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The many-body diffusion quantum Monte Carlo (DMC) method with twist-averaged boundary conditions
is used to calculate the ground-state equation of state and the energetics of point defects in fcc aluminum,
using supercells up to 1331 atoms. The DMC equilibrium lattice constant differs from experiment by 0.008Å
or 0.2%, while the cohesive energy using DMC with backflow wave functions with improved nodal surfaces
differs by 27 meV. DMC calculated defect formation and migration energies agree with available experimental
data, except for the nearest-neighbor divacancy, which is found to be energetically unstable in agreement with
previous density functional theory (DFT) calculations. DMC and DFT calculations of vacancy defects are in
reasonably close agreement. Self-interstitial formationenergies have larger differences between DMC and DFT,
of up to 0.33eV, at the tetrahedral site. We also computed formation energies of helium interstitial defects where
energies differed by up to 0.34eV, also at the tetrahedral site. The close agreement with available experiment
demonstrates that DMC can be used as a predictive method to obtain benchmark energetics of defects in metals.

PACS numbers: 61.72.J-, 64.30.Ef, 02.70.Ss

I. INTRODUCTION

The mechanical properties of metals are dominated by the formation and migration energies of defects. Experimentally it is
often difficult to measure desired defect properties directly, so it is important to have accurate theoretical approaches to calculate
defect properties. The many-body diffusion quantum Monte Carlo (DMC) approach1 is the most accurate method for systems
with more than≈ 30 electrons but has not previously been applied to defects in metals. Until today, the most successful quantum
mechanics-based defect calculations in metals use densityfunctional theory (DFT). However, the approximate functionals used
(i) lack sufficient specific and universal accuracy, (ii) cannot be systematically improved, and (iii) there are now manyapprox-
imate functionals to choose from, all giving different results. Thus, DMC results are an ideal candidate to wholly replace DFT
when benchmark thermodynamic properties are required. Furthermore, the relative energies of reference phases (bulk metals
and compounds) would be of great value in thermodynamic databases and in the subsequent prediction of phase diagrams (e.g.
CALPHAD and Thermocalc).

In semiconductors, DMC calculations of the formation energies of point defects and surface energies have shown that im-
portant corrections to DFT arise when electronic correlations are fully taken into account. Deviations in formation energies of
more than 1 eV were found in silicon2 and diamond3. Additionally, activation energies of common chemical reactions obtained
by DFT methods have been shown to differ substantially from benchmark diffusion Monte Carlo (DMC) values4 and quantum
chemical results. For metallic systems, the size of the errors in DFT calculations of defects is largely unknown, as moreaccurate
benchmark calculations do not currently exist. It is highlydesirable to demonstrate the feasibility of DMC, with its increased
predictive accuracy, as a replacement of DFT for challenging systems such as metals, particularly as computer power increases.

Aluminum is an ideal starting point for carrying out initialDMC calculations of defects since it is one of the simplest metals
with a close-packed fcc structure that contains no 3d electrons. As a result it is considered a prototype material for testing the
validity of theoretical calculations. Aluminum is well characterized experimentally so there is an abundance of data available.
There have been previous quantum Monte Carlo calculations of the bulk properties of aluminum, however, these were done
using the less accurate variational Monte Carlo5,6 and the calculations had large statistical noise.

In this paper, we report well converged results for the bulk properties of fcc aluminum using DMC. We explore a larger range
of volumes in order to compare the ground-state equation of state calculated with DFT. Our DMC calculations of the defect
properties of aluminum include the simplest point defect, the vacancy for which numerous DFT7–9 and experimental results10–14

are available. We compute the nearest-neighbor divacancy binding energy, a defect that DFT calculations7,15 have found to be
unstable. Since this instability is counter to both experimental studies11,16and simple bond counting arguments17 it is important
to perform calculations of this defect with DMC, a method that unlike DFT, does not rely on approximations for exchange and
correlation.

We also examine two other types of defects: First, self-interstitials can arise due to irradiation with energetic particles, through
plastic deformation, or through their production in thermal equilibrium at high temperatures. We have obtained DMC results
for the formation energies of the〈100〉-dumbbell, the octahedral, and the tetrahedral self-interstitials. Second, experimental
studies of irradiated aluminum show the presence of He bubbles18–20. The formation and growth of helium bubbles can alter a
material’s mechanical properties through void swelling, embrittlement, and surface blistering21,22. Since irradiation, through He
implantation or transmutation, gives rise to He atoms at substitutional or interstitial lattice sites, the energeticsof these types
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of defects are important. Presented here are DMC calculatedformation energies for He at the substitutional, octahedral and
the tetrahedral interstitial sites, which are compared with previous DFT calculations23. We demonstrate that twist-averaged
boundary conditions offer far superior statistics over DFTcalculated single-particle finite-size corrections for DMC calculations
of defects, and also remove a dependence on data from other methods. Overall the calculations reported here used severalmillion
processor hours, which is affordable on large computer clusters and supercomputers.

II. BULK ALUMINUM

The DMC approach1 is a stochastic method for evolving a wave function using theimaginary-time Schrödinger equation.
In principle, and in contrast to most electronic structure methods, the systematic errors can be measured and systematically
reduced24,25. In practice, the most significant sources of error are (i) the fixed-node and fixed-phase approximations, a varia-
tional solution to the Fermion sign problem, (ii) adequately sampling the Brillouin zone, which in contrast with insulators is a
significant problem in metals, and (iii) pseudopotential error and corresponding locality error (although these may beavoided
through all-electron calculations26).

For our DMC calculations we used the CASINO code27, with guiding wave functions formed by a product of Slater determi-
nants for up and down spin electrons and a Jastrow correlation function. The single-particle orbitals in the determinants were
obtained from DFT calculations using the generalized gradient approximation (GGA) for the exchange-correlation termsince it
should perform better than the local density approximation(LDA) where the electron distribution shows large spatial variations
as it does at a vacancy in aluminum7. (For bulk aluminum GGA is more accurate than LDA, see Fig. 3.) For GGA we used
the Perdew-Burke-Ernzerhof (PBE) form28 rather than the Perdew-Wang-91 (PW91) form29 since it gives better values8 for the
vacancy formation energy. The DFT calculations were performed using the plane-wave PWSCF code30 with Troullier-Martins
non-local pseudopotentials. For the non-local pseudopotentials we used the locality approximation31 in the DMC calculations.
The orbitals were evaluated in DMC via real-space cubic splines32. For the DMC simulations we used 5280 walkers with a time
step of 0.01 au, which our test calculations revealed gave time-step errors in Table I of less than 0.01 eV.

Calculations of solids using DMC require finite simulation supercells with periodic boundary conditions imposed on the
Hamiltonian. This leads to finite-size effects that can be divided between single-particle and many-body contributions. In a
metal the DMC kinetic energy contains large single-particle contributions due to the sharp Fermi surface, which impacts our
calculations in two ways.

First, in a real metal the number of orbitals with energies below the Fermi level is usually not equal to the number of electrons
required in the simulation cell. In DFT calculations one canuse partial occupations of these orbitals to create a closedshell
configuration guaranteeing that the charge density has the correct symmetry. In a DMC calculation with a guiding wave function
containing a single determinant for the spin up and for the spin down electrons the use of partial occupations is not an option.
Gaudoin, et. al.6 found differences in aluminum as large as 0.1 eV/atom in variational Monte Carlo total energies depending on
the occupations of the orbitals at the Fermi level. As our calculations show in Fig. 3 for aluminum an error on the order of 0.1
eV/atom is too large to accurately discern the equilibrium lattice constant.

A second complication for DMC calculations of metals arisesas the system size is varied, which can produce band crossings
as energy levels pass through the Fermi level. This can create discontinuous changes in the nodal surface of the guiding wave
function as the symmetry of the occupied orbitals change, leading to discontinuities in the DMC energy as shown in Fig. 1.For
simulation cells containing 64 or 125 atoms we found that single-particle DFT correctionsEDMC

∞
= EDMC

N
+EDFT

∞
−EDFT

N

were ineffective in removing the large discontinuities we found in calculated DMC energies as the volume was varied. However,
the use of well-converged twist-averaged boundary conditions33,34 was effective in producing smooth energy versus volume
curves at these systems sizes as shown in Fig. 1. Our calculations with 64 and 125 atoms usedΓ-point centered grids with
13x13x13 and 10x10x10 twists, respectively.

With twist-averaged boundary conditions the remaining finite-size effects arise from many-body contributions35 that scale as

E∞ = EN + c/N. (1)

As shown in Fig. 2 this equation agrees well with our DMC energies using twist-averaged boundary conditions for simulation
cells containing between 27 and 1331 atoms.

We used Eq. (1) to obtain infinite-size extrapolated DMC total energies from calculations using 64 and 125 atom simulation
cells with twist-averaged boundary conditions using a range of lattice constants shown in Fig. 3. The energy points werefit to
a quartic and a Murnaghan equation of state36. Both fits yielded an equilibrium lattice constant of 4.030(1) Å. This compares
well with the experimental value, 4.022̊A, with zero-point energy and finite-temperature effects removed5. In contrast DFT
calculations with the local density approximation (LDA) and GGA (PBE) yield 3.960̊A and 4.046Å, respectively.

For the DMC cohesive energy we initially obtained 3.341(1) eV using the fixed-nodes defined by the GGA orbitals, compared
with the experimental value of 3.43 eV with zero-point energy and finite-temperature effects removed, 4.21 eV using LDA,and
3.52 eV using GGA (PBE). Although the fixed-node DMC results with GGA nodes are already the most accurate, to assess
the possible nodal error we also performed DMC calculationswith twist-averaged boundary conditions and extrapolation to
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FIG. 1: (Color online) The black circles with error bars are the calculated DMC ground-state energies of bulk fcc aluminum obtained using
twist-averaged boundary conditions with 10x10x10 twists.The red diamonds with error bars are the calculated DMC ground-state energies of
bulk fcc aluminum obtained without using twist-averaged boundary conditions. The DFT correctionsEDMC

∞
= E

DMC
N + E

DFT
∞

− E
DFT
N

were added to the results that did not use twist-averaged boundary conditions. Both sets of calculations were done using5x5x5 supercells
containingN = 125 atoms.

an infinite-sized supercell using optimized backflow wave functions (with backflow transformations that contained electron-
electron, electron-nuclei, and electron-electron-nuclei terms37) at the optimum lattice constant and also for an isolated atom.
Backflow wave functions can be substantially more accurate than single determinant non-backflow wave functions, typically
yielding an additional few percent DMC correlation energy in atomic calculations and nearly 100 percent of the correlation
energy in the homogeneous electron gas37. However, since backflow is too expensive to apply routinely, we have used the
backflow result, similar to how corrections for all-electrons have been applied26, to shift our single determinant fixed-node
energies in Fig. 3. The backflow cohesive energy is 3.403(1) eV. A complete backflow evaluation of the lattice constant might
further reduce the residual differences from experiment.

We expect the backflow correction in metallic systems with atomic number higher than aluminum to be at least as large as our
computed correction in aluminum. This indicates that to obtain cohesive energies to better than 0.1eV – other than by fortuitous
error cancellation – backflow or other nodal optimization must be considered.

We performed additional DMC total energy calculations of bulk aluminum for atomic volumes smaller than those shown in
Fig. 3 by following the same procedure of using Eq. (1) to obtain infinite-size extrapolated DMC total energies from calculations
using 64 and 125 atom simulation cells with converged twist-averaged boundary conditions. A Murnaghan fit of the energy-
volume DMC data was used to obtain the pressure for a range of atomic volumes. These calculated DMC pressures are shown
in the upper part of Fig. 4 along with pressures calculated with DFT using GGA (PBE). At this scale the differences between
the DMC and GGA pressures are not visible. The solid black curve in the lower part of Fig. 4 shows the difference in pressures
between GGA and DMC. A common procedure for constructing an equation of state of a material at low temperatures is to shift
the computed equilibrium lattice constant so that it coincides with the experimental equilibrium lattice constant38. Following a
similar procedure of shifting the GGA calculated energy-volume curve so that the GGA equilibrium lattice constant of 4.046Å
coincides with the DMC equilibrium lattice constant of 4.030(1)Å yields a pressure difference between the GGA and the DMC
equation of states that increases markedly at smaller atomic volumes as shown in the red dashed line in Fig.4. This demonstrates
that the applying a rigid shift to DFT equation of state calculations can result in larger errors than if a shift is not applied.
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FIG. 2: (Color online) The circles are calculated DMC ground-state energies of fcc aluminum with lattice constant a=4.046 Å using twist-
averaged boundary conditions for simulation cells containing 27, 64, 125, 216 atoms, and 1331 atoms, with aΓ-point centered grid of
17x17x17, 13x13x13, 10x10x10, 9x9x9, and 1x1x1 twists, respectively. The statistical error bars are smaller than the circles. The dashed line
is a guide to the eye. The solid red line is a fit to the data usingEq. (1) where N, the number of atoms, is 64, 125, and 216. This fit has a
correlation coefficient of -0.9997.

III. DEFECTS IN ALUMINUM

The results of our calculations of point defects are presented in Table I. The atomic positions were taken from complete
structure and volume relaxed DFT calculations using GGA at zero pressure. The calculated GGA and DMC vacancy formation
and migration energy agree with experiment. However, GGA nolonger agrees with experiment when “surface” corrections7,39,40

of 0.15 eV and 0.05 eV are added to the GGA (PBE) functional producing 0.82 eV and 0.65 eV for the vacancy formation
and migration energy, respectively. Previous GGA (PBE) calculations8 of the vacancy formation energy without the “surface”
correction using 4x4x4 supercells yielded values of 0.61 eVand 0.63 eV with norm-conserving and projector augmented-wave
pseudopotentials, respectively. This difference with ourGGA results is likely partially due to finite-size effects since we obtained
0.64 eV for the vacancy formation energy using a 4x4x4 supercell. The GGA results in Table I correspond to calculations using
finite-size converged 7x7x7 supercells. Convergence of theGGA defect structures was established by computing the energies
using4x4x4, 5x5x5, 6x6x6, and7x7x7 supercells. The DMC results in Table I were done using5x5x5 supercells withΓ-point
centered grids of10x10x10 twists. The finite-size errors for our DMC calculations are likely to be small since the largest GGA
energy difference among all of the defects comparing5x5x5 and7x7x7 supercells was 0.02 eV. Shown in Table II are GGA and
DMC data demonstrating the convergence with supercell sizefor all the defects considered.

For the nearest-neighbor divacancy with DMC we obtain a negative binding energy, -0.10 eV, which implies that two isolated
vacancies are energetically preferred to a nearest-neighbor divacancy. This agrees with previous DFT calculations which also
found a similar negative binding energy, -0.05 eV using15 LDA and -0.08 eV using7 GGA (PW91). Thus the disagreement
between previous calculations and the original interpretation of experimental data11,16, which gave positive binding, is likely not
a result of DFT approximations. Our results are consistent with the reinterpretation7 of the data.

Experimentally42 the〈100〉-dumbbell was found to be the lowest energy self-interstitial in aluminum. Of the self-interstitials
investigated we found that the〈100〉-dumbbell has the lowest formation energy. The calculated formation energy was 2.94 eV
using DMC and 2.70 eV using GGA. Our DMC value agrees with the experimental estimates of 3.010 and 3.2(5) eV42. For the
〈100〉-dumbbell we obtain a relaxation volume of 2.25, which agrees closely with experimental estimates of 1.9(4) and 1.7(4)42.
Our GGA (PBE) result is larger than a previous GGA (PW91) result39 of 2.43 eV. For the self-interstitials we see differences
between the calculated DMC and GGA formation energies as large as 0.24 eV.

The DMC formation energy for a He substitutional defect is 1.72 eV, while the energies for He interstitials are larger than
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FIG. 3: (Color online) Upper: Comparison of equilibrium lattice constants and cohesive energies for fcc aluminum calculated using DMC with
backflow (4.030(1)̊A, 3.403(1) eV), using DFT with LDA (3.960̊A, 4.21 eV)5 and GGA (PBE) (4.046̊A, 3.52 eV), and experiment (4.022̊A,
3.43 eV) with zero-point energy and finite-temperature effects removed5. Lower: DMC energies for various lattice constants, with a quartic
and a Murnaghan36 fit. DMC data was obtained using twist-averaged boundary conditions and extrapolated to infinite-sized supercells with
single determinant fixed-nodes. A shift of 0.063 eV was applied based on DMC calculations using backflow wave functions (see text).

TABLE I: Energies (enthalpies at zero pressure) for point defects in fcc aluminum (eV) calculated using GGA (PBE) and DMC. Formation
and migration energies for a single vacancy are denotedH

f
v andH

m
v , respectively. Shown in braces are the GGA values with “surface”

corrections7,39 added. Formation and binding energies for a nearest-neighbor divacancy are denotedHf
2v andHb

2v, respectively.Hf

d , Hf
o and

H
f
t are the formation energies for the〈100〉-dumbbell, the octahedral, and the tetrahedral self-interstitials, respectively. Formation energies

for a He impurity at a substitutional, octahedral, and tetrahedral sites are denotedHf

He(s), H
f

He(o), andHf

He(t), respectively. Statistical errors
bars for all DMC energies are 0.01 eV. GGA and DMC calculations were done using 7x7x7 and 5x5x5 supercells, respectively,with atomic
positions taken from complete structure and volume relaxedGGA calculations.

GGA DMC Experiment
H

f
v 0.67{0.82} 0.67 0.67(3)10, 0.6711, 0.66(2)12

H
m
v 0.60{0.65} 0.60 0.6213, 0.61(3)10, 0.65(6)14

H
f
2v 1.37 1.44 1.17(7)a

H
b
2v -0.03 −0.10 0.17(5)41, 0.2011

H
f

d 2.70 2.94 3.010, 3.2(5)42

H
f
o 2.91 3.13

H
f
t 3.23 3.56

H
f

He(s)
1.63 1.72

H
f

He(o) 3.26 3.58

H
f

He(t) 3.33 3.67

aComputed usingHf
v from Ref. [10] andHb

2v from Ref. [41]
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FIG. 4: (Color online) Upper: The red squares show the calculated pressures of fcc aluminum using DFT with GGA (PBE). The black circles
are pressures obtained from a Murnighan fit of total energy DMC calculations performed at a range of atomic volumes. At this scale the GGA
and DMC data are indistinguishable. Lower: The black solid line is the difference in pressure between the GGA and the DMC calculations at
the same range of atomic volumes. The dashed red line shows the difference in pressures between the GGA and the DMC calculations after
the GGA energy-volume curve as been shifted so that the equilibrium volumes of the GGA and DMC calculations coincide.

TABLE II: Energies (enthalpies at zero pressure) for point defects in fcc aluminum (eV) calculated using density functional theory (DFT)
with GGA (PBE) functional and diffusion Monte Carlo (DMC). The symbols for the formation and migration energies are the same as those
used in Table I. Except where indicated the statistical errors bars for the DMC energies are 0.01 eV. The GGA and DMC calculations
were done with atomic positions taken from complete structure and volume relaxed GGA calculations. For the GGA calculations we used
4x4x4, 5x5x5, 6x6x6, and 7x7x7 supercells withΓ-centered grids of 10x10x10, 9x9x9, 8x8x8, and 7x7x7 kpoints, respectively. For the
DMC calculations we used 4x4x4 and 5x5x5 supercells. For DMCwithout twist averaging we applied the single-particle DFTcorrections
E

DMC
∞

= E
DMC
N +E

DFT
∞

−E
DFT
N . For the DMC calculations with twist averaging we did not apply DFT corrections and usedΓ-centered

grids with 13x13x13 twists and 10x10x10 twists for the 4x4x4and 5x5x5 supercells, respectively. Entries in the table that were not determined
are denoted N.D.

GGA DMC with DFT corrections DMC with twist averaging
supercell 4x4x4 5x5x5 6x6x6 7x7x7 4x4x4 5x5x5 4x4x4 5x5x5
H

f
v 0.64 0.65 0.67 0.67 0.58 0.81 0.66 0.67

H
m
v 0.59 0.59 0.60 0.60 0.50 0.40(3) 0.54 0.60

H
f
2v 1.36 1.35 1.36 1.37 1.31 1.29(3) 1.47 1.44

H
b
2v −0.05 −0.05 −0.02 −0.03 −0.15(2) 0.33(5) −0.15 −0.10

H
f

d 2.82 2.72 2.72 2.70 N.D. N.D. N.D. 2.94
H

f
o 2.93 2.90 2.94 2.91 2.90 2.75 3.18 3.13

H
f
t 3.53 3.25 3.27 3.23 3.27 3.27 3.60 3.56

H
f

He(s) 1.61 1.61 1.62 1.63 1.41 1.98 1.64 1.72

H
f

He(o) 3.26 3.24 3.27 3.26 3.29 3.45 3.53 3.58

H
f

He(t)
3.44 3.35 3.35 3.33 2.89 3.55 3.71 3.67
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3 eV. The ordering of these energies is consistent with siteswith larger free volumes having lower energies. Previous DFT
calculations23 using GGA (PW91) obtained 1.53, 3.18, and 3.20 eV for He at thesubstitutional, octahedral, and tetrahedral site,
respectively. Comparing our GGA and DMC calculations we seedifferences between 0.09 and 0.34 eV for the He impurity.
Similar to the self-interstitials, the GGA exchange-correlation errors are larger for these defects than for the vacancy.

Relying on DFT corrections to minimize the single-particlefinite-size errors instead of twist averaging, yielded poorer con-
vergence for defect energies. For example, the difference in vacancy formation energies between 4x4x4 and 5x5x5 supercells
was 0.23 eV compared with 0.01 eV with twist averaging, whilethe result for divacancy binding was reversed as shown in Table
II. DMC calculations in larger 6x6x6 supercells would be an order of magnitude more expensive, and may still be inferior to
the twist-averaged results. The use of twist averaging is essential in metals for defects and excitations in which the fractional
change in the total energy due to the presence of the defect orexcitation is inversely proportional to the number of atomsin the
supercell, i.e., “1/N” effects.

IV. CONCLUSIONS

In summary, DMC with twist-averaged boundary conditions can be used to obtain an accurate equation of state of aluminum.
Our DMC results confirm previous DFT calculations that the nearest-neighbor divacancy is unstable in aluminum. Our calculated
formation and migration energies of point defects show excellent agreement with available experiment, demonstratingthat DMC
can be used to obtain benchmark energetics of defects in metals and used as a baseline where no experiment is available.
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