to new soft
modes that are diffusive. In the context of the current
theory, this change has two principal effects. First, it
cuts off the nonanalyticity in the clean equation of state,
Eqs. (2.27, 2.28). Second, it leads to a new nonanalytic
term in the equation of state that has the opposite sign
and whose prefactor vanishes in the clean limit.34 The
resulting schematic generalized Landau theory has been
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discussed in Ref. 4. A more detailed model discussion
that allows for semi-quantitative predictions of the effects
of disorder will be presented elsewhere;27 here we just
present the most pertinent aspects of such a model cal-
culation. A good representation of the mean-field equa-
tion of state for realistic values of the magnetization, the
temperature, and the disorder, is

h = rm+
v1/4

4(kF`)3/2

m3

m3/2 + (bT )3/2

+
v

2
m3 ln

[
cm2 + (1/kF`+ bT )2

]
+ um3 , (3.1)

which generalizes Eq. (2.27) in the presence of quenched
disorder.36 Here the magnetic field h and the tempera-
ture T are measured in units of the Fermi energy εF and
the Fermi temperature TF, respectively, and the magneti-
zation m is measured in units of the conduction electron
density (we put µB = 1). The dimensionless coupling
constant v is proportional to the fourth power of the ef-
fective spin-triplet interaction amplitude of the conduc-
tion electrons. It is a measure of how strongly corre-
lated the conduction electrons are, and it is bounded
above by a stability criterion that requires v . 0.5.
kF is the Fermi wave number of the conduction elec-
trons, and ` is the elastic mean-free path. Within a
Drude model, and for good metals, one has approxi-
mately kF` ≈ 1, 000/(ρ0/µΩcm), with ρ0 the residual
electrical resistivity. c and b are dimensionless constants
that are equal to c = 1/45 and b = 3π in a model
calculation.27 The second factor in the second term on
the right-hand side is a reasonable representation, for re-
alistic parameter values, of a more complicated scaling
function

m3/2 g(kF`m, bT/m) ≈ m3

m3/2 + (bT )3/2
(3.2)

that depends on the disorder in addition to the temper-
ature, and we have dropped the last term in Eq. (2.27)
from Eq. (3.1) since one generically expects v � u.

At T = 0, and in a clean system, Eq. (3.1) yields a
first-order transition at r1 = vm2

1/4, where the magneti-
zation discontinuously jumps from m = 0 to m = m1 =
e−(1+2u/v)/2. With u ≈ 0.14 and v ≈ 0.02 this yields
m1 ≈ 4× 10−3, which is reasonable for a weak ferromag-
net. Similarly, there is a tricritical temperature given
by Ttc/TF = (1/b) exp(−u/v); with the same parame-
ter values this yields Ttc/TF ≈ 10−4, or Ttc ≈ 10 K for
TF = 100, 000 K, which is also reasonable. This tricritical
point gets destroyed by quenched disorder on the order
of kF` ≈ bTtc/TF ≈ 1, 000, or a residual resisitivity on
the order of ρ0 ≈ 1µΩcm. At this point the second term
on the right-hand side of Eq. (3.1) is still very small, and
the critical behavior at the resulting quantum critical
point is given by ordinary mean-field exponents except
extrely close to the transition, where it crosses over to
the critical behavior derived in Ref. 20. For instance,
in this asymptotic region the critical exponents β and δ,

defined by m(h = 0) ∝ |r|β and m(r = 0) ∝ h1/δ, respec-
tively, are given by β = 2 and δ = 3/2, as opposed to
the mean-field values β = 1/2 and δ = 3. Only for sub-
stantially larger values of the disorder, ρ0 ≈ 100µΩcm
with the above parameters, does the asymptotic critical
behavior extend over a sizeable range of r values (up to
|r| ≈ 0.01). This observation explains why an experi-
ment on NixPd1−x, which shows a ferromagnetic transi-
tion at a very small value of x (x ≈ 0.025) corresponding
to weak disorder, found mean-field exponents consistent
with Hertz theory,37 whereas Bauer et al.38 found non-
mean-field exponents, at least some of which were con-
sistent with Ref. 20, in URu2−xRexSi2, where the ferro-
magnetic transition occurs at x ≈ 0.15 with the residual
resistivity on the order of ρ0 ≈ 100µΩcm.39

D. Conclusion

In conclusion, we have extended a previous theory
of quantum ferromagnets in several important ways.
We have shown that the mechanism that leads to the
paramagnet-to-ferromagnet transition at low tempera-
ture in d = 3 and d = 2 to be generically of first order,
which was first reported in Ref. 4, is valid in anisotropic
ferromagnets, in ferrimagnets, and in metallic ferromag-
nets where the conduction electrons are not the source
of the magnetization, in addition to the case of isotropic
itinerant ferromagnets originally considered. Even more
generally, it is valid for any metal with a nonvanishing
homogeneous magnetization, e.g., canted ferromagnets.
This explains why the low-temperature transition is ob-
served to be of first order in highly anisotropic ferro-
magnets, and it much expands the class of materials for
which this phenomenon is predicted. For clean magnets,
an effective theory of soft fermionic modes recently de-
veloped in Ref. 19 has provided a technical basis that
improves on the phenomenological theory of Ref. 14. In
the presence of quenched disorder, the theory allows for a
semi-quantitative description of the suppression and ulti-
mate destruction of the tricritical point. A sizeable range
of disorder exists where the observable critical behavior
is predicted to be mean-field like, whereas for very large
disorder the asymptotic critical region, which is char-
acterized by non-mean-field Gaussian critical exponents,
expands and eventually eliminates the mean-field region.

Appendix A: A simple mean-field model of a
ferrimagnet

Here we recall a very simple mean-field model of the
transition from a paramagnet to long-range ferrimagnetic
order.15 Consider a one-dimensional chain of alternating
magnetic moments µa, µb that are antiferromagnetically
coupled. Weiss theory assumes that the a-moments and
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b-moments are subject to effective magnetic fields

Ba = −λMb (A1a)

Bb = −λMa , (A1b)

respectively, where λ > 0. The magnetizations Ma,b are
given by the Brillouin expressions

Ma = ν µa tanh(µaH/T + µaBa/T ) , (A2a)

Mb = ν µb tanh(µbH/T + µbBb/T ) . (A2b)

Here H is an external magnetic field, T is the tem-
perature, and ν is the number of magnetic moments
of each species. If one defines reduced magnetic fields
ha,b = H/νµa,bλ, a reduced temperature t = T/νµaµbλ,
and reduced moments ma,b = Ma,b/νµa,b, then one sees
that the Weiss mean-field equations (A1, A2) have a so-
lution ma = −mb = m̃, where m̃ is the solution of the

usual mean-field equation of state

h = rm̃+ m̃3/3 +O(m̃5) , (A3)

where r = t − 1. This simple model thus describes a
transition at t = 1 to ferrimagnetic order where the
homogeneous magnetization is given by m = Ma +
Mb = ν(µa − µb)m̃ and the staggered magnetization
n = Ma −Mb = ν(µa + µb)m̃ is proportional to m.
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