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The many-body diffusion quantum Monte Carlo (DMC) methodhwiwist-averaged boundary conditions
is used to calculate the ground-state equation of state len@nergetics of point defects in fcc aluminum,
using supercells up to 1331 atoms. The DMC equilibriumdattionstant differs from experiment by 0.088
or 0.2%, while the cohesive energy using DMC with backflow e&nctions with improved nodal surfaces
differs by 27 meV. DMC calculated defect formation and migma energies agree with available experimental
data, except for the nearest-neighbor divacancy, whicbuad to be energetically unstable in agreement with
previous density functional theory (DFT) calculations. DMnd DFT calculations of vacancy defects are in
reasonably close agreement. Self-interstitial formagioergies have larger differences between DMC and DFT,
of up to 0.33eV, at the tetrahedral site. We also computeddtion energies of helium interstitial defects where
energies differed by up to 0.34eV, also at the tetrahedral Jihe close agreement with available experiment
demonstrates that DMC can be used as a predictive methodezim denchmark energetics of defects in metals.

PACS numbers: 61.72.J-, 64.30.Ef, 02.70.Ss

I. INTRODUCTION

The mechanical properties of metals are dominated by thadton and migration energies of defects. Experimentaily i
often difficult to measure desired defect properties diyeso it is important to have accurate theoretical appreactb calculate
defect properties. The many-body diffusion quantum Moraed(DMC) approachis the most accurate method for systems
with more thanx 30 electrons but has not previously been applied to defect®bals Until today, the most successful quantum
mechanics-based defect calculations in metals use dduasitfional theory (DFT). However, the approximate funotits used
(i) lack sufficient specific and universal accuracy, (ii) cant be systematically improved, and (iii) there are now mapgrox-
imate functionals to choose from, all giving different resuThus, DMC results are an ideal candidate to wholly replaFT
when benchmark thermodynamic properties are requiredh&umore, the relative energies of reference phases (betilsn
and compounds) would be of great value in thermodynamiddats and in the subsequent prediction of phase diagragns (e.
CALPHAD and Thermocalc).

In semiconductors, DMC calculations of the formation eres@f point defects and surface energies have shown that im-
portant corrections to DFT arise when electronic corretatiare fully taken into account. Deviations in formatioemgies of
more than 1 eV were found in silicdand diamond Additionally, activation energies of common chemicalatéans obtained
by DFT methods have been shown to differ substantially fremdhmark diffusion Monte Carlo (DMC) valueand quantum
chemical results. For metallic systems, the size of thegmdDFT calculations of defects is largely unknown, as nemeurate
benchmark calculations do not currently exist. It is higtigsirable to demonstrate the feasibility of DMC, with itsrieased
predictive accuracy, as a replacement of DFT for challemgyrstems such as metals, particularly as computer poweases.

Aluminum is an ideal starting point for carrying out initMC calculations of defects since it is one of the simplestaise
with a close-packed fcc structure that contains no 3d a@lastrAs a result it is considered a prototype material fdirtgshe
validity of theoretical calculations. Aluminum is well ateeterized experimentally so there is an abundance of datkable.
There have been previous quantum Monte Carlo calculatibtiseobulk properties of aluminum, however, these were done
using the less accurate variational Monte Catland the calculations had large statistical noise.

In this paper, we report well converged results for the butipprties of fcc aluminum using DMC. We explore a larger ang
of volumes in order to compare the ground-state equationadé €alculated with DFT. Our DMC calculations of the defect
properties of aluminum include the simplest point deféw,tacancy for which numerous DEY and experimental results'4
are available. We compute the nearest-neighbor divacandynlg energy, a defect that DFT calculatiéf3have found to be
unstable. Since this instability is counter to both expental studie¥-®and simple bond counting argumeMtit is important
to perform calculations of this defect with DMC, a methodtthalike DFT, does not rely on approximations for exchangs an
correlation.

We also examine two other types of defects: First, selfrftitgals can arise due to irradiation with energetic gées, through
plastic deformation, or through their production in thelmguilibrium at high temperatures. We have obtained DMQiltss
for the formation energies of thd00)-dumbbell, the octahedral, and the tetrahedral selfstitels. Second, experimental
studies of irradiated aluminum show the presence of He lagf0t%. The formation and growth of helium bubbles can alter a
material’s mechanical properties through void swellingpeittlement, and surface blisterifig. Since irradiation, through He
implantation or transmutation, gives rise to He atoms assubional or interstitial lattice sites, the energetidghese types



of defects are important. Presented here are DMC calcufatatation energies for He at the substitutional, octahieaind
the tetrahedral interstitial sites, which are comparedhpitevious DFT calculatiodd We demonstrate that twist-averaged
boundary conditions offer far superior statistics over Qialculated single-particle finite-size corrections for DMalculations
of defects, and also remove a dependence on data from otlteoaise Overall the calculations reported here used sewgltain
processor hours, which is affordable on large computetalsignd supercomputers.

II. BULK ALUMINUM

The DMC approachis a stochastic method for evolving a wave function usingithaginary-time Schrodinger equation.
In principle, and in contrast to most electronic structuretimds, the systematic errors can be measured and systaliyati
reduced*?. In practice, the most significant sources of error are @)ftked-node and fixed-phase approximations, a varia-
tional solution to the Fermion sign problem, (ii) adequatempling the Brillouin zone, which in contrast with instalies is a
significant problem in metals, and (iii) pseudopotentiabeand corresponding locality error (although these mag\mded
through all-electron calculatioffy.

For our DMC calculations we used the CASINO céfevith guiding wave functions formed by a product of Slatetedei-
nants for up and down spin electrons and a Jastrow correlatitction. The single-particle orbitals in the determitsanere
obtained from DFT calculations using the generalized gmatchpproximation (GGA) for the exchange-correlation tsince it
should perform better than the local density approximaiid®) where the electron distribution shows large spateiiations
as it does at a vacancy in alumintn{For bulk aluminum GGA is more accurate than LDA, see FiYy).Por GGA we used
the Perdew-Burke-Ernzerhof (PBE) foffmather than the Perdew-Wang-91 (PW91) fétsince it gives better valugsor the
vacancy formation energy. The DFT calculations were paréat using the plane-wave PWSCF c#teith Troullier-Martins
non-local pseudopotentials. For the non-local pseudayiate we used the locality approximatidnin the DMC calculations.
The orbitals were evaluated in DMC via real-space cubimggl. For the DMC simulations we used 5280 walkers with a time
step of 0.01 au, which our test calculations revealed gave-sitep errors in Table | of less than 0.01 eV.

Calculations of solids using DMC require finite simulatiarpercells with periodic boundary conditions imposed on the
Hamiltonian. This leads to finite-size effects that can hadéid between single-particle and many-body contribigiom a
metal the DMC kinetic energy contains large single-pagtmbntributions due to the sharp Fermi surface, which ingpaat
calculations in two ways.

First, in a real metal the number of orbitals with energidelwehe Fermilevel is usually not equal to the number of etats
required in the simulation cell. In DFT calculations one cese partial occupations of these orbitals to create a cleiseld
configuration guaranteeing that the charge density hastineat symmetry. In a DMC calculation with a guiding wavedtian
containing a single determinant for the spin up and for thie dpwn electrons the use of partial occupations is not aioopt
Gaudoin, et. af.found differences in aluminum as large as 0.1 eV/atom iratiamnal Monte Carlo total energies depending on
the occupations of the orbitals at the Fermi level. As oucwations show in Fig. 3 for aluminum an error on the order.af 0
eV/atom is too large to accurately discern the equilibriattide constant.

A second complication for DMC calculations of metals ariaeshe system size is varied, which can produce band crassing
as energy levels pass through the Fermi level. This canecdistontinuous changes in the nodal surface of the guidangew
function as the symmetry of the occupied orbitals changsalite to discontinuities in the DMC energy as shown in Fig=dr.
simulation cells containing 64 or 125 atoms we found thaglsiparticle DFT correctiong2M¢ = pPMC 4 pDFT _ pDFT
were ineffective in removing the large discontinuities warid in calculated DMC energies as the vqume was varied. eHew
the use of well-converged twist-averaged boundary cambt?3* was effective in producing smooth energy versus volume
curves at these systems sizes as shown in Fig. 1. Our cabnidatvith 64 and 125 atoms usédpoint centered grids with
13x13x13 and 10x10x10 twists, respectively.

With twist-averaged boundary conditions the remainingdisize effects arise from many-body contributirthat scale as

Es = Ey +¢/N. (1)

As shown in Fig. 2 this equation agrees well with our DMC efe@ising twist-averaged boundary conditions for simarati
cells containing between 27 and 1331 atoms.

We used Eq. (1) to obtain infinite-size extrapolated DMClteteergies from calculations using 64 and 125 atom simuiatio
cells with twist-averaged boundary conditions using a esoigjattice constants shown in Fig. 3. The energy points \iiete
a quartic and a Murnaghan equation of statdBoth fits yielded an equilibrium lattice constant of 4. OBDQ\ This compares
well with the experimental value, 4. 022 with zero- point energy and finite-temperature eﬁec'mcueed" In contrast DFT
calculations with the local density approximation (LDAYBBGA (PBE) yield 3.96@ and 4.046A, respectively.

For the DMC cohesive energy we initially obtained 3.341{ using the fixed-nodes defined by the GGA orbitals, compared
with the experimental value of 3.43 eV with zero-point elyeagd finite-temperature effects removed, 4.21 eV using L&A
3.52 eV using GGA (PBE). Although the fixed-node DMC resulthvGGA nodes are already the most accurate, to assess
the possible nodal error we also performed DMC calculatisitls twist-averaged boundary conditions and extrapotati
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FIG. 1: (Color online) The black circles with error bars dne talculated DMC ground-state energies of bulk fcc alumimibtained using
twist-averaged boundary conditions with 10x10x10 twi$tse red diamonds with error bars are the calculated DMC gtatate energies of
bulk fcc aluminum obtained without using twist-averagedtmary conditions. The DFT correctioig2¥ ¢ = ERMC 4 pRFT _ pRFT
were added to the results that did not use twist-averageddaoy conditions. Both sets of calculations were done uSk&x5 supercells
containingN = 125 atoms.

an infinite-sized supercell using optimized backflow wawvections (with backflow transformations that contained etec
electron, electron-nuclei, and electron-electron-rielens’’) at the optimum lattice constant and also for an isolatechato
Backflow wave functions can be substantially more accuta single determinant non-backflow wave functions, typica
yielding an additional few percent DMC correlation energyatomic calculations and nearly 100 percent of the coicglat
energy in the homogeneous electron3jaHowever, since backflow is too expensive to apply routinaly have used the
backflow result, similar to how corrections for all-elegtsohave been appliéd] to shift our single determinant fixed-node
energies in Fig. 3. The backflow cohesive energy is 3.403(1Aeomplete backflow evaluation of the lattice constantimig
further reduce the residual differences from experiment.

We expect the backflow correction in metallic systems witmat number higher than aluminum to be at least as large as our
computed correction in aluminum. This indicates that tmobtohesive energies to better than 0.1eV — other than hyitous
error cancellation — backflow or other nodal optimizatiorstrioe considered.

We performed additional DMC total energy calculations dkkaluminum for atomic volumes smaller than those shown in
Fig. 3 by following the same procedure of using Eg. (1) to obitafinite-size extrapolated DMC total energies from cdtions
using 64 and 125 atom simulation cells with converged taigraged boundary conditions. A Murnaghan fit of the energy-
volume DMC data was used to obtain the pressure for a rangemi@volumes. These calculated DMC pressures are shown
in the upper part of Fig. 4 along with pressures calculated WFT using GGA (PBE). At this scale the differences between
the DMC and GGA pressures are not visible. The solid blackecirr the lower part of Fig. 4 shows the difference in pressure
between GGA and DMC. A common procedure for constructinggpragon of state of a material at low temperatures is to shift
the computed equilibrium lattice constant so that it calesiwith the experimental equilibrium lattice const&nEollowing a
similar procedure of shifting the GGA calculated energyumee curve so that the GGA equilibrium lattice constant O46.A
coincides with the DMC equilibrium lattice constant of 4(103),& yields a pressure difference between the GGA and the DMC
equation of states that increases markedly at smaller ateshimes as shown in the red dashed line in Fig.4. This detraias
that the applying a rigid shift to DFT equation of state cdtions can result in larger errors than if a shift is not &gl
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FIG. 2: (Color online) The circles are calculated DMC growstdte energies of fcc aluminum with lattice constant 48 A using twist-
averaged boundary conditions for simulation cells comair27, 64, 125, 216 atoms, and 1331 atoms, with-point centered grid of
17x17x17, 13x13x13, 10x10x10, 9x9x9, and 1x1x1 twistgeetvely. The statistical error bars are smaller than ttees. The dashed line
is a guide to the eye. The solid red line is a fit to the data uBiqg(1) where N, the number of atoms, is 64, 125, and 216. Thiwm§ a
correlation coefficient of -0.9997.

1. DEFECTSIN ALUMINUM

The results of our calculations of point defects are presknt Table I. The atomic positions were taken from complete
structure and volume relaxed DFT calculations using GGAeat pressure. The calculated GGA and DMC vacancy formation
and migration energy agree with experiment. However, GGlonger agrees with experiment when “surface” correctiéhé’
of 0.15 eV and 0.05 eV are added to the GGA (PBE) functionatlpcong 0.82 eV and 0.65 eV for the vacancy formation
and migration energy, respectively. Previous GGA (PBEgwations of the vacancy formation energy without the “surface”
correction using 4x4x4 supercells yielded values of 0.65aad 0.63 eV with norm-conserving and projector augmentadew
pseudopotentials, respectively. This difference with@@A results is likely partially due to finite-size effectasé we obtained
0.64 eV for the vacancy formation energy using a 4x4x4 suglerthe GGA results in Table | correspond to calculationiagis
finite-size converged 7x7x7 supercells. Convergence oGié defect structures was established by computing thegerser
using4x4x4, 5x5x5, 6x6x6, and7x7x7 supercells. The DMC results in Table | were done ugirgx5 supercells witi -point
centered grids of0x10x10 twists. The finite-size errors for our DMC calculations dkelly to be small since the largest GGA
energy difference among all of the defects compabixgx5 and7x7x7 supercells was 0.02 eV. Shown in Table Il are GGA and
DMC data demonstrating the convergence with supercellfsizall the defects considered.

For the nearest-neighbor divacancy with DMC we obtain a tieghinding energy, -0.10 eV, which implies that two iselht
vacancies are energetically preferred to a nearest-neigtitacancy. This agrees with previous DFT calculationgctvialso
found a similar negative binding energy, -0.05 eV u$migDA and -0.08 eV using GGA (PW91). Thus the disagreement
between previous calculations and the original interpicaiaf experimental dat& ', which gave positive binding, is likely not
a result of DFT approximations. Our results are consistétht tive reinterpretatiohof the data.

Experimentall§? the (100)-dumbbell was found to be the lowest energy self-inteadtiti aluminum. Of the self-interstitials
investigated we found that th@00)-dumbbell has the lowest formation energy. The calculabechtion energy was 2.94 eV
using DMC and 2.70 eV using GGA. Our DMC value agrees with ttpeeeimental estimates of 30and 3.2(5) e¥?. For the
(100)-dumbbell we obtain a relaxation volume of 2.25, which agi@esely with experimental estimates of 1.9(4) and 177(4)
Our GGA (PBE) result is larger than a previous GGA (PW91) ité30f 2.43 eV. For the self-interstitials we see differences
between the calculated DMC and GGA formation energies ge las 0.24 eV.

The DMC formation energy for a He substitutional defect i821eV, while the energies for He interstitials are largentha
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FIG. 3: (Color online) Upper: Comparison of equilibriumtle¢ constants and cohesive energies for fcc aluminum leagziiusing DMC with
backflow (4.030(1), 3.403(1) eV), using DFT with LDA (3.968, 4.21 eV} and GGA (PBE) (4.048,, 3.52 eV), and experiment (4.022
3.43 eV) with zero-point energy and finite-temperatureaffeemovetl Lower: DMC energies for various lattice constants, withuargjc
and a Murnaghaf fit. DMC data was obtained using twist-averaged boundarylitions and extrapolated to infinite-sized supercells with
single determinant fixed-nodes. A shift of 0.063 eV was agpbiased on DMC calculations using backflow wave functioes {ext).

TABLE I: Energies (enthalpies at zero pressure) for poiriedts in fcc aluminum (eV) calculated using GGA (PBE) and DNFGrmation
and migration energies for a single vacancy are dendfédand H™, respectively. Shown in braces are the GGA values with merf

correction$* added. Formation and binding energies for a nearest-neighizacancy are denoteld;, and H%,, respectively.H}, H! and
Htf are the formation energies for th&00)-dumbbell, the octahedral, and the tetrahedral selfsiitels, respectively. Formation energies
for a He impurity at a substitutional, octahedral, and tetcaal sites are denotédi};e(s), H};E(O), andHIJ;e(t), respectively. Statistical errors
bars for all DMC energies are 0.01 eV. GGA and DMC calculaiamere done using 7x7x7 and 5x5x5 supercells, respectiwily,atomic
positions taken from complete structure and volume rel&@&ad\ calculations.

GGA DMC Experiment
H] 0.67{0.82 0.67 0.67(3J°, 0.67%, 0.66(2°
H™ 0.60{0.65} 0.60 0.622,0.61(3}°, 0.65(6}*
HY, 1.37 1.44 1.17(7}
HS, -0.03 —0.10 0.17(5¥*, 0.20"
HY 2.70 2.94 3.0, 3.2(5)2
H! 2.91 3.13
H/ 3.23 3.56
Hl o 1.63 1.72
HY. 3.26 3.58
Hi o 3.33 3.67

aComputed using—[f from Ref. [10] anngv from Ref. [41]
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FIG. 4: (Color online) Upper: The red squares show the catedl pressures of fcc aluminum using DFT with GGA (PBE). Tlaelbcircles

are pressures obtained from a Murnighan fit of total energyCDddIculations performed at a range of atomic volumes. Atshale the GGA
and DMC data are indistinguishable. Lower: The black satid Is the difference in pressure between the GGA and the Dai€lilations at
the same range of atomic volumes. The dashed red line shewdiffarence in pressures between the GGA and the DMC céilentaafter

the GGA energy-volume curve as been shifted so that theilquih volumes of the GGA and DMC calculations coincide.

TABLE II: Energies (enthalpies at zero pressure) for poiefiedts in fcc aluminum (eV) calculated using density fumaail theory (DFT)
with GGA (PBE) functional and diffusion Monte Carlo (DMC)h& symbols for the formation and migration energies are dingesas those
used in Table I. Except where indicated the statisticalrerbars for the DMC energies are 0.01 eV. The GGA and DMC caticuis
were done with atomic positions taken from complete stmecaind volume relaxed GGA calculations. For the GGA calautatwe used
4Ax4x4, 5x5x5, 6x6x6, and 7x7x7 supercells withcentered grids of 10x10x10, 9x9x9, 8x8x8, and 7x7x7 kmpinespectively. For the
DMC calculations we used 4x4x4 and 5x5x5 supercells. For DMiBout twist averaging we applied the single-particle Dédfrections
ERMC — pBbMC | pDFT _ pDFT For the DMC calculations with twist averaging we did notlggpFT corrections and used-centered
grids with 13x13x13 twists and 10x10x10 twists for the 4xéxdl 5x5x5 supercells, respectively. Entries in the tatdéwlere not determined
are denoted N.D.

GGA DMC with DFT corrections DMC with twist averaging
supercell Ax4Ax4 5x5x5 6X6X6 TXTXT Ax4x4 5x5x5 Ax4x4 5x5x5
H] 0.64 0.65 0.67 0.67 0.58 0.81 0.66 0.67
" 0.59 0.59 0.60 0.60 0.50 0.40(3) 0.54 0.60
Hgv 1.36 1.35 1.36 1.37 1.31 1.29(3) 1.47 1.44
HE, —0.05 —0.05 —0.02 —0.03 —0.15(2) 0.33(5) —0.15 —0.10
HC’; 2.82 2.72 2.72 2.70 N.D. N.D. N.D. 2.94
HS 2.93 2.90 2.94 2.91 2.90 2.75 3.18 3.13
Htf 3.53 3.25 3.27 3.23 3.27 3.27 3.60 3.56
HY.() 1.61 1.61 1.62 1.63 1.41 1.98 1.64 1.72
H};e(o) 3.26 3.24 3.27 3.26 3.29 3.45 3.53 3.58
H{Ie(t) 3.44 3.35 3.35 3.33 2.89 3.55 3.71 3.67




3 eV. The ordering of these energies is consistent with siids larger free volumes having lower energies. Previoug DF
calculation$® using GGA (PW91) obtained 1.53, 3.18, and 3.20 eV for He astiistitutional, octahedral, and tetrahedral site,
respectively. Comparing our GGA and DMC calculations we differences between 0.09 and 0.34 eV for the He impurity.
Similar to the self-interstitials, the GGA exchange-ctatien errors are larger for these defects than for the vacan

Relying on DFT corrections to minimize the single-partiitéte-size errors instead of twist averaging, yielded po@on-
vergence for defect energies. For example, the differemead¢ancy formation energies between 4x4x4 and 5x5x5 seligerc
was 0.23 eV compared with 0.01 eV with twist averaging, wtiikeresult for divacancy binding was reversed as shown iteTab
II. DMC calculations in larger 6x6x6 supercells would be ader of magnitude more expensive, and may still be infeor t
the twist-averaged results. The use of twist averagingserdil in metals for defects and excitations in which ttaetional
change in the total energy due to the presence of the defegcdation is inversely proportional to the number of atamthe
supercell, i.e., “1/N” effects.

IV. CONCLUSIONS

In summary, DMC with twist-averaged boundary conditions ba used to obtain an accurate equation of state of aluminum.
Our DMC results confirm previous DFT calculations that tharest-neighbor divacancy is unstable in aluminum. Oundated
formation and migration energies of point defects show kseeagreement with available experiment, demonstratingDMC
can be used to obtain benchmark energetics of defects insaetd used as a baseline where no experiment is available.

Acknowledgments

We thank J. Dubois and J. Kim for useful discussions. Thisenitis based upon work supported as part of the CDP, an
Energy Frontier Research Center funded by the U.S. Depattaigenergy (DOE), Office of Science, Office of Basic Energy
Sciences under Award Number ERKCS99. This work performeluthe auspices of the U.S. DOE by LLNL under Contract
DE-AC52-07NA27344. Computing support for this work camanfrthe LLNL Institutional Computing Grand Challenge pro-
gram. Research performed at the Materials Science and @dyDivision and the Center of Nanophase Material Scisrate
ORNL was sponsored by the Division of Materials Sciencesthadivision of Scientific User Facilities U.S. DOE.

For a review see, W. M. C. Foulkes, L. Mitas, R. J. Needs, andaagopal, Rev. Mod. Phyg3, 33 (2001).
W-K. Leung, R. J. Needs, G. Rajagopal, S. Itoh, and S. Ihdrgs.RRev. Lett83, 2351 (1999).

R. Q. Hood, P. R. C. Kent, R. J. Needs, and P. R. Briddon, Phg&.lRett.91, 076403 (2003).

J. C. Grossman and L. Mitas, Phys. Rev. Lé#.4353 (1997).

R. Gaudoin and W. M. C. Foulkes, Phys. Rew6® 052104 (2002).

R. Gaudoin, W. M. C. Foulkes, and G. Rajagopal, J. Phys.: @asdMatterl4, 8787 (2002).

K. Carling, G. Wahnstrom, T. R. Mattsson, A. E. Mattsson, Bin@berg, and G. Grimvall, Phys. Rev. L&5, 3862 (2000).
A. E. Mattsson, R. Armiento, P. A. Schultz, and T. R. Mattsdomys. Rev Br3, 195123 (2006).

L. Delczeg, E. K. Delczeg-Czirjak, B. Johansson, and L. §/iehys. Rev. B0, 205121 (2009).

P. Erhart, P. Jung, H. Schult and H. Ullmai@tpmic Defects in Metals, Landolt-Bornstein, New Series, Group lll, vol. 25 Conslet
Matter (Springer-Verlag, Heidelberg, 1991).

1 T. Hehenkamp, J. Phys. Chem. Sol&fs 907 (1994).

12'M. J. Fluss, L. C. Smedskjaer, M. K. Chason, D. G. Legnini, BntV. Siegel, Phys. Rev. B7, 3444 (1978).

13 A. Seeger, D. Wolf and H. Mehrer, Phys. Status Solidid3481 (1971).

14 W. DeSorbo and D. Turnbull, Acta Met, 83 (1959); W. DeSorbo and D. Turnbull, Phys. REW5, 560 (1959).
15 T, Uesugi, M. Kohyama, and K. Higashi, Phys. Rev6® 184103 (2003).

16 M. J. Fluss, S. Berko, B. Chakraborty, K. R. Hoffmann, P. ldpand R. W. Siegel, J. Phys.18, 2831 (1984).
17 A. C. Damask, G. J. Dienes, and V. G. Weizer, Phys. R&S, 781 (1959).

18 H. Rajainmaki, S. Linderoth, H. E. Hansen, R. M. Nieminamd 8. D. Bentzon, Phys. Rev. 83, 1087 (1988).
19 R. C. Birtcher, S. E. Donnelly, and C. Templier, Phys. Re%0B764 (1994).

20 D, Hamaguchi and Y. Dai, J. Nucl. Mat&29, 958 (2004).

21 y. Katoh, M. Ando, and A. Kohyama, J. Nucl. Mat&23, 251 (2003).

22 R. Vassen, H. Trinkaus, and P. Jung, Phys. Red4,B1206 (1991).

2 . Yang, X. T. Zu, and F. Gao, Physica4B3, 2719 (2008).

24 €. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, R. G. HgnRhys. Rev. Lett98 110201 (2007).

25 M. Bajdich, M. L. Tiago, R. Q. Hood, P. R. C. Kent, and F. A. Regato, Phys. Rev. Letl04 193001 (2010).
26 K. P. Esler, R. E. Cohen, B. Militzer, J. Kim, R. J. Needs, andoMTowler Phys. Rev. Lettl04, 185702 (2010)

© ® N oo g b~ w NP

=
o



27 R. J. Needs, M. D. Towler, N. D. Drummond and P. Lopez RioBhys.: Condens. Matté®, 023201 (2010).

2 3. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. [78t3865 (1996).

2 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. RleB®n, D. J. Singh, and C. Fiolhais, Phys. Re¥6B6671 (1992)48,
4978 (1993).

30 P, Giannozzet al., J. Phys.: Condens. Mattat, 395502 (2009).

81 |. Mita$, E. L. Shirley, and D. M. Ceperley, J. Chem. PH5.3467 (1991).

32 A J. Williamson, R. Q. Hood, and J. C. Grossman, Phys. Rev. 82 246406 (2001).

33 C. Lin, F. H. Zong, and D. M. Ceperley, Phys. Rev6& 016702 (2001).

3 A. M. Teweldeberhan, J. L. Dubois, and S. A. Bonev, Phys. Reit.105, 235503 (2010).

35 N. D. Drummond, R. J. Needs, A. Sorouri, and W. M. C. Foulkés/sPRev. B78, 125106 (2008).

%6 £ D. Murnaghan, PNASO, 244 (1944).

3T p, Lopez Rios, A. Ma, N. D. Drummond, M. D. Towler, and R. &elds, Phys. Rev. &, 066701 (2006).

% A.A. Correa, L. X. Benedict, D. A. Young, E. Schwegler, andASBonev, Phys. Rev. B8, 024101 (2008).

%9 N. Sandberg, B. Magyari-Kodpe, and T. R. Mattsson, Phys. Rett. 89, 065901 (2002).

40 M. Mantina, Y. Wang, R. Arroyave, L. Q. Chen, Z. K. Liu, and CoMérton, Phys. Rev. Letf.00, 215901 (2008).

41 M. Doyama and J. S. Koehler, Phys. R&84, A522 (1964).

42 W. Schilling, J. Nucl. Mate69, 465 (1978).



