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We report measurements of the magnetic susceptibility of single crystals of Mn12-acetate-MeOH,
a new high-symmetry variant of the original single molecule magnet Mn12-acetate. A comparison of
these data to theory and to data for the Mn12 acetate material shows that Mn12-acetate-MeOH is a
realization of a transverse-field Ising ferromagnet in contrast to the original Mn12 acetate material,
in which solvent disorder leads to effects attributed to random field Ising ferromagnetism.
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1. INTRODUCTION

Dipolar interactions that can lead to long range mag-
netic order have been explored extensively for decades,
both theoretically1 and experimentally2. Recent interest
in dipolar magnetism has focused on systems in which
quantum fluctuations of the spins compete with the dipo-
lar long range order. Of particular interest in this con-
text are the single molecule magnets (SMM) composed of
molecules of transition-metal ions that behave as single,
rigid magnetic entities with a large ground-state spin and
a strong uniaxial anisotropy, leading to Ising-like behav-
ior. The distance between molecules in this SMM is suffi-
ciently large that the dominant interaction is the dipolar
interaction. For spins on an ordered lattice, dipolar in-
teractions lead to a ground state with long ranged order
which may (depending on the lattice structure) be ferro-
magnetic or antiferromagnetic3–9. However, the applica-
tion of a magnetic field in a direction transverse to the
Ising axis induces quantum spin fluctuations that com-
pete with the long-range order by mixing the eigenstates
of Sz

10. This interplay between the long range order
and spin fluctuations is described by the Transverse-Field
Ising Hamiltonian:
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Here, Si is a two level Ising spin on lattice site i, Jij are
the dipolar couplings and ∆ is the tunnel splitting that
depends on the applied transverse field8. This Hamil-
tonian applies at energies and temperatures such that

excitation to higher energy states of the molecular com-
plex can be neglected; for the systems of interest in this
paper Eq. 1 applies below a transverse-field-dependent
temperature . 6 K.

One of the most studied SMM is Mn12-ac. In this
compound the Mn12 units crystallize in a body centered
tetragonal lattice and are well separated by acetate sol-
vent molecules. Each Mn12 molecule behaves as a nano-
magnet with spin S = 10 oriented along the crystallo-
graphic c axis by a strong anisotropy, DS2 ≈ 65 K11. For
this lattice structure the ground state of Eq. 1 at ∆ = 0 is
ferromagnetically ordered, so we refer to the system as a
Transverse Field Ising Ferromagnet (TFIFM). However,
Mn12-ac is not simply a representation of the transverse-
field Ising model because a distribution in the arrange-
ments of the solvent molecules results in a distribution
of discrete tilts of the molecular magnetic easy axis from
the global (average) easy axis of a crystal, thereby lo-
cally breaking the global tetragonal symmetry of the
crystal12–15. Although the small molecular easy-axis tilts
(≈ ±1◦) induce only minor perturbations in the dipolar
interaction, an external transverse magnetic field has pro-
jections along (the randomly distributed) easy axes that
become comparable in magnitude to the dipolar field it-
self for transverse field magnitudes of order 4 T8,16. It
was recently shown8,16 that one can account for the ex-
perimental data for Mn12-ac by adding a site transverse
field-dependent random-field term

∑
i hiS

z
i to Eq. 1 so

that this prototypical molecular magnet is a realization
of the Random-Field Ising Ferromagnet (RFIFM).

In this paper we report results of an investigation
of [Mn12O12(O2CMe)16(MeOH)4]·MeOH, hereafter re-
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ferred to as Mn12-ac-MeOH, a new high-symmetry vari-
ant of the original single molecule magnet Mn12-ac. The
two systems differ only in the isomer disorder introduced
by the solvent molecules in Mn12-ac, so that a comparison
of their magnetic response provides quantitative informa-
tion about the effect of random fields. We find that the
behavior of Mn12-ac-MeOH is consistent with Eq. 1 with-
out disorder effects at intermediate temperatures, where
the new “pure” MeOH variant represents a model-system
for the study of intrinsic transverse-field Ising magnetism.
However, deviations from simple theoretical expectations
for both Mn12 variants below about 2 K are not currently
understood and require further study.

Mn12-ac-MeOH crystallizes in the space group I 4̄ with
unit cell parameters a = b = 17.3500(18) Å, c =
11.9971(17) Å, molecules per unit cell (Z) = 2, V =
3611.4 Å3 at −100 ◦C17–19, unit-cell spin (S = 10) and
anisotropy (D = -0.667 K) is nearly identical to Mn12-ac
(space group I 4̄; unit cell parameters a = b = 17.1668(3)
Å, c = 12.2545(3) Å, Z = 2, V = 3611.39 Å3 at 83 K)20.
However, as described in detail in Ref.18, unlike its close
relative Mn12-ac, the local symmetry associated with the
solvent of crystallization retains the overall molecular S4

global symmetry of the crystal.

2. EXPERIMENTAL PROCEDURE AND
RESULTS

Measurements of the longitudinal magnetization and
susceptibility were performed on three Mn12-ac-MeOH
single crystals of dimensions ∼ 0.2 × 0.2 × 0.95 mm3,
0.085× 0.085× 0.68 mm3, and 0.075× 0.075× 0.85 mm3

(samples A, B and C, respectively). The samples were
coated with Paratone R© N to prevent degradation by
crystal lattice desolvation18. A Hall sensor, (active area
20 × 100 µm2) was used to measure the magnetization,
Mz, along the easy direction (c-axis) of the crystal via
measurement of the stray field Bx, which is a linear func-
tion of Mz. Care was taken to align the sample and the
Hall array (placed in the y-z plane) relative to each other
and relative to the magnet axes. The relative position
between the crystal and the Hall sensor array is shown
in the bottom inset of Fig. 1; the sensor is placed near-
est to the end of the sample, since the stray field, Bx,
is largest near the edge. Preliminary data for sample A,
not corrected for demagnetization effects, is presented in
Ref21. For comparison, we also show results of similar
measurements for three Mn12-ac crystals of dimensions
∼ 0.4 × 0.4 × 2.17 mm3, ∼ 0.4 × 0.4 × 2.4 mm3 and
0.3× 0.3× 1.85 mm3 (crystals D, E and F, respectively).
All measurements were taken between 0.5 K and 6 K in a
3He refrigerator in a 3D vector superconducting magnet.
A longitudinal field, Hz, was swept along the sample’s
easy axis at rates between 1 × 10−5 T/s and 6.7 × 10−3

T/s, in the presence of a series of fixed transverse fields,
H⊥ (up to 6.8 T) applied in the y direction (see top inset
of Fig. 1). The point labeled Hz = 0 was determined by

symmetry from full hysteresis loops taken between −0.7
and 0.7 T.
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FIG. 1: (Color on line) Normalized magnetization of Mn12-
ac-MeOH as a function of longitudinal magnetic field, Hz,
in zero transverse field at several temperatures below 1 K.
The sweep rate of Hz in the main panel and the top inset is
1.67 mT/s. Top Inset: Magnetization vs Hz at T = 0.53 K
for different transverse fields, H⊥. Bottom Inset: Schematic
diagram of the sample, the Hall sensor and magnetic fields.

The field dependence of the magnetization of Mn12-ac-
MeOH (Sample C) is shown in the main panel of Fig. 1
for temperatures below 1 K in the absence of transverse
magnetic field. Characteristic of resonant tunneling in
molecular magnets, the steps occur due to faster spin-
reversal at specific (temperature-independent) magnetic
fields corresponding to energy-level coincidences on op-
posite sides of the anisotropy barrier11. The resonant
fields at which the steps occur in Mn12-ac-MeOH are the
same as in Mn12-ac, indicating that the two systems have
similar spin energy-level structures. The magnetization
exhibits hysteresis due to slow relaxation below a block-
ing temperature, TB , that depends on the rate at which
the magnetic feld is swept. Equilibrium can be estab-
lished by increasing the temperature and/or decreasing
the sweep rate. It can also be promoted by applying a
transverse magnetic field. The latter is demonstrated in
the top inset of Fig. 1 which shows the low-field magne-
tization in transverse field at 0.53 K. While hysteresis is
evident for H⊥ = 3.75 T, the system is in equilibrium at
the higher field of H⊥ = 5.5 T; by mixing the eigenstates
of Sz, the transverse field promotes quantum tunneling
and accelerates relaxation toward equilibrium. Care was
taken to ensure that the susceptibility and magnetization
reported and discussed in the remainder of this paper are
equilibrium values.

Under equilibrium conditions, the longitudinal mag-
netic susceptibility, χ ≡ ∂Mz/∂Hz|Hz=0, can be deduced
from the slope of Mz versus Hz at Hz = 0 as described
in Ref.16. Figures 2(a) and 2(c) show the inverse sus-
ceptibility of a Mn12-ac-MeOH (Sample C) crystal as a
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FIG. 2: (Color on line)(a): Inverse susceptibility as a func-
tion of temperature for Mn12-ac-MeOH (Sample C) in vari-
ous transverse fields up to 6 T. (b): Inverse susceptibility as
a function of temperature of Mn12-ac (Sample E) for various
transverse fields up to 5 T. (c) and (d) Inverse susceptibil-
ity in low transverse field up to 3 T for Mn12-ac-MeOH and
Mn12-ac, respectively. The solid lines are theoretical curves
based on Eq. 2. Inset to frame (b): The Weiss temperature
TW (H⊥), normalized to TW in zero transverse field, for Mn12-
ac-MeOH (solid green) and for Mn12-ac (dashed red) obtained
from fits to the theory in the range 2− 6 K. The dashed lines
are the theoretical curves based on Eq. 2 with θ = 1.8 ◦.

function of temperature for various fixed transverse mag-
netic fields between 0 and 6 T. The data were corrected
for demagnetization effects, as outlined in the Appendix.
The inverse susceptibility increases with transverse field
(the susceptibility χ decreases) due to spin canting. An
unexpected flattening of the curve occurs for tempera-
tures below ∼ 2 K. For comparison, we show similar data
obtained for a Mn12-ac (Sample E) crystal in Figs. 2(b)
and 2 (d); the expected overall decrease of the suscep-
tibility with transverse field is also observed, as well as
the anomalous deviations at low temperature. On the
other hand, it is clear that the response to transverse
field is distinctly different for the two systems: while the
slopes of the χ−1 vs. T curves increase rapidly for Mn12-
ac-MeOH, the curves remain approximately parallel with
little change of slope in the case of Mn12-ac, with a con-
comitant rapid decrease of the apparent intercept and
Weiss temperature, as reported earlier for this random
system16.

To further demonstrate the different response to the
magnetic field, and guided by Eq. 2 below, we plot in Fig.
3 the normalized change ∆χ−1(H⊥) of the inverse suscep-
tibility at a particular temperature, as a function of H2

⊥

for three Mn12-ac-MeOH samples (green dots) and three
Mn12-ac (red squares) at T = 3.2 K. We note that the
subtraction, ∆χ−1(H⊥) = χ−1(H⊥)−χ−1(0), eliminates
the intermolecular interaction term (J), and the normal-
ization removes the dependence on sample volume. Fig-
ure 3 clearly shows that the effect of the transverse field
is much larger for Mn12-ac.

3. DISCUSSION

To analyze the data quantitatively we turn to the the-
oretical expression presented in Ref. 8:

χ−1(H⊥, T ) = C

(
sec2 θ(H⊥)

∆(H⊥)

tanh ∆(H⊥)
T

− J

)
. (2)

Here J is the effective exchange interaction obtained from
the appropriate spatial average over the dipole interac-
tion, the angle θ characterizes the spin canting in an ap-
plied transverse field and ∆ is the tunnel splitting; de-
tailed expressions for the dependence of θ and ∆ on H⊥
are given in Ref. 8. The bottom line is that the tunnel
splitting becomes non-negligible only for H⊥ > 6T while
in the range 0 < H⊥ < 5T , θ [rad] ≈ 0.1H⊥ [T ].

Using Eq. 2, we plot in Fig. 3 the change ∆χ−1 of the
inverse susceptibility, normalized to the zero transverse
field inverse susceptibility value,

∆χ−1(H⊥) =
χ−1(H⊥)− χ−1(0)

χ−1(0)
, (3)

for the “pure” Transverse Field Ising Ferromagnet with
no tilt angle (green solid line) and for the Random Field
Ising Ferromagnet (RFIFM) with the mean square tilt
angle of 1.8 ◦ (red dashed line) for the random-field dis-
tribution proposed by Park et. al 22. The excellent agree-
ment between calculation and data for the MeOH mate-
rial at H⊥ < 4T at 3.2 K is an indication that this system
is a realization of the dipolar Ising model in a transverse
field. A good fit is obtained for the Mn12-ac crystal data
with the RFIFM model using root mean square tilt an-
gles of 1.8 ◦.

The different amount of disorder in the two systems
demonstrated in Fig. 3 is also reflected in the temper-
ature dependence of the susceptibility. The theoretical
predictions for χ−1(T ) for a pure Mn12 system and for
a system with an average tilt angle of 1.8 ◦ are shown
by the solid lines in Fig. 2(a) and 2(b), respectively.
The demagnetization correction is obtained by requir-
ing that theory and experiment coincide at zero field.
Within this assumption, the data between 2 and 6 K are
consistent with theory for both samples, where a partic-
ularly good fit is obtained for fields below 3 T. However,
while the theoretical lines intersect the temperature axis
at TW (H⊥) implying the approach to a ferromagnetic
phase, the measured susceptibility deviates from this sim-
ple behavior, flattening as the temperature decreases to-
ward the presumed transition. The behavior observed
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at these low temperatures is not understood, and may
imply that a transition to a new phase is prohibited for
reasons that are unclear. It is nevertheless interesting to
examine the Weiss temperatures TW (H⊥) predicted by
the theory. This is shown in the inset to Fig. 2(b) for
both samples, based on fits of the susceptibility measured
between 2 and 6 K, where the “phase diagram” for the
pure case is denoted by the green solid line and the red
dashed line denotes the theoretical prediction for the dis-
ordered case with average tilt angle of θ = 1.8 ◦. For the
theoretical calculation, the dipolar part of the interaction
was obtained using the measured lattice parameters and
crystal structure of Mn12-ac-MeOH and the spin canting
and tunnel splitting were obtained as described in Ref. 8.
A phase diagram similar to that observed for Mn12-ac-
MeOH was obtain by Burzuri et al. in Fe8

23.
The initial suppression of TW for transverse fields

H⊥ < 5 T (see inset to Fig. 2(b)) is expected due to
spin canting, which reduces the net moment in the ax-
ial direction; the more rapid suppression at higher fields
derives from the tunnellng term. A substantially more
rapid suppression of TW with H⊥ is evident for Mn12-ac.
The results for Mn12-ac are consistent with a modified
theory that includes the effects of random fields arising
from the tilt angles.
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FIG. 3: (Color on line) The change in inverse susceptibility,
∆χ−1, normalized to the susceptibility at zero field versus
H2
⊥ for Mn12-ac-MeOH (green dots, open circle Ref[21]) and

Mn12-ac (red squares, half filled and solid squares are Sample
A and B in Ref[16]) at T = 3.2 K. The red dashed line is
calculated using the random-field model of16 (RFIFM) for
the root mean square tilt angle of 1.8 ◦. The solid green line
shows the result for the case with no tilt angle (TFIFM).

4. CONCLUSION

In summary, these studies demonstrate that the mag-
netic susceptibility of Mn12-ac-MeOH follows the behav-

ior expected for a transverse field Ising ferromagnet, in
marked contrast with Mn12-ac. The temperature depen-
dence of the susceptibility and the dependence of the (ex-
trapolated) Weiss temperature on applied transverse field
are different for the two materials. More broadly, the
availability of these two very similar SMMs with distinct
types of magnetism provides unique opportunities for ex-
perimental studies of the effect of randomness on quan-
tum phase transitions and magnetic relaxation. In par-
ticular, large transverse fields (∼ 5 T) that enhance pure
quantum tunnel relaxation (tunneling relaxation with-
out the need for thermal activation) will enable equilib-
rium susceptibility studies down to very low temperature
(mK). Such investigations may reveal interesting ground
states (ferromagnetic, spin glass, or even antiferromag-
netic) that may differ for the pure and random systems.
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6. APPENDIX

In this Appendix we discuss the procedure used to con-
vert the experimental measurements to the susceptibili-
ties reported in the paper.

Our data at zero and nonzero transverse field are ob-
tained with a Hall sensor that reads out a Hall voltage
proportional to the component of the magnetic field per-
pendicular to the sample surface at the position of the
sensor. This magnetic field component is perpendicular
to the applied magnetic field and is generated by the sam-
ple magnetization in a way that depends on the sample
shape and spatial distribution of the magnetization. The
proportionality constant is not known apriori. Also, the
Hall bar must be placed at the edge of the sample, where
the demagnetization correction may be significant but
is not easy to model. Determining the ‘intrinsic’ sample-
averaged magnetization from the Hall data requires anal-
ysis.

Theory8 indicates that at temperatures sufficiently
high relative to disorder scales and to the ordering tem-
perature, but low enough relative to the energy of the
next spin manifold, the susceptibility χ may be written

χ−1 = A

(
T

cos2θH
− J∗

)
(4)

where the amplitude A is related to sample volume and
spin magnitude, cosθH expresses the tilting of spins in a
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field transverse to the Ising axis, and J∗ is an effective
exchange constant that includes a significant correction
due to the demagnetization field in the case of dipolar
magnets such as Mn12. In the absence of an applied
transverse field, Eq. 4 with a J∗ = 0.74K describes the
temperature dependence measured by a SQUID magne-
tometer over a wide temperature range, extending from
the blocking temperature up to a scale ∼ 6K above which
thermal excitation to other spin manifolds begins to be-
come important. The intrinsic susceptibility is obtained
from SQUID-based measurements of a series of samples
with different aspect ratios, extrapolated to the limit of
an infinitely long sample for which, for which the demag-
netization fields are negligible24.
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FIG. 4: (Color on line) Temperature dependence of the intrin-
sic (crosses) and apparent (triangles) inverse susceptibility of
Mn12-ac-MeOH for zero transverse field obtained from global
SQUID-based measurements24 and local Hall-sensor measure-
ments (sample C), respectively. Solid and dashed lines are
linear fits to the experimental data.

From the theoretical results we expect that the sus-
ceptibility measured from the Hall bar, as a function of
temperature T , transverse field HT and

χ−1(T,HT , z) = A

(
T
f(T,HT )

cos2θH
− J∗ − Jdemag(z)

)
(5)

Here A is an amplitude relating to the details of the mea-
surement, Jdemag expresses the local demagnetization ef-
fects at the position z of the Hall bar sensor as well as
global effects relating to the sample shape, and f(T,HT )
parametrizes the effects of interactions beyond mean field
theory, disorder and transverse fields (apart from the spin
tilt effects included in the cosθH). Explicit expressions
for f obtained within mean field theory are given in Ref.8.
It is important that neither A nor Jdemag is expected to
depend on transverse field.

To analyze the Hall bar data we compare the Hall
bar measurements with “global” measurements obtained
in a commercial Quantum Design SQUID-based MPMS
magnetometer24 taken at zero transverse field. Figure 4
shows the inverse of the intrinsic susceptiblity in SI units
(crosses and solid line, black on line) appropriate for a
crystal with no demagnetization effects, obtained as de-
scribed in Ref.24 by extrapolating SQUID measurements
on a series of MeOH crystals to the limit of infinite as-
pect ratio. Representative data derived from the voltage
measured by the Hall probe, in units of T/V, are shown
for sample C (open triangles and dashed line, blue on
line). These data are seen to be linear in temperature
and to intercept the temperature axis at T = 0.63 K, a
value smaller than Tc due to local demagnetization ef-
fects. We determine the prefactor A from the slope of in-
dependently measured SQUID magnetometer data. We
then fix Jdemag(z) by shifting χ−1 along the tempera-
ture axis so that the measured χ−1 extrapolated to zero
temperature coincides with the SQUID data. Finally,
we use these values of A and Jdemag determined from
our HT = 0 analysis to correct the χ−1 at all values of
transverse field, HT . In essence, this procedure yields a
value for the function f(T,HT ) which expresses the non-
mean-field non-pure-system physics, thereby enabling a
cross-comparison between different samples and between
experiment and theory8.

For more information the reader is referred to25.
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