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We show how coupling to an Einstein phonon ωE affects the absorption peaks seen in the optical
conductivity of graphene under a magnetic field B. The energies and widths of the various lines are
shifted, and additional peaks arise in the spectrum. Some of these peaks are Holstein sidebands,
resulting from the transfer of spectral weight in each Landau level (LL) into phonon-assisted peaks
in the spectral function. Other additional absorption peaks result from transitions involving split
LLs, which occur when a LL falls sufficiently close to a peak in the self-energy. We establish the
selection rules for the additional transitions and characterize the additional absorption peaks. For
finite chemical potential, spectral weight is asymmetrically distributed about the Dirac point; we
discuss how this causes an asymmetry in the transitions due to left- and right-handed circularly
polarized light and therefore oscillatory behavior in the imaginary part of the off-diagonal Hall
conductivity. We also find that the semiclassical cyclotron resonance region is renormalized by an
effective-mass factor but is not directly affected by the additional transitions. Last, we discuss how
the additional transitions can manifest in broadened, rather than split, absorption peaks due to
large scattering rates seen in experiment.

PACS numbers: 78.67.Wj, 71.70.Di, 63.22.Rc, 73.22.Pr

I. INTRODUCTION

At low energies, the charge-carrier dynamics in
graphene are governed by the Dirac equation for mass-
less fermions, leading to many unusual properties that
are now well documented in several review articles.1–5

The charge carriers in a single layer can be described
by chiral quasiparticles with a linear energy dispersion.
With the two atoms per unit cell, there are two sets of
conic bands at two K points in the corresponding Bril-
louin zone. In each of the two sets, the apexes of the two
cones coincide at a point called the Dirac point, with
the upper, upright cone forming the conduction band
and the lower, inverted cone forming the valence band,
as depicted schematically in Fig. 1a. The existence of
the Dirac point and cones has been verified in many
experiments.1–5 In particular, angle-resolved photoemis-
sion experiments (ARPES)6–9 have directly measured
the electronic dispersion curves, and scanning tunneling
spectroscopy (STS) experiments10–13 have measured the
corresponding14 linear-in-energy density of states (DOS).

The double-Dirac-cone band structure in graphene
leads directly to interband optical transitions,15–20 as de-
picted by the vertical arrow in Fig. 1a. In this process a
quasiparticle is promoted from an occupied valence state
below the Fermi energy (blue region) to an empty con-
duction state above (yellow region). With doping away
from charge neutraliy, the chemical potential µ becomes
finite (as shown in Fig. 1a), and the transitions then re-
quire photons of energy Ω ≥ 2|µ|, due to Pauli exclu-
sion. At energies above this threshold, the conductivity
displays a constant universal background value equal to

σ0 = e2

4~ , where e is the electron charge. In addition to

the interband transitions, there are the usual intraband
ones involving only the conduction band, which provide
the usual Drude peak centered around a photon energy
Ω = 0. Away from the charge neutrality point (µ = 0),
one can expect 2|µ| to be much larger than the scatter-
ing rate associated with the Drude absorption, leading
to a region of near-zero absorption between the Drude
peak and the onset of the universal background. This
predicted behavior has been observed in optical mea-
surements by several groups.5,21–24 Associated work on
bilayer graphene has also been performed.24–27

While experiments6–9,11,12 have largely confirmed the
bare-band picture of graphene, signatures of many-body
corrections have also been seen. Specifically, kinks
appear in the dressed dispersion curves measured by
ARPES,6–9 which are interpreted as the result of cou-
pling to a phonon of energy ωE , as shown schematically
in Fig. 1b. Corresponding structures have been seen in
STS measurements as well.11–13,28 This phonon struc-
ture, and other phonon effects, are particularly promi-
nent in graphene, unlike in conventional metals, because
graphene’s electronic DOS varies with energy on the scale
of the phonon frequency.14,29,30 There also exists striking
evidence for plasmaron signatures coming from electron-
electron interactions: ARPES spectra9 have found that
the Dirac point where the two bands meet is split in two,
with an extended plasmaron region between them. The
magnitude of such effects, however, depends on the sub-
strate dielectric constant ε, since the screened Coulomb
potential is inversely proportional to ε. For example, for
graphene on H/SiC, ε = 2, while on SrTiO3, ε can be
varied by more than an order of magnitude and reach
5000 when there is a change from room to liquid He
temperature.31 Thus, in principle, electron-electron ef-
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FIG. 1. (Color online) Schematic depiction of energy bands or levels in graphene and the possible optical transitions between
them. In all cases, blue indicates a filled state and yellow indicates an empty one. Each transition is excited by an incoming
photon (indicated by a red arrow), but we show only one photon in each diagram to prevent overcrowding. (a) Bare bands
forming two cones meeting at the Dirac point, with a photon exciting an interband transition from the valence band to an
unoccupied state in the conduction band. (b) Bands dressed by coupling to a phonon, with widened cones and kinks at plus
or minus the phonon frequency (relative to the Fermi energy). The emission of a phonon (indicated by the green arrow) allows
additional transitions which can occur at lower energies and can alter the quasiparticle momentum. (c) Bare bands condensed
into discrete Landau levels when under an applied magnetic field, with an intraband transition from the level just below the
Fermi energy to the one just above, and interband transitions from levels labeled by negative integers −n (n positive or zero)
to levels n± 1. (d) Landau levels dressed by coupling to a phonon, introducing split levels and phonon-assisted peaks, allowing
additional transitions between them.

fects can be switched off by a judicious choice of sub-
strate, while phonon effects remain.

These many-body effects also alter the picture of the
optical conductivity described above. In particular, ex-
periments have not observed precisely the near-zero be-
havior in the region between the Drude peak at Ω = 0 and
the onset of interband absorption at Ω = 2µ.17 Instead of
dropping to zero, the absorption never falls below about
1/3 of its universal background value σ0.21 This can be
understood in terms of electron-phonon renormalization
effects. In conventional metal physics, it is well known
that besides a Drude peak there exist phonon-assisted
sidebands.32,33 These sidebands arise due to Holstein pro-
cesses, in which a phonon is created along with a particle-
hole excitation, as shown in Fig. 1b. Such sidebands
have been exploited to get detailed information about
the electron-phonon spectral density.34,35 More recently,
they have also yielded valuable information on the low-
energy excitations that couple to charge in the high-Tc
oxides, interpreted as spin fluctuations.36,37 While the
Holstein processes associated with both intra and in-
terband transitions in graphene are not expected to be
large,6,11,14,33,38–40 they are predicted33 to contribute a
significant part, though not all, of the absorption seen in
the Pauli-blocked region of the conductivity spectrum.
Impurities may contribute as well,41 as might electron-
electron processes,42 although that has yet to be es-
tablished. If the electron-electron interaction does con-
tribute, the magnitude could be manipulated by perform-
ing experiments on a variety of substrates, allowing one

to isolate the electron-phonon contribution.

When a magnetic field B is applied perpendicularly
to the graphene plane, the Dirac cones are transformed
into discrete Landau levels at energies Mn (relative to
the Dirac point), as illustrated in Fig. 1c. (Note that
the disks are schematic; technically each level is made
up of concentric rings.)43,44 Because of the Dirac na-
ture of the quasiparticles, the levels have the relativistic
form Mn ∝ sgn(n)

√
|n|B for integer n. In this case a

photon can induce a transition between two LLs.45 Be-
yond conserving the total energy, the intraband transi-
tions must obey the selection rules n → n + 1 (where n
is any integer), and the interband transitions must obey
−n → n + 1 or −(n + 1) → n (where here n is non-
negative), where in all cases the initial state must be oc-
cupied and the final state unoccupied;17,45–48 see again
Fig. 1c. This leads to a well-defined sequence of absorp-
tion peaks in the conductivity, some of which have been
seen in experiment.49–53 There are also recent experimen-
tal results on bilayer graphene.26,54

In this paper we study how those absorption peaks are
modified in a simple model of constant coupling to a sin-
gle Einstein phonon of frequency ωE . Our previous work
on the DOS28,44 showed that in the presence of such cou-
pling, energy levels are not only shifted and broadened,
but two additional types of peaks arise in the spectrum:
phonon-assisted peaks at energies En±ωE corresponding
to peaks in the self-energy, where En is the energy of the
nth LL relative to the Fermi energy; and split LLs that
occur when the renormalized levels lie sufficiently close
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to a peak in the self-energy. These additional peaks al-
low additional transitions not seen in the bare spectrum,
as shown schematically in Fig. 1d. Hence, the optical
conductivity will have additional absorption peaks and
sidebands corresponding to these additional transitions.

We begin in Sec. II by reviewing the formalism and
pertinent results from our previous work28,44 and sum-
marizing the nature of the renormalization effects that
will be discussed in the subsequent sections. Section III
follows that by analysing the dressed form of the spec-
tral functions associated with individual LLs, which al-
lows us to understand the form of the conductivity. Here
we introduce the notation and definitions for peaks and
transitions. To keep these first two sections streamlined,
derivations of selection rules are relegated to appendices.
In Sec. IV, we discuss the general features of the dressed
conductivity, including the field-dependence of additional
absorption peaks and their optical weights. In Sec. V,
we explore the effects of varying the chemical potential.
Section VI examines the conductivity for circularly po-
larized light. Section VII shows how the semiclassical
cyclotron resonance is renormalized. In Sec. VIII, we
discuss the effects of broadening and the bearing of our
results on recent experiments. We summarize and con-
clude in Sec. IX.

II. FORMALISM

In the absence of a magnetic field, the linear dispersion
rising out of the Dirac point, in the continuum limit of
a simple nearest-neighbour tight-binding Hamiltonian, is
given by εk = ~vF k, where vF is the Fermi velocity and k
is the magnitude of momentum measured relative to the
Dirac point. Here we will always (except in Sec. VIII)
use the typical value vF = 106m/s. This dispersion
leads to the linear DOS N0(ω) = N0|ω + µ0|, where µ0

is the non-interacting chemical potential, N0 ≡ 2
π~2v2F

,

and the superscript zero indicates that this is the bare
DOS. In the presence of a magnetic field B, the en-
ergy dispersion condenses into discrete Landau levels
Mn = sgn(n)vF

√
2|n|eB~/c (in Gaussian units), where

n is any integer and vF is the Fermi velocity. The DOS
then becomes a sum over level index n:

N0(ω) =
1

2
N0M

2
1 θ(WC − |ω + µ0|)

∞∑
n=−∞

δ(ω + µ0 −Mn),

(1)

which consists of a line for each Landau level, at ener-
gies En = Mn − µ0 relative to the Fermi energy. Here
WC is a high-energy cutoff on the linear dispersion ap-
proximation. Throughout this paper, we use the cutoff

WC =
√
π
√

3t, where t is the nearest-neighbor hopping
parameter, which ensures that the number of states in
the Dirac cones equals the number in the first Brillouin
zone. Specifically, we use WC = 7eV, corresponding to
the typical value t ' 3eV.

When the electron-phonon coupling is taken into ac-
count, this formula is generalized to55

N(ω) =
1

2
N0M

2
1 θ(WC − |ω̃|)

∞∑
n=−∞

An(ω), (2)

where ω̃ ≡ ω − Σ1(ω) + µ and An(ω) is the spectral
function for the nth Landau level,

An(ω) =
1

π

Γ− Σ2(ω)

[ω − Σ1(ω) + µ−Mn]
2

+ [Γ− Σ2(ω)]
2 , (3)

which is straightforwardly obtained from the full spec-

tral function A(~k, ω) given in Ref.55. This form includes
both many-body renormalizations, manifested in the self-
energy Σ = Σ1 + iΣ2, and a residual scattering rate Γ.
The fully interacting chemical potential µ that enters
here is evaluated from µ = µ0 +Σ1(0). For simplicity, we
take Γ to be constant; in a more comprehensive calcula-
tion, it would depend on both ω and n. One can easily see
that in the limit of no interactions and Γ → 0, Eqs. (2)
and (3) reduce to the bare case of An(ω) = δ(ω+µ0−Mn)
and Eq. (1).

Note that Eq. (3) is written for a k-independent self-
energy, as would be the case for a model of the electron-
phonon interaction where all k-information has been
subsumed into the frequency-dependent electron-phonon
spectral function α2F (ν). This then allows the self-
consistent self-energy to be calculated at zero temper-
ature by14,33,56

Σ(ω) =
1

WC

∫ ∞
0

dνα2F (ν)

∫ ∞
−∞

dω′
N(ω′)

N0

×
[

θ(ω′)

ω − ν − ω′ + i0+
+

θ(−ω′)
ω + ν − ω′ + i0+

]
, (4)

which is solved iteratively together with Eq. (2). To
evaluate the self-energy, we use a simple model for the
phonon spectrum suggested by Park et al.38 Using full
first principle calculations of the electron-phonon inter-
action in graphene, these authors showed that the self-
energy Σ(ω) can be well approximated by an Einstein
phonon spectrum with α2F (ν) = Aδ(ν − ωE), where
ωE = 200meV and A is the electron-phonon coupling
strength. Here we assume that it remains a good approx-
imation in the case of a finite field. We shall choose val-
ues of A that give realistic values of the electron-phonon
effective mass renormalization parameter λ ≡ −dΣ1

dω (0),
which is generally found to be ∼ 0.1. Even if the model
proves less accurate in this case, due to matrix elements
in the self-energy, for example, studying the coupling to a
single phonon provides a simple means of understanding
and characterizing the effects of coupling to any distribu-
tion of them. And so long as the full self-energy can still
be well approximated by a coupling to a small number of
phonon frequencies, our results will still apply for each
of them; the appropriate values of ωE and A for each of
the phonons must simply be determined by experiment.
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Additionally, the model is generic enough to apply to
coupling to phonons associated with the substrate. The
model is also indifferent to whether the phonons are IR-
active. The utility of the model shows itself immediately
in allowing us to easily find the form of the self-energy:
performing one iteration of Eq. (4), starting with the
non-interacting DOS of Eq. (3), we find

Σ(ω) =
AM2

1

2WC

nmax∑
n=−nmax

[
θ(Mn − µ0)

ω − ωE −Mn + µ0 + i0+

+
θ(−Mn + µ0)

ω + ωE −Mn + µ0 + i0+

]
, (5)

where nmax is the largest integer smaller than
W 2

C

M2
1

. The

imaginary part of this self-energy has δ-function peaks at
ω = Pn ≡ ±ωE + Mn − µ0, and the real part has cor-
responding singularities at the same energies. In other
words, the self-energy contains peaks corresponding to
each of the LLs, but shifted by ±ωE . Because of the
Heaviside functions, these peaks always occur outside the
interval (−ωE , ωE); that is, the sign in front of ωE in Pn
is always such that |Pn| ≥ ωE . One can easily show44 an-
alytically that introducing a broadening Γ produces two
effects: logarithmic divergences at ±ωE that grow with
Γ; and a slow change with varying ω, due to the addition
of tails of broadened peaks. Between peaks, this leads
to the real part of the self-energy varying approximately
as Σ1(ω) = Σ1(0) − λω. All of this assumes a single it-
eration of Eqs. (2) and (4), and throughout this paper,
for simplicity we stop after one iteration. As discussed
in our article on the DOS,44 if the equations were iter-
ated to convergence, the energies Pn would be shifted by
±ωE relative to the dressed, rather than the bare, LLs,
and multiphonon processes would give rise to additional
peaks at energies shifted by multiples of ωE . For ener-
gies of magnitude below 2ωE , the net effect is simply to
increase the value of λ, which is indistinguishable from
increasing A. For energies above 2ωE , the level structure
will be obscured by the preponderance of peaks, unless
the levels are very widely spaced relative to ωE . Since
peaks at such high energies are not well resolved in ex-
periment, this is not a significant limitation.

As we shall see in detail in the following section, in-
corporating the self-energy into the spectral functions of
Eq. (3) shifts the bare peak and introduces additional
ones in a simple way. And determining these effects on
the spectral functions is sufficient to determine the effects
of electron-phonon coupling on the magneto-optical con-
ductivity. Adapting the results of Gusynin et al.45 to our
notation, we find that the real part of the longitudinal
optical conductivity, Re σxx, and the imaginary part of
the transverse conductivity, Im σxy, at zero temperature

are given by the following sums:

Re σxx(Ω) = σ0
M2

1

Ω

∞∑
n=0

∫ Ω

0

dω [ψn,n+1(ω, ω − Ω)

+ ψn,n+1(ω − Ω, ω)] , (6)

Im σxy(Ω) = σ0
M2

1

Ω

∞∑
n=0

∫ Ω

0

dω [ψn,n+1(ω, ω − Ω)

− ψn,n+1(ω − Ω, ω)] , (7)

where

ψn,m(ω, ω′) = An(ω)Am(ω′) +A−n(ω)A−m(ω′)

+An(ω)A−m(ω′) +A−n(ω)Am(ω′). (8)

We shall denote the summands in these expressions by

σ
(n)
ij , such that σij =

∑∞
n=0 σ

(n)
ij . Note that while the

LLs and spectral functions are indexed by any inte-
ger, the conductivity is decomposed into pieces indexed
by non-negative integers only. Each piece of the con-

ductivity, σ
(n)
ij , is determined by the overlap of pairs

of spectral functions, corresponding to a transition be-
tween an initial and final level. In both the bare and
dressed cases, four combinations of spectral functions
contribute absorption peaks: An+1(ω)An(ω − Ω) and
A−n(ω)A−(n+1)(ω−Ω), corresponding to intraband tran-
sitions n→ n+ 1 and −(n+ 1)→ −n, respectively; and
An+1(ω)A−n(ω − Ω) and An(ω)A−(n+1)(ω − Ω), corre-
sponding to the interband transitions −n → n + 1 and
−(n + 1) → n, respectively. (Note again that n here
is positive or zero.) More details are provided in Ap-
pendix A, and the other combinations of spectral func-
tions appearing in Eqs. (6) and (7) are discussed in Ap-
pendix B.

In the bare case, each An is a simple Lorentzian cen-
tered at En = Mn − µ0, from which it follows that each

σ
(n)
ij is simply a sum of Lorentzians. For Γ = 0, Eq. (6)

is easily evaluated to find a simple set of lines:

Re σxx(Ω) =

σ0M
2
1

Ω

∞∑
n=0

[
δ (En+1 − En − Ω) θ (En+1) θ (−En)

+ δ
(
E−n − E−(n+1) − Ω

)
θ (E−n) θ

(
−E−(n+1)

)
+ δ (En+1 − E−n − Ω) θ (En+1) θ (−E−n)

+ δ
(
En − E−(n+1) − Ω

)
θ (En) θ

(
−E−(n+1)

) ]
, (9)

which follows from Eq. (A4) and was earlier derived by
Gusynin et al.45 The first two δ-functions come from the
intraband transitions; the latter two, from the interband.
The Heaviside functions state that the final state must
be above the Fermi energy and the initial state must
be below it. Note that because M−n = −Mn, in the
bare case we have En+1 −E−n = En −E−(n+1), making
the interband transitions degenerate. This means each

Re σ
(n)
xx has at most two peaks, one from an intraband

transition and one from interband transitions.
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In the dressed case the conductivity arises from the
same four combinations of spectral functions, but each
of those spectral functions is made up of several peaks
rather than just one. This leads to more peaks in the
conductivity, since there are a greater number of peaks
to transition between. Appendix A describes the al-
lowed transitions in detail. But for the moment, simply
to orient the reader, we illustrate their general form in
Fig. 2, where the dressed levels and transitions shown
in Fig. 1d are decomposed into schematic diagrams rep-
resenting contributions to σ(0), σ(1), and σ(2). Next to
each diagram, we show the corresponding bare (dashed
red curves) and dressed (solid black) conductivity. For
n = 0, there is only one transition, 0 → 1, leading to a
single absorption peak, which is shifted somewhat from
the peak in the bare case. For n = 1 and 2, additional
peaks appear in the relevant spectral functions, leading
to additional transitions and additional absorption peaks.
Since the additional features in each An are clustered to-
gether, the additional transitions, and therefore the ad-
ditional absorption peaks, are likewise clustered. We will
return to this diagram at the end of the following section,
after having fully discussed the form of the dressed spec-
tral functions. Readers interested in the final results for
the optics but not the precise details that lead to them
may skip to the final paragraph of Sec. III, which sum-
marizes the results and notation for the dressed spectral
functions.

III. EFFECTS OF RENORMALIZATION ON
THE SPECTRAL FUNCTIONS

All the effects of electron-phonon coupling on each
of the spectral functions An can be understood from a
transfer of spectral weight away from a single quasipar-
ticle level into phonon-assisted peaks. This transfer is
shown in Fig. 3 for A0 with a fairly weak magnetic field,
B = 2.4T, a fairly strong coupling, A = 500meV, and
µ = 0. We see that the dressed zeroth LL (shown in the
solid black curve) has narrowed relative to the bare one
(the dashed red curve), corresponding to a loss of weight
in the level. The inset shows where this weight has been
transferred: into an incoherent phonon-assisted region
that begins at |ω| = ωE . The series of oscillations in
this region are (approximately) at the energies Pn where
the peaks in Σ occur, which, as discussed above, encode
the LLs at energies shifted by ωE . In the limit of zero
magnetic field, this region would become a smooth enve-
lope of the oscillatory curve shown in the inset, with an
appearance akin to the incoherent phonon-assisted back-
ground of a conventional metal.

This transfer can easily be understood analytically. As
discussed above (and in detail in Ref.33), for |ω| < ωE ,
Σ1 ' Σ1(0) − λω and Σ2(ω) = 0. If we restrict our at-
tention to a quasiparticle peak that falls in this energy
range and note that µ = µ0 + Σ1(0), it then follows im-
mediately from Eq. (3) that the dressed spectral function

Ω

σ

Ω

σ

Ω

σ = 0n

= 1n

= 2n

FIG. 2. (Color online) Schematic decomposition of the levels
and transitions in the final diagram of Fig. 1. Sets of transi-
tions are labeled by a non-negative integer n, corresponding
to σ(n). For n = 0, the set is made up of the transition 0→ 1.
In the bare case, the members of each set for n > 0 would
be the transitions −(n + 1) → n and −n → n + 1. In the
dressed case, each of the additional levels or phonon-assisted
peaks derives from a bare level, and the transitions involving
it obey the same selection rules as those involving that asso-
ciated level. To the left of each set, we show the absorption
peaks arising from the transitions. In the bare case, the two
involved transitions have the same energy, leading to a single
peak; in the dressed case, all the involved transitions generi-
cally differ in energy and intensity, leading to a deformed set
of peaks.

describing that peak is given by

An(ω) =
1

1 + λ

1

π

Γ/(1 + λ)(
ω − Mn−µ0

1+λ

)2

+
(

Γ
1+λ

)2 . (10)

This is a simple Lorentzian, just as in the bare case,
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FIG. 3. (Color online) The spectral function A0(ω) in the bare
and dressed cases. While the peaks in the two cases have the
same height, the dressed level is noticeably narrower, leading
to lost spectral weight. The inset shows that this lost weight
has gone into phonon-assisted peaks starting at the phonon
frequency ωE = 200meV (and the same below −ωE). Here
B = 2.4T, µ = 0, A = 500meV, and Γ = 5meV.

but shifted in position from En = Mn − µ0 to En =
(Mn − µ0)/(1 + λ), corresponding to an effective mass
renormalization or renormalization of vF . (We denote
the energy of the nth Landau level relative to the Fermi
energy by En in both bare and dressed cases.) But while
the bare peak has a weight of 1, this dressed peak has its
weight reduced by a factor of 1/(1 + λ). The bare scat-
tering rate Γ is renormalized by the same factor. How-
ever, the height of the peak is unchanged: at the position

of the peak, An

(
ω = Mn−µ0

1+λ

)
= 1

πΓ , unrenormalized

by the electron-phonon interaction—meaning the weight
loss comes entirely from the renormalization of Γ. All
of these approximate analytical results are confirmed by
the full numerical results of Fig. 3.

Each An, for any integer n, shares this structure of a
set of phonon-assisted peaks in addition to a main, some-
what depleted, coherent quasiparticle peak. These vari-
ous types of peaks are illustrated in Fig. 4, which shows
A−2 in the upper frame and the functions that determine
its behavior, ω − Σ1(ω) + µ and Γ− Σ2(ω), in the lower
two frames. Here we use a larger field, B = 18.2T, to
better separate the phonon-assisted peaks. We also use
a weaker coupling, A = 250meV; with ωE = 200meV,
this yields λ ' 0.2, which is realistic for graphene.38

Results for two scattering rates are shown, but for the
moment, the reader should focus on the curves for the
larger of the two, Γ = 6meV, shown in solid red. Phonon-
assisted peaks occur (in a rough sense) because of local
minima in the function |ω − Σ1(ω) + µ−Mn|, which for
Mn=−2 (shown as the horizontal dashed line) appear near
−310meV and −460meV in the solid curve in the mid-
dle frame. Evidently the positions of these peaks will
depend on n, but they always occur near the energies
Pm = Mm − µ0 ± ωE , where oscillations in Σ1(ω) and
peaks of Σ2(ω) occur. Hence, we label their energies as
Pm,n, and we label the phonon-assisted peaks themselves

FIG. 4. (Color online) The spectral function A−2(ω) (top
frame) and the functions ω−Σ1(ω)+µ (middle) and Γ−Σ2(ω)
(bottom) that determine it, each shown for two values of
broadening Γ. In both cases, B = 18.2T, µ0 = 100meV,
ωE = 200meV, and A = 250meV. Also shown in the lower
frame is M−2 (horizontal dashed line). Peaks in the upper
frame are either phonon-assisted (corresponding to peaks in
Γ−Σ2) or quasiparticle levels (corresponding to intersections
of ω − Σ1 + µ with M−2); the number of intersections that
occur is seen to depend on Γ. Landau levels are labeled with
nα, where α = ±, while phonon-assisted peaks are labeled
with nmp , where m is the index on the energy Pm of the corre-
sponding peak in Γ−Σ2(ω). The inset in the top frame shows
that the peaks in A−2 corresponding to those in Γ − Σ2 are
very weak when far from the largest peak in An.

as nmp . The two phonon-assisted peaks appearing in the

solid red curve in the top frame are labeled −20
p and

−2−1
p , indicating that they are associated with A−2 and

with the peaks in the self-energy at P0 and P−1. The lat-
ter of these, shown in an inset that magnifies the region
around −450meV, is reduced by an order of 100 relative
to the larger one. The larger one is of significant weight,
and in fact, the weight of the quasiparticle peak in this
case is reduced by more than a factor of 1/(1 + λ); as
we will show in the next section, quasiparticle peaks are
generally reduced below the 1/(1 + λ) weight when they
lie near a peak in the self-energy.

Because of the oscillations in the self-energy introduced
by the transfer of spectral weight, the quasiparticle level
itself may be modified beyond narrowing: it may be split.
We will define any peak to be a quasiparticle level if it lies
at an energy ω = Eαn that gives a zero for the real part
in the denominator of the defining equation for An(ω),
Eq. (3); that is, it must satisfy

Eαn − Σ1(Eαn ) + µ = Mn, (11)
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where the index α accounts for multiple solutions to
Eq. (11). We label these peaks as nα. In the bare case,
Eq. (11) reduces to En = Mn − µ0, and there is a sin-
gle peak. For the solid red curves in Fig. 4, there is
likewise only one such peak, labeled with a −2, corre-
sponding to the lone intersection of the solid curve in the
middle frame with M−2; as we would expect, this peak
occurs very near (M−2 − µ0)/(1 + λ). But the curve for
Γ = 3meV (shown in dashed blue) in the middle frame
intersects M−2 a second time, at the upper left side of the
oscillation, meaning that the peak in the dashed curve in
the upper frame at this energy is classified as a quasi-
particle level, rather than as a phonon-assisted peak as
it was for Γ = 6meV. In this case the n = −2 level is
split into the two substituent peaks labeled −2±. (Note
that the third intersection, at around −300meV on the
right-hand side of the crest of the oscillation, does not
correspond to a peak in A−2, because Γ − Σ2 spikes in
this region, as shown in the bottom frame.) The weight
of the peak 2− is identical to that of the phonon-assisted
peak 20

p in the Γ = 3meV case.

From this, we see that the classification of peaks de-
pends very finely on the choice of parameters—even if
the parameter in question does not shift the distribu-
tion of weight from one peak to another. Equation (11)
is chosen to define a peak as a quasiparticle level be-
cause it defines the usual energy of a dressed quasipar-
ticle damped in its motion by the imaginary part of the
self-energy, Γ − Σ2(Eαn ). But the distinction between a
split level versus a level plus a phonon-assisted peak is
obviously physically fuzzy, though mathematically sharp.
However, the spectral weight of a phonon-assisted peak
is generally less than λ/(1 + λ) (the minimum weight
lost by the associated quasiparticle), which is small for
graphene. Furthermore, regardless of a peak’s classifica-
tion, we can say that in general, the further a peak lies
from (Mn−µ0)/(1+λ), the smaller its weight, as is seen in
the strongly reduced weight of the phonon-assisted peak
in the inset of Fig. 4. So any significant phonon-assisted
peak will lie near there and will not radically shift the
spectral weight away from the expected energy of the
dressed quasiparticle.

With the basic form of the spectral functions under-
stood, we now turn to the manner in which they inter-
act to yield the conductivity. As previously stated, one
An(ω) describes the initial level and the other describes
the final level involved in the absorption of a photon of
energy Ω. And as also stated previously, the absolute
values of the two levels must differ by one: for intra-
band transitions, either n → n + 1 or −(n + 1) → −n;
for interband, −n → n + 1 or −(n + 1) → n (where
n is a non-negative integer in all cases). More details
about the selection rules are presented in Appendix A.
In Fig. 5, we illustrate the form of the transitions from
A0 to A1, with the top frame showing the two spectral
functions, and the lower two frames showing the func-
tions (ω − Σ1 + µ and Γ − Σ2) that determine them.
Optical selection rules allow transitions from any peak

FIG. 5. (Color online) Two spectral function A0(ω) and
A1(ω) (top frame) and the transitions between them, to-
gether with the functions ω−Σ1(ω)+µ and Γ−Σ2(ω) (lower
two frames), which determine their form. The Fermi energy,
which must lie between the initial and final state, is indi-
cated by the dashed green vertical line. Examples of allowed
transitions are indicated by arrows; an example of a disal-
lowed transition is crossed out with an X. Solid black circles
mark intersections of ω − Σ1 + µ with M0 and M1, where
quasiparticle peaks occur in A0 and A1, respectively. Here
ωE = 50meV, B = 12.2T, Γ = 4meV, and A = 250meV.

in A0(ω) (dashed black curve) that falls below the Fermi
energy (vertical dashed line) to any peak in A1(ω) (solid
red curve) that falls above the Fermi energy. The two
most prominent of these transitions (i.e., the two with the
largest optical weight) are indicated by the black horizon-
tal arrows, with the labels T

nf
ni on the arrows denoting

a transition from an initial peak ni to a final peak nf .
Black-curve-to-black-curve or red-to-red transitions are
forbidden, as indicated in the figure by a crossed-out ar-
row. Here we have used an unrealistically small value of
the phonon frequency, ωE = 50meV, in order to display
several phonon-assisted peaks for each spectral function.
In the lower two frames, we see oscillations in Σ1 and
peaks in Σ2 at ω = P0± = M0 ± ωE = ±50meV, and
at P1 = M1 + ωE ' 175meV (here µ0 = 0). Note that

the peak 10+

p is larger than 00+

p because the former lies
closer to M1/(1 + λ) than the latter does to M0/(1 + λ).
Also note that these two peaks lie at slightly different
positions; that is, P0+,0 6= P0+,1, though both are within
Γ of P0+ .

We are now positioned to fully understand Fig. 2. The
levels arranged in cones in that picture roughly depict the

full spectral function A(~k, ω), which contains a sum over
the individual An(ω)’s. In that case, for a given m the
phonon-assisted peaks at energies Pm,n all add together
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to create a single peak at Pm (which we referred to as a
“phonon peak” in the DOS28,44). For simplicity, assume
that only one phonon-assisted peak near a given Pm, if
any, contributes significant weight to that sum. Now, for
σ(0) the transition is from the zeroth Landau level to the
first, leading to a single absorption peak, shifted down in
energy from the bare peak due to the rescaling of the LLs
by 1/(1 + λ). For σ(1), the transitions are from peaks in
A−1 to peaks in A2 or from peaks in A−2 to peaks in A1.
Each of the inital states, corresponding to A−1 or A−2,
are either split into two or have a significant weight trans-
ferred into a single phonon-assisted peak, while the final
states corresponding to A2 or A1 each have only one sig-
nificant peak. This leads to four distinct transitions and
hence four distinct, though closely clustered, structures
in the conductivity, as shown schematically on the left-
hand side of the figure. Finally, for σ(2), the transitions
are from peaks in A−2 to peaks in A3 or from peaks in
A−3 to peaks in A2. Here one of the initial states—A−2—
and one of the final states—A3—each have two significant
peaks, while the other initial and final states each have
one. This provides five distinct transitions and five ab-
sorption peaks. Note that because all the features in the
spectral functions are discretely spaced, the equivalent
of a Holstein process can be understood as a transition
between a quasiparticle level and a phonon-assisted peak
that appears as a line in the spectral function, rather than
requiring the image of an emitted phonon as in Fig. 1b.

In summary, each spectral function An(ω) has two
types of peaks: quasiparticle peaks labeled nα at en-
ergies Eαn satisfying Eαn − Σ1(Eαn ) + µ −Mn = 0; and
phonon-assisted peaks labeled nmp at energies Pm,n '
Pm = Mm − µ0 ± ωE . That is, we can write the approx-
imate expression

An(ω) =
∑
α

Wα
n δ(ω − Eαn ) +

∞∑
m=−∞

Wm,nδ(ω − Pm,n),

(12)
where the spectral weightsWα

n andWm,n may range from
0 to 1. The weight of a peak of either type is generally
large if the peak lies near (Mn − µ0)/(1 + λ), the energy
of a dressed quasiparticle given a simple effective mass
renormalization, and small if it lies far from that energy.
A transition from an initial peak ni to a final peak nf is
denoted T

nf
ni . This notation will be used throughout the

remainder of the paper.

IV. GENERAL BEHAVIOR OF ABSORPTION
PEAKS

With the form of the spectral functions understood, we
may now understand the form of the conductivity. In the
top frame of Fig. 6, we show results for the real part of the
diagonal conductivity, Re σxx, for µ = 0 and the fairly
weak coupling A = 80meV, which allows us to clearly see
renormalization effects. We see four distinct structures
in both the bare (dashed red curve) and dressed (solid

FIG. 6. (Color online) Upper frame: the real part of the diag-
onal conductivity in the bare (dashed red curve) and dressed
(solid black) cases for a small coupling A = 80meV. The
other parameters are B = 18.2T, µ = 0, Γ = 5meV, and
ωE = 200meV. Lower frame: the level diagrams for the two
cases with all significant transitions between them. The thick,
dashed green line shows the position of the Fermi energy. The
dotted lines indicate phonon-assisted peaks rather than quasi-
particle levels.

black) cases, corresponding to Re σ
(0)
xx , Re σ

(1)
xx , Re σ

(2)
xx ,

and Re σ
(3)
xx . As expected, each structure is a simple

Lorentzian in the bare case. Compared to these bare
lines, the dressed structures are shifted down in energy,
with the second and third lines being split in two. A small
bump also appears near Ω = ωE = 200meV. A detailed
energy level diagram describing the transitions giving rise
to these various peaks is shown in the lower frame of the
figure. On the left is the bare level scheme; on the right,
the dressed one. The heavy dashed horizontal green line
is the Fermi energy. Because the Fermi energy lies in the
middle of the zeroth LL at µ = 0, all transitions come
in pairs: −1 → 0 and 0 → 1, −1 → 2 and −2 → 1,

etc. The split absorption peaks in Re σ
(1)
xx and Re σ

(2)
xx

in the dressed case come from the splitting of the ±2
LLs into +2± and −2±. Between each of the two split
levels, near the energies P0± , lie phonon-assisted peaks
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10+

p and −10− , shown as horizontal dashed (black) lines;
the two transitions involving these peaks lead to the small
Holstein-like structure seen at Ω ' 200meV.

Beyond the basic understanding afforded by the level
diagrams, we can also analytically derive some of the fea-
tures of the dressed lines. In particular, the absorption
peaks are not only shifted down in energy, but as is ap-

parent in the first undivided peak (i.e., Re σ
(0)
xx , around

150meV), they are also narrowed relative to the bare
peaks, while their height is unchanged. The first peak
arises from transitions between LLs 0 and ±1. For the
parameters used here (given in the caption), these LLs
lie far from any peaks in the self-energy. In such cases,
we can straightforwardly continue the reasoning used to
derive Eq. (10). Consider an intraband transition Tn+1

n

where the quasiparticle peaks n and n + 1 are well sep-
arated from any peak in the self-energy. From Eq. (6),

this transition’s contribution to Re σ
(n)
xx (Ω) is given by

Re σ(n)
xx (Ω) =

σ0M
2
1

Ω

∫ Ω

0

dωAn+1(ω)An(ω − Ω). (13)

(Note that this may not be the whole of Re σ
(n)
xx (Ω),

which can also contain contributions from interband
transitions Tn+1

−n and Tn−(n+1).) As in the discussion sur-

rounding Eq. (10), this can be simply evaluated in the
dressed case by replacing each An(ω) with An [ω(1 + λ)],
which in the Γ→ 0 limit leads to

Re σ(n)
xx (Ω) =

σ0M
2
1

Ω(1 + λ)
δ [Mn+1−Mn− Ω(1 + λ)] . (14)

This returns the first line of Eq. (9) in the bare case,
where λ = 0. Evaluating Ω(1+λ) at the value determined
by the δ-function, restoring a small, constant half-width
2Γ to the δ-function (corresponding to the half-width Γ in
each An), and making a trivial rearrangement, we arrive
at

Re σ(n)
xx (Ω) =

σ0M
2
1

Mn+1 −Mn

× 1

1 + λ

1

π

2Γ/(1 + λ)(
Ω− Mn+1−Mn

1+λ

)2

+
(

2Γ
1+λ

)2 .

(15)

Here we see that relative to the bare case, the position of
the peak has been shifted from Mn+1 −Mn to (Mn+1 −
Mn)/(1 + λ), the width has been decreased from 2Γ to
2Γ/(1 + λ), and the weight has been decreased by the
overall factor of 1/(1 + λ). The height of the peak is,
however, unchanged by renormalization:

Re σ(n)
xx

(
Ω =

Mn+1 −Mn

1 + λ

)
=

σ0

2πΓ

M2
1

Mn+1 −Mn
. (16)

Both this constancy of height and the rescalings of peak
position and width by 1/(1 + λ) are verified by the full
numerical results for the first peak in Fig. 6. And they

FIG. 7. (Color online) Transition energies associated with

peaks in Re σ
(0)
xx , Re σ

(1)
xx , and Re σ

(2)
xx , as a function of

√
B, for

parameters µ = 0, Γ = 5meV, ωE = 200meV, A = 250meV.
Only those transitions that give rise to significant absorp-
tion peaks are shown. Solid curves correspond to transi-
tions between levels; dashed curves, to transitions between
levels and phonon-assisted peaks; and the dot-dashed lines,
to (Mnf −Mni)/(1 + λ), where ni is the initial level and nf
is the final level. The dotted horizontal lines mark ωE and
2ωE .

would also hold true if we performed the calculation for
interband transitions between two LLs that are well sep-
arated from any peaks in the self-energy.

The energies of the levels shown in the bottom frame
of Fig. 6 depend, of course, on the magnitude of the ap-
plied magnetic field B. For the bare case, these are Mn

and M−n, which are both proportional to the square root

of B (i.e.,
√
B). The B-dependence in the dressed case

is illustrated in Fig. 7 for the first three sets of transi-
tion energies, namely, n = 0, 1, and 2, corresponding to

peaks in Re σ
(0)
xx , Re σ

(1)
xx , Re σ

(2)
xx . Here µ remains zero,

but A = 250meV in order to accentuate the effects of
coupling. The solid curves correspond to transitions be-
tween quasiparticle levels, and the dashed curves, to tran-
sitions between a quasiparticle level and a phonon peak.
The dot-dashed lines give (Mnf

−Mni
)/(1 + λ), where

nf and ni are the final and initial states, respectively;
this corresponds to the simple effective mass renormal-
ization. The dotted horizontal lines mark ωE = 200meV
and 2ωE = 400meV. Away from these energies, the en-
ergies of the optical absorption peaks follow closely the√
B law and lie close to the dot-dashed curves. So in this

regime, the simple effective mass renormalization applies.
In the vicinity of the energies ωE or 2ωE , the situation is
more complex, as these energies correspond to the main
quasiparticle peak in one or both of Ani

or Anf
lying

near ±ωE , leading to a disruption of their behavior, with
a significant amount of their weight being transferred into
phonon-assisted peaks or being split between two quasi-
particle levels.

In Fig. 7 we have shown only the significant transi-
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FIG. 8. (Color online) The n = 2 piece of the diagonal con-
ductivity (solid black curve) as a function of frequency at
B = 5.52T, with parameters as in Fig. 7. Each peak is labeled
with the transitions giving rise to it. The dashed red curve is
the bare conductivity shifted down by a factor of 1/(1 + λ).
Blue arrows point to the two absorption peaks corresponding
to the solid circles on the n = 2 curves in Fig. 7.

tions, ignoring any transition leading to an absorption
peak with weight less than 5% of the maximum possi-

ble for the particular Re σ
(n)
xx . The kinds of peaks that

have been ignored are illustrated in Fig. 8, which shows

Re σ
(2)
xx (Ω) (solid black curve) for a single value of mag-

netic field, B = 5.52T; this value of B is marked by a
vertical dotted line in Figure 7. We note six peaks in
Fig. 8, four of which arise from transitions between two
split levels (as labeled in the figure), and two of which
arise from transitions involving phonon-assisted peaks.
The two most prominent, indicated with arrows, corre-
spond to the transition energies marked by solid circles
in Fig. 7, while the others are too weak to appear in
Fig. 7. The dashed red curve shows the bare case shifted
down by a factor of 1/(1+λ), and we see that the optical

weight in σ
(2)
xx is clustered around the peak in this curve,

with the most prominent peak in σ
(2)
xx falling very near

to it. From this, we can surmise that transition energies
falling nearest to the dot-dashed straight lines in Fig. 7
are most prominent.

That notion is confirmed by Fig. 9, which makes more
precise the result of Sec. III that the peaks in the spectral
functions are more heavily weighted the closer they lie to
the simple effective mass renormalization prediction. The
figure shows the weights of all significant peaks in A0, A1,
A2, and A3 as functions of

√
B for the same parameters

as used in Fig. 7. The notation here follows that intro-
duced by Eq. (12). Since the optical weight in a given
absorption peaks is simply the product of the weights
in the initial and final peaks, these plots are sufficient
to predict and understand the weights in the absorption
peaks. (Because µ = 0 here, the levels are symmetric
about ω = 0, even in the dressed case, so the weights of
the peaks for An<0 are not necessary.) For example, the

FIG. 9. (Color online) The weights of all significant peaks
in A0(ω), A1(ω), A2(ω), and A3(ω), with parameters as in

Fig. 7. The upper frame shows weights of peaks in Re σ
(0)
xx ;

the lower frame, those involved in Re σ
(2)
xx . Open symbols

correspond to phonon-assisted peaks, while solid ones corre-
spond to quasiparticle levels. The dotted black line in both
cases represents 1/(1 + λ). Other lines connecting symbols
are to guide the eye.

products obtainable from the upper frame determine the

weights of peaks in Re σ
(0)
xx : W0W1 gives the weight of the

transition indicated by the lower solid black curve below
about

√
B = 5.5T 1/2 in Fig. 7; W0W1+ , the lower solid

black curve above that field value; W0W0−,1, the dashed
black curve; W0W1− , the upper solid black curve. Be-
cause the n = 0 LL is fixed at ω = 0 for this case of µ = 0,
its weight W0 (indicated by solid black circles) has the
maximal value of 1/(1 + λ) (indicated by a dotted black
curve in both frames). The weights of the transitions are
hence governed by the changing weights in A1. As B in-
creases, the principal peak in A1 approaches ωE , causing
its weight to transfer into a phonon-assisted peak near
there. As B increases further, the phonon-assisted peak
transitions into a quasiparticle level, meaning the prin-
cipal peak has been split in two. At this point, around
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FIG. 10. (Color online) Effect of increasing chemical potential
on the conductivity. The three values of µ0 are chosen such
that the Fermi energy lies between the 0th and 1st LL, the 1st
and 2nd, and the 2nd and 3rd, respectively. The remaining
parameters are B = 27.4T, Γ = 5meV, ωE = 200meV, and
A = 150meV.

√
B =

√
5.5T 1/2, the original peak has begun to deviate

from the simple renormalization value M1/(1 + λ) but
still lies very near it, as we can infer from the proxim-
ity of the lower solid black curve to the dash-dotted black
line in Fig. 7, and it contains most of the spectral weight.
The more B increases, the more weight is transfered from
the original quasiparticle level into the additional one, as
the old peak deviates more from M1/(1 + λ) and the
additional peak gets closer to that value. Although the

situation is more complicated for Re σ
(1)
xx and Re σ

(2)
xx ,

since none of the principal peaks are pinned at one posi-
tion and weight in those cases, we can still track the same
behavior by correlating the weights in the lower frame of
Fig. 9 with the n = 2 set of curves in Fig. 7.

V. VARYING THE CHEMICAL POTENTIAL

Used as an element in a field effect device, graphene
can be gated to increase the charge imbalance, i.e., to

vary the bare chemical potential over a significant range.
When this is done, the observed pattern of optical lines is
modified in a very specific way. Figure 10 shows this be-
havior in both the bare (upper frame) and dressed (lower
frame) cases. Three values of µ0 are used: 97meV (dash-
double-dotted), 230meV (solid), and 290meV (dashed),
which are chosen to fall respectively between the zeroth
and first Landau levels, the first and second, and the
second and third. In the bare case, which has been stud-
ied previously,46 two types of peaks are visible. First,
there is a low-frequency peak arising from an intra-
band transition. As µ0 is increased, this peak shifts to
lower frequency. Second, there is a peak at ' 460meV,
which arises from interband transitions. Unlike the low-
frequency peak, this peak does not shift position as µ0

varies. Instead, when µ0 is increased from 97meV to
230meV, the peak is halved in intensity, and when µ0

is further increased to 290meV, the peak disappears en-
tirely. The behavior of both types of peaks can be under-
stood from the level diagrams shown in the upper frame
of Fig. 11. There, we see that for µ0 = 97meV, the
intraband transition giving rise to the low-frequency ab-
sorption peak is T 1

0 . As µ0 increases to 230meV and then
to 290meV, the relevant intraband transition becomes T 2

1

and then T 3
2 , which are at increasingly low frequencies.

We also see that the visible interband absorption peak
is due to the transitions T 1

−2 and T 2
−1, which have the

same energy. As µ0 increases from 97meV to 230meV,
the n = 1 LL falls below the Fermi energy and the T 1

−2

transition becomes Pauli blocked; since one of the two
transitions ceases, the absorption peak is halved in in-
tensity. When µ0 is further increased to 290meV, the
n = 2 level falls below the Fermi energy, leading to the
absorption peak disappearing entirely.

This general behavior—the intraband absorption peak
decreasing in energy and the interband ones losing weight
as the chemical potential is increased—remains largely
unaltered by the electron-phonon interaction. In the
lower frame of Fig. 10, we see that in the dressed case, the
absorption peaks from intraband transistions behave just
as in the bare case, only with each peak shifted down by
the factor 1/(1 +λ). This is to be expected, since the in-
traband transitions occur between levels near the Fermi
energy and are hence unaffected by the phonon effects
that begin for |ω| ≥ ωE . Because all peaks are roughly
shifted down by 1/(1 + λ), an interband peak not vis-
ible in the bare case in this energy range now appears
to the far right, but we again focus on the first inter-
band “peak”, which now appears as a richer structure
at ' 410meV. For µ = 97meV (dash-dotted curve), this
structure consists of a central peak that is split in two,
along with adjacent Holstein sidebands. For µ = 230meV
(solid curve) the split peak reconverges into a single
peak, and to a good approximation, the weight under
this peak is half that under the split peak that appeared
for µ0 = 97meV. Increasing µ0 to 290meV eliminates en-
tirely this second line. And similar behavior is visible in
the next set of peaks at the far right of the figure. So
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FIG. 11. (Color online) The level diagrams corresponding to
Fig. 10. As µ0 is increased, the Fermi energy (indicated by
the dark, dashed, green line) moves up through the levels,
causing the lowest-energy, intraband transition to decrease in
energy as the level spacing at the Fermi energy decreases, and
progressively eliminating interband transitions as more levels
in the upper band become occupied.

we see the same general progression as in the bare case,
despite the richer structure. Again, the behavior is ex-
plained in Fig. 11 (lower frame). Focusing again on the
peaks around 410meV, the split peak for µ0 = 97meV oc-
curs because the two transitions T 1

−2 and T 2
−1 no longer

have identical energies. The neighbouring Holstein side-
bands arise from the transitions T 1

−20
p

and T 2
−10

p
. When

µ0 is increased to 230meV, the T 1
−2 transition (as well as

T 1
−20

p
) becomes Pauli blocked, leaving a single principle

absorption peak arising from the T 2
−1 transition (and a

Holsetin sideband from T 2
−10

p
). When µ0 is increased fur-

ther, to 290meV, the remaining transitions become Pauli
blocked and no peaks in this region appear. The transi-
tions giving rise to the peaks around 540meV in Fig. 10
can similarly be traced.

From such analyses of the level diagrams, we see that
the general behavior is maintained in the dressed case
because not only are the dressed LLs (to a good approx-
imation) simply shifted down by a factor of 1/(1 + λ)
from their bare energies, but any significant split levels or
phonon-assisted peaks are clustered close to this energy.
This means that the transitions Tn+1

−n and Tn−(n+1)—

and any transitions involving associated split levels or
phonon-assisted peaks—will be clustered near the ener-
gies (Mn+1−M−n)/(1+λ) and (Mn−M−(n+1))/(1+λ),
respectively, as noted previously. So there remains an
identifiable structure composed of one or more nearby
peaks, and the weight in this structure decreases by half
as groups of transitions (rather than a single transition)
become Pauli-blocked. Also, this situation cannot be fur-
ther complicated by a final state being split in two (or
having a strong phonon-assisted peak associated with
it) such that the Fermi energy can be moved between
the two substituent levels of that final state, because
any splitting must occur at least ' ωE away from the
Fermi energy. Furthermore, if the scattering rate were
to increase substantially with energy, as has been ob-
served in experiment,57 the differences between the bare
and dressed curves would become further obscured. The
split peak would appear as a single peak, and the Hol-
stein sidebands would form a smooth background be-
tween prominent lines—a larger background than in the
bare case, but this difference might be hard to isolate.
The effects of changing µ could also be somewhat ob-
scured by local variations in chemical potential, which
are known to occur in graphene due to the existence of
electron- or hole-rich puddles.58 In such cases, experi-
ments should observe an approximate average of our re-
sults for several different values of µ.

Another way to visualize the changes in weight with
changing chemical potential is to consider the optical
weight up to a cutoff Ω,

W =

∫ Ω

0

Re σxx(Ω′)dΩ′. (17)

Results for W/σ0 are shown in Fig. 12 for µ0 = 97meV
(dashed blue curves) and µ0 = 230meV (solid red), with
all other parameters as in Fig. 10. For comparison, we
also show the B = 0 limit (dotted black curves, studied
previously in Ref.33) for µ0 = 97meV. In the bare B = 0
curve, there is a sharp rise in W (Ω), corresponding to in-
tegrating over the Drude peak of half-width 2Γ, followed
by a plateau of height 2µ0, followed by a region of linear
increase, corresponding to integrating over the constant
universal background σ0 that sets in at Ω = 2µ0. The
dressed case differs from the bare one by a slightly more
rapid initial rise, a lower plateau, and an earlier onset
of the linear stage, due to the rescaling of Γ and µ by
1/(1 + λ). Turning now to the finite B curves, we see
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FIG. 12. (Color online) Partial optical sums for µ0 = 97meV
(dashed blue curves) and µ0 = 230meV (solid red curves),
with the same parameters as in Fig. 10. For comparison, the
B = 0 case with µ0 = 97meV (dotted black curves) is also
shown. Despite the splitting of levels in the dressed case, the
optical weight follows the same pattern as in the bare case.

successive plateaus arising from integration over succes-
sive absorption peaks, leading to oscillation about the
B = 0 curves. The first plateau in each curve arises from
an intraband transition, the others from interband tran-
sitions. As expected, for µ0 = 230meV there is roughly
half the weight in the first interband peak as there is
for µ0 = 97meV, but the total weight is conserved. The
heights of the plateaus are reduced in the dressed case
relative to their bare values because of the depletion of
the quasiparticle lines by the usual factor of 1/(1 + λ).
This missing spectral weight is transferred to the phonon-
assisted background, which causes the plateaus at high
energy to appear less sharply defined in the dressed case
than in the bare one.

VI. CIRCULAR POLARIZATION

So far we have presented results only for the diagonal
or longitudinal conductivity, σxx(Ω). If the polarization
of the incident light is taken into account, the relevant
quantities are σ±(Ω), for right- (+) and left-handed (−)
circularly polarized light, respectively, and the absorptive
part is Re σ±(Ω). Given σ±(Ω) = σxx(Ω)± iσxy(Ω), this
absorptive part is

Re σ±(Ω) = Re σxx(Ω)∓ Im σxy(Ω), (18)

which can be calculated from Eqs. (6) and (7). Polar-
ized light has important experimental utility, having been
used recently in experiments that have revealed a giant
Faraday rotation effect in single layer graphene.59 This
corresponds to a rotation of polarized light due to a mag-
netic field.60 And as we examine here, for finite chemi-
cal potential Re σ+(Ω) and Re σ−(Ω) will carry differ-
ent signatures of electron-phonon coupling, such that the
difference between them provides a direct measure of the
coupling.

FIG. 13. (Color online) Bare (dashed red curves) and dressed
(solid black curves) optical conductivity as a function of fre-
quency for right- and left-handed circularly polarized light,
with parameters B = 18.2T, µ0 = 100meV, Γ = 5meV,
ωE = 200meV, and A = 250meV. The bottom frame shows
the imaginary part of the Hall conductivity, equal to one-half
the difference of Re σ+ and Re σ−. Additional features not
seen in the bare case appear in this difference, due to the
renormalized LLs being asymmetrically arranged about E0.

In the bare case, it follows from Eq. (A4) that

Re σ+(Ω) =
2σ0M

2
1

Ω

∞∑
n=0

× [δ (En+1 − En − Ω) θ (En+1) θ (−En)

+ δ (En+1 − E−n − Ω) θ (En+1) θ (−E−n)] (19)

Re σ−(Ω) =
2σ0M

2
1

Ω

∞∑
n=0

×
[
δ
(
E−n − E−(n+1) − Ω

)
θ (E−n) θ

(
−E−(n+1)

)
+ δ

(
En − E−(n+1) − Ω

)
θ (En) θ

(
−E−(n+1)

)]
. (20)

That is, one of the two possible interband and one of
the two possible intraband transitions contributes to each

Re σ
(n)
+ , and the other two contribute to Re σ

(n)
− . Hence,

if the Fermi energy lies between EN and EN+1 (i.e.,
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MN < µ0 < MN+1), with N ≥ 0, we arrive at

Re σ+(Ω) =
2σ0M

2
1

Ω

[
δ (MN+1 −MN − Ω)

+ δ (MN+1 −M−N − Ω)

+

∞∑
n=N+1

δ (Mn+1 −M−n − Ω)

]
(21)

Re σ−(Ω) =
2σ0M

2
1

Ω

∞∑
n=N+1

δ
(
Mn −M−(n+1) − Ω

)
.

(22)

Because the bare levels are arranged symmetrically about
the Dirac point—i.e., M−n = −Mn—the terms in the two
sums are identical. Therefore, in the bare case Re σ+ and
Re σ− have an identical set of peaks, except that Re σ+

has an intraband peak and one more interband peak than
Re σ− (with the situation reversed if N < 0). But this
relies on the symmetric arrangement of levels, which no
longer exists in the dressed case. And so we expect that
in the dressed case, these sets of peaks will differ.

This is illustrated in Fig. 13, which shows Re σ+(Ω)
(top frame), Re σ−(Ω) (middle), and the difference
[Re σ+(Ω)−Re σ−(Ω)]/2 = −Im σxy(Ω) (the imaginary
part of the off-diagonal or transverse Hall conductivity).
The bare case is shown in dashed red; the dressed, in solid
black. Here we use µ0 = 100meV and B = 18.2T, such
that the Fermi energy lies between the zeroth and first
LLs. With this arrangement, the lowest-frequency inter-
band transition is degenerate with the intraband one,
such that Re σ+(Ω) has only one low-frequency peak
that is absent from Re σ−(Ω). In the bare case, that
single peak in Re σ+(Ω) is followed by a series of inter-
band peaks that are identical to those in Re σ−(Ω). But
as expected, in the dressed case the interband peaks in
Re σ+(Ω) differ significantly from those in Re σ−(Ω). If
Re σ+(Ω) and Re σ−(Ω) are summed and the sum is
divided by 2, we obtain σxx(Ω). In the bare case, this
has peaks at the same positions as those in Re σ+(Ω) but
with the first peak halved in size. In the dressed case, the
sum of the two sets of interband peaks becomes compli-
cated. On the other hand, if the difference is taken and
then halved to obtain −Im σxy(Ω), then in the bare case
all the interband peaks cancel, as shown in the bottom
frame of Fig. 13. In the dressed case, there are instead
oscillations about zero above 300meV.

Figure 14 shows the level diagram and transitions giv-
ing rise to the various peaks, and we can see therein that
the largest difference between the levels above the Dirac
point and those below is the splitting of the −2 and −3
LLs. This shows up as the largest oscillation in the lower
frame of Fig. 13. However, even in the absence of split-
ting, oscillations are apparent. And since the bare case
has no such oscillations, any nonzero result in this region
is a direct consequence of correlation effects and could be
used to estimate their magnitude.

FIG. 14. (Color online) Level diagrams corresponding to the
conductivities shown in Fig. 13. In the dressed case, level
spacings are not symmetric about the zeroth level; most sig-
nificantly, the n = −2 and −3 LLs are split, while the n = 2
and 3 are not. This asymmetry causes peaks in Re σ+ and
Re σ− to appear at differing energies, as seen in Fig. 13.

VII. SEMICLASSICAL CYCLOTRON
RESONANCE

The semiclassical limit comes about when the quanti-
zation associated with the Landau levels no longer plays
a prominent role. This corresponds to a large chemical
potential, µ � M1, such that µ falls between levels N
and N + 1 where N � 1. For simplicity, we take µ > 0
in this discussion. Note that if µ0 falls between the bare
levels N and N + 1, then µ falls between the same two
dressed levels, and so we can freely refer to the relative
position of either µ0 or µ. This is the case because in this
regime, µ ' µ0/(1 + λ) and the two levels fall very near
the Fermi energy (and hence very far from any peaks in
the self-energy), meaning they, too, are simply shifted
down by 1/(1 + λ). Now, because N is large, the en-
ergy of an intraband transition between these two levels
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FIG. 15. (Color online) Optical conductivity corresponding
to cyclotron resonance for three values of chemical potential:
µ0 = 202.5meV (top two curves), µ0 = 105meV (middle two),
and µ0 = 55meV (bottom). The remaining parameters are
B = 1.5T, Γ = 2.5meV, ωE = 200meV, and A = 250meV.
Dashed curves are bare, and solid are dressed. The inset
shows the level diagram and transitions giving rise to the ab-
sorption peaks, with the thick, dashed, green curve marking
the location of the Fermi level for the three values of chemical
potential. At the lower right, we see the transition from semi-
classical to quantum behavior as µ decreases and more peaks
(due to −3 → 2 and −2 → 3 transitions) become visible at
reasonably low energies.

is given by δM ≡ MN+1 −MN '
√

eBv2F ~
2Nc . Noting that

the chemical potential µ0 is approximately equal to MN ,
we find

δM ' v2
F eB~
µ0c

, (23)

which is the semiclassical cyclotron resonance (CR) fre-
quency, ωcr. In this limit, the level spacing at the Fermi
energy, and therefore the transition energy, is linear in
the magnetic field. Such linear dependence, which has
been measured in a recent experiment,61 sharply con-
trasts with the behavior for µ . M1, where the spacing

and transitions vary as
√
B.

We illustrate the transition between the semiclassical
and quantum regimes in Fig. 15, which shows Re σxx/σ0

versus Ω for three values of chemical potential, with
solid curves for the dressed case and dashed for the
bare case. Here we have used a relatively small mag-
netic field, B = 1.5T, corresponding to M1 = 45meV, to
make the transition between regimes visible within a rel-
atively small energy range. The top two curves (in red)
are for µ0 = 202.5meV� M1, deep in the semiclassical
regime; the middle two (in blue), for µ0 = 105meV; and
the bottom two (in magenta), for µ0 = 55meV∼ M1,
in the quantum regime. In these curves, the peaks at
low frequency represent the cyclotron resonance. Along
with the conductivity, we show the level diagram and
the transitions responsible for those low-frequency peaks,

FIG. 16. (Color online) The cyclotron resonance frequency
ωcr as a function of B for the same parameter values as in
Fig. 17. In both the bare and dressed cases, ωcr closely tracks
the expected linear approximation, represented by the dotted
red curve in the bare case and the dashed black curve in the
dressed case.

with the Fermi energy indicated by the thick, dashed,
green line. As is obvious from the diagram, when µ is
increased the energy of the intraband transition is de-
creased while the energy of the interband transitions are
increased. The onset of the quantum regime coincides
with the interband transitions becoming relevant on the
scale of the CR, which can be seen in the bottom set of
curves, where an additional set of peaks due to interband
transitions become visible at higher energies.

Note that all of this holds equally well in both bare
and dressed cases; as can be seen in the figure, the
dressed conductivity differs from the bare conductivity
mainly by a downward shift in frequency. Because the
relevant levels are very near the Fermi energy, the cy-
clotron resonance is unaffected by the split levels and
phonon-assisted peaks discussed in the preceding sec-
tions. This allows us to easily gain analytical understand-
ing of many features of the optics and of renormalization
in this regime. We first note that one can perform the
same calculation that led to Eq. (23) on the dressed en-

ergies En = Σ1(En)− µ+Mn. Using En ' Mn−µ0

1+λ , one
finds the renormalized cyclotron frequency

ωcr '
v2
F eB~

cµ0(1 + λ)
, (24)

which is simply the bare frequency ωcr = v2
F
eB~
cµ0

divided

by 1 + λ. Figure 16 confirms this approximate result,
showing the approximations (23) and (24) together with
the cyclotron frequency as determined from full numeri-
cal results (indicated by circles in the bare case and trian-
gles in the dressed case). Note that because the dressed
chemical potential µ is approximately µ0/(1+λ), the bare
formula for ωcr remains valid so long as bare quantities

are replaced by renormalized ones: ωcr =
v2FB~
cµ , where

vF now refers to the renormalized Fermi velocity.
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FIG. 17. (Color online) Bare (thin curves) and dressed (thick
curves) conductivity corresponding to cyclotron resonance for
three values of magnetic field. The cyclotron resonance fre-
quency increases with increasing B, as the level spacing at
the Fermi energy increases. The remaining parameters are
µ0 = 310meV, Γ = 1.0meV, ωE = 200meV, A = 250meV.

Figure 17 more fully illustrates the effects of renor-
malization on the CR peaks. The diagonal conduc-
tivity as a function of Ω is shown in the bare (thin
curves) and dressed (thick curves) cases for three val-
ues of B at a fixed, large value of the chemical poten-
tial, µ0 = 310meV. Increasing B from 2.0T (solid black
curves) to 5.9T (dot-dashed red) to 10.0T (dashed blue)
causes the CR peak to move to higher energies, as dis-
cussed above. And as we saw in the preceding sections,
the width of the peak in each case is decreased due to
renormalization. The height of the peaks, however, is
only weakly affected by the varying field strength and
almost entirely unaffected by renormalization. All of
these features follow from the fact that the relevant levels
are near the Fermi energy, far from any phonon-assisted
peaks. This means Eq. (15) is valid. Replacing n with
N therein and substituting Eq. (23) into it, we find

Re σxx(Ω) = σ0
2µ0

1 + λ

1

π

2Γ/(1 + λ)

(Ω− ωcr)2 + ( 2Γ
1+λ )2

, (25)

where ωcr here stands for (MN+1 −MN )/(1 + λ), which
is approximately the renormalized cyclotron resonance
frequency given in Eq. (24). Here we see the width of the
dressed CR peak is reduced by a factor of 1/(1 + λ). We
also see that the value of Re σxx at ωcr,

Re σxx(Ω = ωcr) = σ0
µ0

πΓ
, (26)

is independent of the magnetic field strength and of the
electron-phonon coupling, as we saw in the full numeri-
cal results of Fig. 17. This contrasts with the behavior
in the quantum regime, where the height is unaffected
by coupling but varies as

√
B, as we saw in Eq. (16).

Note that as with ωcr, when µ ' µ0/(1 + λ), we can

FIG. 18. (Color online) Effect of finite broadening on the
cyclotron resonance frequency for B = 2.4T, µ0 = 310meV,
ωE = 200meV, and A = 250meV. The solid red curve is for
Γ = 1.0meV; the dashed blue curve, for Γ = 2.5meV. Black
arrows point to the peak position in each case, which shifts
away from the expected value Bv2F /[µ0(1 + λ)] (marked by
the vertical dotted line) as Γ increases. The inset shows the
levels and transition between them giving rise to the cyclotron
resonance, with the widths of the levels causing noticeable
portions of the initial (or final) state to fall above (or below)
the Fermi energy.

write this result in terms of observable, dressed quan-
tities: Reσxx(Ω = ωcr) = σ0

µ
πΓ , where Γ is here the

dressed width of the spectral peaks.

As we can see from the B = 2.0T curves in Fig. 17,
this prediction of B-independent peak amplitude begins
to fail at small B, for which ωcr gets close to zero. The
failure is due to the effects of finite width, which allow
neighbouring transitions, rather than the TN+1

N transi-
tion alone, to contribute significant optical weight in the
energy range of the cyclotron resonance.

The finite width of the levels also causes a shift in the
value of the cyclotron resonance frequency. Figure 18
compares the conductivity for two values of Γ: 2.5meV
(dashed curve) and 1meV (solid curve). The dotted verti-
cal line indicates the value of ωcr expected from Eq. (24),
while the two black arrows point to the peak positions
in the two cases. For both values of Γ, the peak posi-
tions differ from the expected result, with a larger dif-
ference for the larger value of Γ. This effect of Γ can be
understood from the inset, which shows the levels and
transition between them that gives rise to the cyclotron
resonance peak. Significant portions of the initial (final)
level fall above (below) the Fermi energy, causing the
average transition energy to deviate from the difference
E31 − E30. Results here include coupling to a phonon,
but obviously this effect occurs in the bare case as well.
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VIII. EFFECTS OF BROADENING AND
COMPARISON WITH EXPERIMENT

Several experimental studies of optical conductivity
in graphene in magnetic field have been performed in
both ultrathin epitaxial graphite samples5,49,50,57 and in
single-layer graphene.51–53 These experiments have not
seen obvious evidence of the more noteworthy features we
have described, involving highly deformed or split peaks.
There are two reasons for this. First, typically the ex-
periments observe only the lowest few absorption peaks,
arising from transitions between low LLs. Since signa-
tures of electron-phonon coupling occur when the initial
or final level in a transition has an energy of magnitude
& ωE , this means that one requires fairly large magnetic
fields to see such signatures (given that ωE is typically
near 150meV or 200meV in experiments). Second, in or-
der to see fine details of the spectrum, such as split peaks,
one requires fairly small scattering rates. In the exper-
iments with large magnetic fields, the scattering rates
have been significantly larger than the values we have
used.51,52 In experiments with smaller magnetic fields,
there is an indication that the scattering rate increases
linearly with energy,57 such that peaks are obscured at
the large energies where signatures of coupling would be
seen. In cases such as these, in which the scattering rate
is comparable to or greater than the energy difference
between split lines, double peaks or several nearby peaks
will merge. This changes the signature of coupling from
a split peak to a broadened peak.

The effect of large broadening is illustrated in Fig. 19.
In the upper frame, we show results for Re σxx(Ω) with
Γ = 5meV (dashed red curve) and Γ = 40meV (solid
black). For the larger value of Γ, little remains of the
rich structure seen in the dashed curve. In the inset, we

show the Γ = 40meV results decomposed into Re σ
(0)
xx ,

Re σ
(1)
xx , and Re σ

(2)
xx , allowing us to see how strongly

the peaks overlap. In the lower two frames, we show re-
sults for A−3(ω) (middle) and ω − Σ1(ω) + µ (bottom)
for both of the above two cases and for the case where Γ
remains small (5meV) but the phonon spectrum is broad-
ened (dash-dotted blue curve). In this case, we model the
electron-phonon spectral density α2F (ν) of Eq. (4) with
the truncated Lorentzian form used in Ref.33, namely,

α2F (ν) =
A′

π

[
δ

(ν − ωE)2 + δ2
− δ

δ2
0 + δ2

]
θ(δ0 − |ωE − ν|),

(27)

which is peaked at ωE with half-width δ and truncated
at energy ωE ± δ0. The energy A′ is adjusted to give the
same value of λ obtained from the Einstein spectrum.
Comparing the three curves, we see that for the features
around −300meV, broadening the phonon has the same
effect as increasing the residual scattering, reducing the
oscillation in the self-energy (seen in the lower frame) and
hence tending to merge the peaks in the spectral function
(in the middle frame). For the very large scattering rate

FIG. 19. (Color online) Effects of large broadening on the
spectrum. The upper frame shows the diagonal conductivity
for Γ = 40meV and 5meV; the inset shows how the separate
contributions to Re σxx overlap for the Γ = 40meV case. The
lower two frames show a spectral function, A−3, involving a
split peak, along with the function ω−Σ1 +µ that determines
the nature of the peaks. Here results are shown for both
a large impurity scattering and a broadened phonon; either
effect, if sufficiently large, can annul the splitting of levels.
In all cases, B = 18.2T, µ0 = 100meV, ωE = 200meV, A =
250meV. The broadened phonon distribution is a truncated
Lorentzian with parameters A′ = 555meV, δ = 15meV, and
δ0 = 30meV.

Γ = 40meV, this oscillation has entirely disappeared. To
make the three curves clearly distinguishable, we have
chosen the width of the phonon spectrum such that the
behavior of the dash-dotted blue curves lie midway be-
tween that of the solid black and dashed red curves. The
feature at ω = −200meV, visible only in the Γ = 40meV
case, is the logarithmic singularity in the self-energy (for
comparison, see the inset of Fig. 3 and middle frame of
Fig. 5). For finite chemical potential, as in these curves
(where µ0 = 100meV), this logarithmic singularity is gen-
erally small but grows roughly linearly with Γ,44 making
it noticeable when Γ = 40meV; on the other hand, it is
weakened by broadening the phonon spectrum.

In cases where split peaks become merged in this man-
ner, one can detect electron-phonon coupling via broad-
ened, rather than split, peaks. Specifically, we can expect
a jump in the broadening of an absorption peak when the
initial or final LL in the transition lies near the phonon
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energy. Such a jump is displayed in Fig. 20. The upper
frame shows conductivity curves for three values of

√
B,

while the lower frame shows the half-widths of the first
two absorption peaks as a function of

√
B. In the lower

frame, the half-width of the first absorption peak (open
circles) jumps at around 16T. For the chemical poten-
tial used here (µ0 = 15meV), the first absorption peak
is created by the 0 → 1 transition, and the jump occurs
when the n = 1 LL passes through the phonon frequency.
Physically, this corresponds to the opening of another de-
cay channel for the electron via the creation of a phonon.
A similar jump has been seen in the data of Jiang et
al.,51,52 and to generate the data of Fig. 20, we have cho-
sen parameters similar to theirs: specifically, a somewhat
larger scattering rate than used through most of the pa-
per, with Γ = 10meV, and a larger Fermi velocity, with
vF = 1.27 × 106meV (which agrees with their inferred
value once renormalized by 1/(1+λ)). The jump they see

occurs at
√
B ' 3.5T1/2, and to obtain a jump at a sim-

ilar field strength, we have chosen ωE = 150meV (a typ-
ical phonon energy reported in some experiments8,11,13).
However, a precise comparison cannot be made, because
Jiang et al. report only the filling factor, rather than
chemical potential, for which their results were obtained.
The dependence of the jump on chemical potential is eas-
ily estimated: As stated above, the jump in half-width
occurs when the n = 1 LL, which lies approximately at
(M1 − µ0)/(1 + λ), reaches ωE . This leads to the condi-

tion (M1 − µ0)/(1 + λ) = wE . Rearranging for
√
B, one

finds (in Gaussian units)

√
B =

ωE(1 + λ) + µ0

vF
√

2e~/c
, (28)

which shows that the field strength at which the jump
occurs depends linearly on µ0. If the jump seen by Jiang
et al. does not vary under changes of chemical potential
(in a range that keeps the filling factor roughly constant),
then our results cannot plausibly explain it. However,
a jump that does depend on chemical potential would
be a strong signature of electron-phonon coupling. The
resonance frequency at which the jump occurs, E1−E0 =
ωE +µ, is also an indicator of whether or not it is caused
by coupling to a single phonon.

Figure 20 also shows, in the upper frame, that the
dressed absorption peaks deviate from Lorentzian shape,
in addition to their jump in broadening, when the field
strength is near or above that at which the broaden-
ing occurs. Such asymmetry can be understood from
Eq. (15) and Fig. (8). At low fields, before the n = 1
LL approaches ωE , the dressed peak is described by
Eq. (15), with a Lorentzian shape. Once the n = 1 level
approaches ωE , transitions made possible by phonon-
assisted processes begin to have significant optical weight.
As shown in Fig. 8 (along with neighbouring figures),
these transitions are not symmetrically weighted about
a central peak. When the broadening is large and the
peaks merge, the result will be an asymmetric lineshape.
As with the jump in broadening, asymmetric lineshapes

have been observed by Jiang et al.51,52 While that asym-
metry has been attributed to substrate effects,52 electron-
phonon coupling may contribute.

Returning to the bottom frame of Fig. 20, we see
that the lifetime for the second absorption peak (open

squares) exhibits a quasilinear increase with
√
B, fol-

lowed by a decrease, with the maximum occurring at
approximately the same field strength as did the jump
in width of the first peak. The increase brings the width
above that of the first peak. Such quasilinear behavior
has been observed for lower fields of ' 1.5–2.5T1/2 in the
data of Orlita et al.57 Unfortunately, data for the sec-
ond peak’s width has not been reported at higher fields,
and a turnaround of the width has not been observed at
present.

Experiments have also found anomalies in the posi-
tions of peaks. Broadly speaking, they have all confirmed
the expected ṽF

√
B dependence of the resonance ener-

gies. But while Sadowski et al.5,49,50,57 find a common
renormalized Fermi velocity ṽF fits all the data, Jiang
et al.51,52 find a different velocity is required to fit the
two measured level resonances, and Deacon et al.53 find
a particle-hole asymmetry in the fitted velocity, which is
not seen by the other two groups. Moreover, the differ-
ent groups deduce markedly different values of ṽF , even
when fitting the same resonance energies. Our results
suggest that these discrepancies cannot be explained by
coupling to a phonon of energy in the typical range of
150–230meV. In our calculations, we find that in a large
part of the spectrum, vF is simply renormalized by a fac-
tor of 1/(1+λ) for all resonance energies. The resonance

energies deviate from the behavior vF
√
B

1+λ only when the
initial or final level in the relevant transition lies near a
phonon-assisted peak, as shown in Fig. 7 for the µ = 0
case.

In experiment, other issues will complicate the effects
of electron-phonon coupling. For example, the detailed
nature of a given defect-structure can introduce impor-
tant energy-dependence into the scattering rate,62 and
finite-size effects can introduce modifications.63,64 Cou-
pling to acoustic phonons may also occur. As discussed in
Ref.44, this has qualitatively the same effect as coupling
to a single Einstein mode, introducing phonon-assisted
peaks in the self-energy at frequencies shifted from the
LLs by the Debye frequency ωD. To be consistent with
experiment, the coupling to such phonons must be weak,
and since ωD will typically be much smaller than the
the LL spacing, the result will be small shoulders on the
peaks in the self-energy. This, in turn, will lead to small
shoulders in the absorption peaks.

IX. SUMMARY AND CONCLUSION

In a conventional metal, coupling of the charge carriers
to a phonon provides a transfer of optical spectral weight
from the Drude-like coherent peak at zero energy, char-
acteristic of a metallic state, to incoherent boson-assisted
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FIG. 20. (Color online) Effect of varying magnetic field on the
conductivity for Γ = 10meV, µ0 = 15meV, ωE = 150meV,
A = 150meV, and vF = 1.27 × 106m/s. The upper frame
shows the diagonal conductivity as a function of photon fre-
quency for three different values of B; to allow easy compar-
ison with the lower frame, the legend indicates the values of√
B for which each curve was calculated. The lower frame

shows the half-widths of the first two peaks in the conductiv-
ity as a function of

√
B. Circles indicate the half-width of the

first peak, which arises from the transition T 1
0 , while squares

indicate that of the second peak, which arises from the two
transitions T 1

−2 and T 2
−1.

Holstein sidebands. In such absorption, a quasiparticle
particle-hole pair is created as well as a phonon. We
have studied how similar processes alter the optical spec-
trum in graphene under an external magnetic field B, a
regime in which the charge carrier bands are discretized
into Landau levels.

Our study rests on the selection rules for the allowed
optical transitions, which were found to be straightfor-
ward generalizations of those in the bare band case. If
only bare LLs are considered, the optical absorption spec-
trum consists of a sequence of peaks arising due to tran-
sitions between the levels. In an interband transition,
a particle can be excited from a level labeled by an in-

teger n to a level n + 1; in an interband transition, a
particle can be excited from a level labeled by a negative
integer −n (positive or zero n) to a level n± 1. In addi-
tion, the initial state must be occupied (that is, ω ≤ 0)
and the final state unoccupied (that is, ω ≥ 0). When
the charge carriers are coupled to a phonon, the spec-
tral weight in the nth level, denoted by An(ω), is redis-
tributed from a single Dirac or Lorentz distribution into
multiple peaks—but the selection rules remain essentially
the same: a transition from an occupied initial state of
weight Ani(ω) (ω ≤ 0) to a final state of weight Anf

(ω′)
(ω′ ≥ 0) is allowed if and only if nf = ni + 1 (for an in-
traband transition) or nf = |ni|±1 (an interband transi-
tion). The changes in the optical spectrum can therefore
be straightforwardly understood from the changes in the
distribution of spectral weight in each level.

Those changes are largely encapsulated by a
shift of each level from the bare energy Mn =
sgn(n)vF

√
2|n|eB~/c to the lower energy Mn/(1 + λ),

where λ is the electron-phonon effective mass renormal-
ization parameter. This can can be interpreted as a
renormalization of the Fermi velocity to vF /(1+λ). Cor-
respondingly, the widths of the resulting quasiparticle
spectral lines are decreased by a factor of 1/(1 + λ),
while their amplitude remains unchanged, leading to a
loss of spectral weight in each level. The lost weight is
transferred to phonon-assisted peaks. Since λ . 0.2 in
graphene, these have only a small spectral weight. In ad-
dition to the shift of spectral weight to phonon-assisted
peaks, when a Landau level falls near one of those peaks,
it deviates from the simple renormalization of the Fermi
velocity, and it can split into two lines sharing the original
line’s spectral weight. Favorable conditions for this split-
ting to occur are small broadening and a sharply peaked
phonon distribution; if the intrinsic broadening is compa-
rable to the separation of levels, the splitting can instead
appear as a single widened peak. Note that while we have
formulated a mathematically sharp distinction between
a split quasiparticle level and a quasiparticle level with
a phonon-assisted sideband, when the spectral weight in
one of the substituents of a split level becomes smaller
than λ/(1 + λ), it is no longer possible to distinguish
between these two cases from an empirical point of view.

Despite these complicated features in each An, all sig-
nificant additional absorption peaks tend to fall very near
what would be expected from a simple renormalization
of the Fermi velocity, with the peaks falling closest to
that prediction having the most optical weight. This is
because additional peaks of significant weight in each An
likewise cluster near the energy expected from the simple
renormalization of vF . It follows that many features in
the optics in the bare case, such as the change of optical
weight under an absorption peak as the chemical poten-
tial is varied, largely carry over into the dressed case,
but with simple Lorentzians replaced by deformed and
slightly split absorption peaks generated from multiple
slightly different transitions.

As a result of the redistribution of spectral weight, the
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renormalized states are no longer symmetrically arranged
about the zeroth LL. This asymmetry implies that the
peaks in the real parts of the conductivity in the right-
(σ+) and left-handed (σ−) circular bases no longer align
in energy as they would in the bare case. Consequently,
the imaginary part of the transverse conductivity, given
by the difference Im σxy = − 1

2 (Re σ+ − Re σ−), now
possesses additional peaks and changes of sign, though
these features will likely be small in practice.

We have also considered the semiclassical limit, which
corresponds to the chemical potential becoming large
compared to energy scale of the Landau levels: µ�M1.
In this limit, the levels near the Fermi energy are densely
spaced. This means that the transition giving rise to the
first peak in Re σxx, at the cyclotron resonance frequency
ωcr, is between levels very near the Fermi energy, and is
hence unaffected by the more complicated features that
appear in the spectrum at frequencies above ωE . We find
that ωcr is thus given by a simple renormalization of the
bare-band approximate formula ωcr = Bv2

F /µ0 by a fac-
tor of 1/(1 +λ). If we take into account that the dressed
chemical potential µ is approximately µ0/(1 +λ), we can
write ωcr simply in terms of renormalized quantities as
Bv2

F /µ, where vF is the renormalized Fermi velocity. We
find, however, that because the spacing is small, the fi-
nite width of the levels slightly decreases the cyclotron
frequency from the expected value.

Lastly, we have discussed the relevance of our results
to current experiments. In the case of large broadening,
we have shown that electron-phonon coupling leads to
a signature jump in the half-width of absorption peaks
as LLs are made to pass through the phonon frequency.
Such jumps may have been seen in the results of Jiang et
al.,51,52 and they should be readily identifiable based on
their known dependence on parameters such as chemical

potential.

ACKNOWLEDGMENTS

We thank Erik Henriksen and Marek Potemski for
helpful discussions and the anonymous referees for sug-
gested improvements. This research was supported in
part by the National Science Foundation under Grant No.
NSF PHY05-51164, the Canadian Institute for Advanced
Research, and the Natural Sciences and Engineering Re-
search Council of Canada.

Appendix A: Selection rules

From the earlier work of Gusynin et al.,45 the real part
of the conductivity in the circular basis is given by

Re σ±(Ω) = σ0
M2

1

Ω

∞∑
n=0

∫ Ω

0

dω [(1∓ 1)ψn,n+1(ω, ω − Ω)

+ (1± 1) ψn,n+1(ω − Ω, ω)] . (A1)

Following the discussion in Sec. III, we can model each
An(ω) as a set of lines, one at each renormalized quasi-
particle level nα and one at each phonon-assisted peak
nmp , as in Eq. (12). We reproduce that equation here for
convenience:

An(ω) =
∑
α

Wα
n δ(ω − Eαn ) +

∞∑
m=−∞

Wm,nδ(ω − Pm,n).

(A2)
Substituting this into Eq. (A1) and simplifying the resul-
tant Heaviside functions, we arrive at

Re σ±(Ω) = σ0
M2

1

Ω

∞∑
n=0

{
(1∓ 1)

[∑
α,β

Wα
nW

β
n+1δ(E

α
n − E

β
n+1 − Ω)θ(Eαn )θ(−Eβn+1)

+
∑
α,m

Wα
nWm,n+1δ(E

α
n − Pm,n+1 − Ω)θ(Eαn )θ(−Pm,n+1)

+
∑
m,β

Wm,nW
β
n+1δ(Pm,n − E

β
n+1 − Ω)θ(Pm,n)θ(−Eβn+1)

+
∑
m,m′

Wm,nWm′,n+1δ(Pm,n − Pm′,n+1 − Ω)θ(Pm,n)θ(−Pm′,n+1)

]
+ (1± 1)[n→ n+ 1, n+ 1→ n] + (1∓ 1)[n→ −n, n+ 1→ −(n+ 1)]

+ (1± 1)[n→ −(n+ 1), n+ 1→ −n] + (1∓ 1)[n→ n, n+ 1→ −(n+ 1)]

+ (1± 1)[n→ −(n+ 1), n+ 1→ n] + (1∓ 1)[n→ −n, n+ 1→ n+ 1]

+ (1± 1)[n→ n+ 1, n+ 1→ −n]

}
, (A3)

where the terms such as [n → n + 1, n + 1 → n] indicate the four terms in the first set of square brackets repeated
with the indicated changes. The δ functions in this expression tell us which transitions contribute, and the Heaviside
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functions tell us when those transitions can occur (i.e., that the initial state must be below the Fermi energy and final
state above). Many of the transitions are insignificant, however. We can neglect transitions between two phonon-
assisted peaks, since they are suppressed by a factor of Wmi,ni

Wmf ,nf
. λ2/(1 + λ)2. We can also neglect “inverted”

transitions of the form −n→ −(n+ 1), n+ 1→ n, n→ −(n+ 1), and n+ 1→ −n. Such transitions, which go from a
higher index to a lower one, are obviously impossible in the bare case, since the level with a higher index cannot fall
below the Fermi energy while the one with a lower index falls above it. In the dressed case, such transitions become
possible, but they have negligible weight, as discussed in Appendix B. Dropping these terms, we have

Re σ±(Ω) = σ0
M2

1

Ω

∞∑
n=0

{
(1± 1)

[∑
α,β

Wα
n+1W

β
n δ(E

α
n+1 − Eβn − Ω)θ(Eαn+1)θ(−Eβn)

+
∑
α,m

Wα
n+1Wm,nδ(E

α
n+1 − Pm,n − Ω)θ(Eαn+1)θ(−Pm,n)

+
∑
m,β

Wm,n+1W
β
n δ(Pm,n+1 − Eβn − Ω)θ(Pm,n+1)θ(−Eβn)

]

+ (1∓ 1)

[∑
α,β

Wα
−nW

β
−(n+1)δ(E

α
−n − E

β
−(n+1) − Ω)θ(Eα−n)θ(−Eβ−(n+1))

+
∑
α,m

Wα
−nWm,−(n+1)δ(E

α
−n − Pm,−(n+1) − Ω)θ(Eα−n)θ(−Pm,−(n+1))

+
∑
m,β

Wm,−nW
β
−(n+1)δ(Pm,−n − E

β
−(n+1) − Ω)θ(Pm,−n)θ(−Eβ−(n+1))

]

+ (1± 1)

[∑
α,β

Wα
n+1W

β
−nδ(E

α
n+1 − E

β
−n − Ω)θ(Eαn+1)θ(−Eβ−n)

+
∑
α,m

Wα
n+1Wm,−nδ(E

α
n+1 − Pm,−n − Ω)θ(Eαn+1)θ(−Pm,−n)

+
∑
m,β

Wm,n+1W
β
−nδ(Pm,n+1 − Eβ−n − Ω)θ(Pm,n+1)θ(−Eβ−n)

]

+ (1∓ 1)

[∑
α,β

Wα
nW

β
−(n+1)δ(E

α
n − E

β
−(n+1) − Ω)θ(Eαn )θ(−Eβ−(n+1))

+
∑
α,m

Wα
nWm,−(n+1)δ(E

α
n − Pm,−(n+1) − Ω)θ(Eαn )θ(−Pm,−(n+1))

+
∑
m,β

Wm,nW
β
−(n+1)δ(Pm,n − E

β
−(n+1) − Ω)θ(Pm,n)θ(−Eβ−(n+1))

]}
, (A4)

From this, one can obtain Re σxx by making the replace-
ments (1±1)→ 1 and (1∓1)→ 1, and Im σxy by making
the replacements (1 ± 1) → ∓1 and (1 ∓ 1) → ±1. One
can obtain the result for the bare case by eliminating all
sums over α and β, setting Wn = 1 and En = Mn − µ0

for all n, and setting the weight of phonon-assisted peaks
Wm,n to zero for all m and n.

Equation (A4) represents eight possible types of transi-
tions: intraband transitions within the conduction band,
between either two quasiparticle levels or a quasiparticle

level and a phonon-assisted peak,

nβ → (n+ 1)α, (A5)

nmp → (n+ 1)α, (A6)

nβ → (n+ 1)mp , (A7)

which correspond to the first three lines of Eq. (A4); in-
traband transitions within the valence band,

[−(n+ 1)]β → −nα, (A8)

[−(n+ 1)]mp → −nα, (A9)

[−(n+ 1)]β → −nmp , (A10)
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FIG. 21. (Color online) Splitting of levels such that in-
verted transitions are possible for B = 27.4T, µ0 = 230meV,
Γ = 1.0meV, ωE = 160meV, and A = 300meV. The upper
frame shows A2(ω) and A3(ω), with the 3− peak in A3 falling
below the Fermi energy and the 20 peak (among others) falling
above the Fermi energy, making a transition 3− → 20 possi-
ble. The lower frame displays ω − Σ1 + µ, showing how this
set of peaks arise. The vertical dotted line marks the Fermi
energy, and the dotted green line represents the B = 0 behav-
ior about which ω − Σ1 + µ oscillates. The points C, D, and
E mark points relevant to deriving the constraints on when
an inverted transition is possible, as discussed in the text.

which correspond to the fourth, fifth, and sixth lines of
Eq. (A4); interband transitions of the form −n→ n+ 1,

(−n)β → (n+ 1)α, (A11)

(−n)mp → (n+ 1)α, (A12)

(−n)β → (n+ 1)mp , (A13)

which correspond to the seventh, eighth, and ninth lines
of Eq. (A4); and interband transitions of the form −(n+
1)→ n,

[−(n+ 1)]β → nα, (A14)

[−(n+ 1)]mp → nα, (A15)

[−(n+ 1)]β → nmp , (A16)

which correspond to the tenth, eleventh, and twelfth lines
of Eq. (A4). Unless the level spacing at the Fermi energy
is comparable to the phonon energy, the transitions that
end at a phonon-assisted peak—(A7), (A10), (A13), and
(A16)—will be insignificant, since the initial level must
fall below the Fermi energy and the phonon-assisted peak
must fall at or above the phonon energy.

Appendix B: Inverted transitions

By an “inverted” transition, we mean a transition in
which the index nf of the final state is less than the in-
dex ni of the initial state. Here we show that while such

transitions are possible, due to splitting of levels, they
have negligible optical weight. For simplicity, we con-
sider the conditions under which an intraband inverted
transition is possible; interband inverted transitions will
obviously have at least as stringent conditions. We also
consider only transitions between quasiparticle levels, not
between a level and a phonon-assisted peak. Figure 21
illustrates a situation allowing an inverted transition of
the form 3→ 2. The top frame shows the spectral func-
tions A2 and A3, and we see the quasiparticle level 3−

lies below the Fermi energy while the peak 20 lies above.
According to the selection rules derived in Appendix. A,
this means the transition 3− → 20 is allowed. However,
the 3− level has negligible weight, meaning the transition
will as well. The transition 3− → 2+, which we can see
is also possible, contains even less weight.

This low weight is generic: the conditions allowing the
transitions are so extreme that they preclude two strong
peaks between which the transition can occur. Exam-
ine the lower frame of Fig. 21 and consider a transition
n + 1 → n rather than the specific case 3 → 2 shown.
In order for the inverted transition to occur, an intersec-
tion of Mn+1 with ω −Σ1 + µ [marking a level (n+ 1)β ]
must occur to the left of the Fermi energy (marked by
a vertical dotted line), and an intersection of Mn with
ω −Σ1 + µ (marking a level nα) must occur to the right
of the Fermi energy. We can easily see from the figure
that if this occurs, the peak (n + 1)β will be separated
from the principle peak in An+1—the peak at roughly
(Mn+1 − µ0)/(1 + λ)—by at least an energy ωE . Since
the weight in a peak decays with the peak’s separation
from (Mn+1 − µ0)/(1 + λ), this peak will always have
negligible weight. The reader should be able to convince
him or herself that any inverted transitions would rely on
such a large splitting and therefore be insignificant.

For completeness, we derive explicitly the conditions
under which an inverted transition such as that in Fig. 21
can occur. Referring to the lower frame, the point D
labels the intersection of ω − Σ1 + µ with Mn+1 (in this
case, M3); E, the intersection with Mn (in this case, M2).
The point C labels the midpoint of an oscillation in Σ,
occuring at an energy Pm. For E to lie to the right of
EF , we need Eαn > 0. Taking this energy to fall below
the phonon energy, we can use Eαn = (Mn − µ0)/(1 + λ)
and obtain the constraint

µ0 < Mn. (B1)

For D to lie to the left of EF , we need Mn+1 to lie be-
low the peak height of the oscillation at Pm. This height
can be calculated as the vertical position of C plus the
amplitude of the oscillation. The vertical position of C is
approximately (1 +λ)Pm+µ0, given that ω−Σ1 +µ can
be approximated by the green line, which is obtained by
letting Σ1(ω) = Σ1(0)− λω. The amplitude of the oscil-

lation is given by44 AM2
1

4WCΓ . So the condition that Mn+1

falls below the peak height of the oscillation becomes

Mn+1 < (1 + λ)Pm + µ0 +
AM2

1

4WCΓ . Rearranging this, we
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obtain a constraint on the broadening Γ,

Γ <
AM2

1

4WC
[Mn+1 − (1 + λ)Pm − µ0]

−1
. (B2)

In addition to Eqs. (B1) and (B2), there are constraints
obtained from the location of the oscillation in Σ1: Pm
must be less than −ωE , and we wish there to be no
oscillation that occurs between Pm and −ωE . Using

Pm = −ωE +Mm − µ0, we obtain

Mm < µ0 < Mm+1. (B3)

The parameters in Fig. 21 were found by fixing n and all
other parameters except Γ and µ0, making m a function
of µ0 via Eq. (B3), and then varying µ0 to maximize the
value of Γ allowed by Eq. (B2). Even with that optimiza-
tion, Γ must be very small in order to allow an inverted
transition.

Although we have only dealt explicitly with the
level-level inverted transitions, the same form of argu-
ment shows that analogous transitions involving phonon-
assisted peaks are also insignificant.
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